Current data on the role of homocysteine in the formation of cardiovascular diseases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Recent research has made it possible to expand and complement the modern understanding of the regulation of many physiological processes of the body. At the same time, there are many controversial questions about the role of increasing homocysteine levels in the development of certain diseases, mainly cardiovascular pathology.

Purpose. To analyze the current literature on the contribution of hyperhomocysteinemia to the formation of cardiovascular diseases (CVD).

Material and methods. The data of foreign and domestic articles on the research topic found in Pubmed and eLibrary and published over the past 7 years are analyzed.

Conclusions. Hyperhomocysteinemia leads to amplification of the adverse effects of classical CVD risk factors such as hypertension, smoking, lipid metabolism by participating in the formation of endothelial dysfunction.

全文:

受限制的访问

作者简介

А. Dudnikova

Clinic of Kuban State Medical University, Ministry of Health of Russia

编辑信件的主要联系方式.
Email: avdudnikova@yandex.ru
ORCID iD: 0000-0003-2601-7831

Сandidate of Medical Sciences

俄罗斯联邦, Krasnodar

Е. Sokolova

Kuban State Medical University, Ministry of Health of Russia

Email: avdudnikova@yandex.ru
ORCID iD: 0009-0008-8107-5640
俄罗斯联邦, Krasnodar

P. Poltorackaya

Kuban State Medical University, Ministry of Health of Russia

Email: avdudnikova@yandex.ru
ORCID iD: 0009-0002-0503-1618
俄罗斯联邦, Krasnodar

А. Storozhenko

Kuban State Medical University, Ministry of Health of Russia

Email: avdudnikova@yandex.ru
ORCID iD: 0009-0000-2947-0872
俄罗斯联邦, Krasnodar

D. Simakov

Kuban State Medical University, Ministry of Health of Russia

Email: avdudnikova@yandex.ru
ORCID iD: 0009-0009-5642-085X
俄罗斯联邦, Krasnodar

Z. Dorohin

Kuban State Medical University, Ministry of Health of Russia

Email: avdudnikova@yandex.ru
ORCID iD: 0009-0004-9579-2473
俄罗斯联邦, Krasnodar

参考

  1. Roth G.A., Mensah G.A., Johnson C.O. et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020; 76: 2982–3021. doi: 10.1016/j.jacc.2020.11.010
  2. Azzini E., Ruggeri S., Polito A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int J Mol Sci. 2020; 21 (4): 1421. doi: 10.3390/ijms21041421
  3. Wakabayashi I. Homocysteine Levels and Arterial Stiffness in the General Population. J Atheroscler Thromb. 2016; 23 (6): 668–70. doi: 10.5551/jat.ED043
  4. Isakov V.A., Bogdanova A.A., Bessonov V.V. et al. Effects of Multivitamin, Multimineral and Phytonutrient Supplementation on Nutrient Status and Biomarkers of Heart Health Risk in a Russian Population: A Randomized, Double Blind, Placebo Controlled Study. Nutrients. 2018; 10 (2): 120. doi: 10.3390/nu10020120
  5. Mantjoro E.M., Toyota K., Kanouchi H. Positive Association of Plasma Homocysteine Levels with Cardio-Ankle Vascular Index in a Prospective Study of Japanese Men from the General Population. J Atheroscler Thromb. 2016; 23 (6): 681–91. doi: 10.5551/jat.32243
  6. Dong Y., Huang T., Zhai Z. et al. Lowering serum homocysteine in H-type hypertensive patients with atrial fibrillation after radiofrequency catheter ablation to prevent atrial fibrillation recurrence. Front Nutr. 2022; 9: 995838. doi: 10.3389/fnut.2022.995838
  7. Esse R., Barroso M., Tavares de Almeida I. et al. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int J Mol Sci. 2019; 20 (4): 867. doi: 10.3390/ijms20040867
  8. Hermann A., Sitdikova G. Homocysteine: Biochemistry, Molecular Biology and Role in Disease. Biomolecules. 2021; 11 (5): 737. doi: 10.3390/biom11050737
  9. Rizzo G., Laganà A.S. The Link between Homocysteine and Omega-3 Polyunsaturated Fatty Acid: Critical Appraisal and Future Directions. Biomolecules. 2020; 10 (2): 219. doi: 10.3390/biom10020219
  10. Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol Rev. 2019; 99 (1): 555–604. doi: 10.1152/physrev.00003.2018
  11. Maron B.A., Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med. 2009; 60: 39–54. doi: 10.1146/annurev.med.60.041807
  12. Angelini A., Cappuccilli M.L., Magnoni G. et al. The link between homocysteine, folic acid and vitamin B12 in chronic kidney disease. G Ital Nefrol. 2021; 38 (4): 2021-vol4.
  13. Guéant J.L., Guéant-Rodriguez R.M., Oussalah A. et al. Hyperhomocysteinemia in Cardiovascular Diseases: Revisiting Observational Studies and Clinical Trials. Thromb Haemost. 2023; 123 (3): 270–82. doi: 10.1055/a-1952-1946
  14. Zaric B.L., Obradovic M., Bajic V. Homocysteine and Hyperhomocysteinaemia. Curr Med Chem. 2019; 26 (16): 2948–61. doi: 10.2174/0929867325666180313105949
  15. Besen S., Ozkale Y., Ceylaner S. et al. Clinical and laboratory findings and etiologies of genetic homocystinemia: a single-center experience. Acta Neurol Belg. 2024; 124 (1): 213–22. doi: 10.1007/s13760-023-02356-1
  16. Jakubowski H. Homocysteine editing, thioester chemistry, coenzyme A, and the origin of coded peptide synthesis dagger. Life. 2017; 7: 6. doi: 10.3390/life7010006
  17. Gurda D., Handschuh L., Kotkowiak W. et al. Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids. 2015; 47: 1319–39. doi: 10.1007/s00726-015-1956-7
  18. Perła-Kaján J., Borowczyk K., Głowacki R. et al. Paraoxonase 1 Q192R genotype and activity affect homocysteine thiolactone levels in humans. FASEB J. 2018; 32: 6019–24. doi: 10.1096/fj.201800346R
  19. Borowczyk K., Piechocka J., Głowacki R. et al. Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: The WENBIT trial. J Intern Med. 2019; 285: 232–44. doi: 10.1111/joim.12834
  20. Bosevski M., Zlatanovikj N., Petkoska D. et al. Plasma Homocysteine in Patients with Coronary and Carotid Artery Disease: A Case Control Study. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2020; 41 (1): 15–22. doi: 10.2478/prilozi-2020-0019
  21. Chen L., Wang B., Wang J. et al. et al. Association between serum total homocysteine and arterial stiffness in adults: a community-based study. J Clin Hypertens (Greenwich). 2018; 20 (4): 686–93. doi: 10.1111/jch.13246
  22. Li W.X., Cheng F., Zhang A.J. et al. Folate Deficiency and Gene Polymorphisms of MTHFR, MTR and MTRR Elevate the Hyperhomocysteinemia. Risk Clin Lab. 2017; 63: 523–33. doi: 10.7754/Clin.Lab.2016.160917
  23. Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev Cardiovasc Med. 2022; 23 (2): 73. doi: 10.31083/j.rcm2302073
  24. Karolczak K., Watala C. Melatonin as a Reducer of Neuro- and Vasculotoxic Oxidative Stress Induced by Homocysteine. Antioxidants (Basel). 2021; 10 (8): 1178. doi: 10.3390/antiox10081178
  25. Gaiday A.N., Tussupkaliyev A.B.T., Bermagambetova S.K. et al. Effect of homocysteine on pregnancy: A systematic review. Chem Biol Interact. 2018; 293: 70–6. doi: 10.1016/j.cbi.2018.07.021
  26. Tinelli C., Di Pino A., Ficulle E. et al. Hyperhomocysteinemia as a Risk Factor and Potential Nutraceutical Target for Certain Pathologies. Front Nutr. 2019; 6: 49. doi: 10.3389/fnut.2019.00049
  27. Cimmino G., Natale F., Alfieri R. et al. Non-Conventional Risk Factors: "Fact" or "Fake" in Cardiovascular Disease Prevention? Biomedicines. 2023; 11 (9): 2353. doi: 10.3390/biomedicines11092353
  28. Mallikethi-Reddy S., Briasoulis A., Akintoye E. et al. Novel biomarkers with potential for cardiovascular risk reclassification. Biomarkers. 2017; 22 (3-4): 189–99. doi: 10.1080/1354750X.2016.1201540
  29. Senousy S.M., Farag M.K., Gouda A.S. et al. Association Between Biomarkers of Vitamin B12 Status and the Risk of Neural Tube Defects. J Obstet Gynaecol Res. 2018; 44: 1902–8. doi: 10.1111/jog.13751

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2024
##common.cookie##