Bioplastic collagen-based materials in reconstructive surgery
- 作者: Eremin P.S.1, Rozhkova E.A.1, Marchenkova L.A.1, Markov P.A.1
-
隶属关系:
- National Medical Research Center for Rehabilitation and Balneology
- 期: 卷 35, 编号 10 (2024)
- 页面: 29-33
- 栏目: Novelty in Medicine
- URL: https://journals.eco-vector.com/0236-3054/article/view/689498
- DOI: https://doi.org/10.29296/25877305-2024-10-06
- ID: 689498
如何引用文章
详细
In recent years, bioplastic collagen-based materials have become widespread in reconstructive surgery due to their unique biological and mechanical properties. The article reviews modern advances in the development and application of collagen-based biomaterials for soft tissue, bone and cartilage repair, as well as their effectiveness in comparison with other types of materials used in rehabilitation. Special attention is paid to the improvement of collagen materials properties due to their chemical modification, crosslinking and combination with synthetic polymers, which allows increasing their biocompatibility, resistance to degradation and mechanical strength.
The article reviews key applications of collagen-based materials, including chronic wound healing, cartilage repair in osteoarthritis, and bone regeneration after trauma and surgery.
A comparative analysis of collagen materials with alternative biomaterials such as synthetic polymers and ceramics has been performed. It is shown that collagen materials are superior to synthetic analogs in terms of biocompatibility and ability to stimulate cell proliferation, but combined materials based on collagen and synthetic polymers show the best results in terms of mechanical stability and bioactivity.
The presented data indicate a high potential for the use of bioplastic collagen-based materials in reconstructive surgery, and emphasize the need for further research to optimize their properties and expand their application in clinical practice.
全文:

作者简介
P. Eremin
National Medical Research Center for Rehabilitation and Balneology
编辑信件的主要联系方式.
Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470
俄罗斯联邦, Moscow
E. Rozhkova
National Medical Research Center for Rehabilitation and Balneology
Email: ereminps@gmail.com
ORCID iD: 0000-0002-2440-9244
Biol. D.
俄罗斯联邦, MoscowL. Marchenkova
National Medical Research Center for Rehabilitation and Balneology
Email: ereminps@gmail.com
ORCID iD: 0000-0003-1886-124X
MD
俄罗斯联邦, MoscowP. Markov
National Medical Research Center for Rehabilitation and Balneology
Email: ereminps@gmail.com
ORCID iD: 0000-0002-4803-4803
Candidate of Biological Sciences
俄罗斯联邦, Moscow参考
- Ogueri K.S., Laurencin C.T. Nanofiber Technology for Regenerative Engineering. ACS Nano. 2020; 14 (8): 9347–63. doi: 10.1021/acsnano.0c03981
- Liu S., Yu J.-M., Gan Y.-C. et al. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res. 2023; 10 (1): 16. doi: 10.1186/s40779-023-00448-w
- Sohutskay D.O., Buno K.P., Tholpady S.S. et al. Design and biofabrication of dermal regeneration scaffolds: role of oligomeric collagen fibril density and architecture. Regen Med. 2020; 15 (2): 1295–312. doi: 10.2217/rme-2019-0084
- Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online. 2019; 18 (1): 24. doi: 10.1186/s12938-019-0647-0
- Mbese Z., Alven S., Aderibigbe B.A. Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications. Polymers (Basel). 2021; 13 (24): 4368. doi: 10.3390/polym13244368
- López-López, M.T. et al. Innovative techniques in the development of collagen scaffolds for tissue engineering. Tissue Engineering: Part A, 2023.
- He X., Li W., Liu S. et al. Fabrication of high-strength, flexible, porous collagen-based scaffolds to promote tissue regeneration. Mater Today Bio. 2022; 16: 100376. doi: 10.1016/j.mtbio.2022.100376
- Geevarghese R., Sajjadi S.S., Hudecki A. et al. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci. 2022; 23 (24): 16185. doi: 10.3390/ijms232416185
- Abaszadeh F., Ashoub M.H., Khajouie G. et al. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res. 2023; 28 (1): 537. doi: 10.1186/s40001-023-01429-4
- Valamvanos T.F., Dereka X., Katifelis H. et al. Recent Advances in Scaffolds for Guided Bone Regeneration. Biomimetics (Basel). 2024; 9 (3): 153. doi: 10.3390/biomimetics9030153
- Farag A., Vaquette C., Hutmacher D.W. et al. Fabrication and Characterization of Decellularized Periodontal Ligament Cell Sheet Constructs. Methods Mol Biol. 2023; 2588: 429–38. doi: 10.1007/978-1-0716-2780-8_25
- Palani N., Vijayakumar P., Monisha P. et al. Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. J Nanobiotechnology. 2024; 22 (1): 211. doi: 10.1186/s12951-024-02491-8
- Gomez-Florit M., Pardo A., Domingues R.M.A. et al. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules. 2020; 25 (24): 5858. doi: 10.3390/molecules25245858
- Shang Y., Wang G., Zhen Y. et al. Application of decellularization-recellularization technique in plastic and reconstructive surgery. Chin Med J (Engl). 2023; 136 (17): 2017–27. doi: 10.1097/CM9.0000000000002085
- Huang W.H., Ding S.L., Zhao X.-Y. et al. Collagen for neural tissue engineering: Materials, strategies, and challenges. Mater Today Bio. 2023; 20: 100639. doi: 10.1016/j.mtbio.2023.100639
- Deng X., Gould M., Ali M.A. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater. 2022; 110 (11): 2542–73. doi: 10.1002/jbm.b.35086
- Марков П.А., Еремин П.С., Падерин Н.М. и др. Влияние биопластического материала на адгезию, рост и пролиферативную активность фибробластов человека в средах, имитирующих кислотность раневого ложа при остром и хроническом воспалении. Вестник восстановительной медицины. 2023; 22 (2): 42–51. [Markov P.A., Eremin P.S., Paderin N.N. et al. Effect of Bioplastic Material on Adhesion, Growth and Proliferative Activity of Human Fibroblasts when Incubated in Solutions Mimic the Acidity of Wound an Acute and Chronic Inflammation. Bulletin of Rehabilitation Medicine. 2023; 22 (2): 42–51 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-2-42-51
- Ahmed M., Ramos T.A., Damanik F. et al. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis. Sci Rep. 2015; 5: 14804. doi: 10.1038/srep14804
- Ansari M., Darvishi A., Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol. 2024; 12: 1340893. doi: 10.3389/fbioe.2024.1340893
- Chen M., Jiang R., Deng N. et al. Natural polymer-based scaffolds for soft tissue repair. Front Bioeng Biotechnol. 2022; 10: 954699. doi: 10.3389/fbioe.2022.954699
- Reddy M.S.B., Ponnamma D., Choudhary R. et al. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel). 2021; 13 (7): 1105. doi: 10.3390/polym13071105
- Shi J., Dai W., Gupta A. et al. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. Materials (Basel). 2022; 15 (23): 8475. doi: 10.3390/ma15238475
- Ebrahimi Z., Irani S., Ardeshirylajimi A. et al. Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci Rep. 2022; 12 (1): 12359. doi: 10.1038/s41598-022-15602-y
- Perez-Puyana V., Wieringa P., Yuste Y. et al. Fabrication of hybrid scaffolds obtained from combinations of PCL with gelatin or collagen via electrospinning for skeletal muscle tissue engineering. J Biomed Mater Res A. 2021; 109 (9): 1600–12. doi: 10.1002/jbm.a.37156
- Abdelaziz A.G., Nageh H., Abdo S.M. et al. A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering (Basel). 2023; 10 (2): 204. doi: 10.3390/bioengineering10020204
- Satchanska G., Davidova S., Petrov P.D. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers (Basel). 2024; 16 (8): 1159. doi: 10.3390/polym16081159
- Ellingson A.J., Pancheri N.M., Schiele N.R. Regulators of collagen crosslinking in developing and adult tendons. Eur Cell Mater. 2022; 43: 130–52. doi: 10.22203/eCM.v043a11
- Li X., Zhang Q., Yu S.M. et al. The Chemistry and Biology of Collagen Hybridization. J Am Chem Soc. 2023; 145 (20): 10901–16. doi: 10.1021/jacs.3c00713
- Марков П.А., Костромина Е.Ю., Фесюн А.Д. и др. Обоснование использования магниточувствительных биоматериалов в клинической практике для стимуляции регенерации костных тканей: обзор литературы. Вестник восстановительной медицины. 2024; 23 (3): 69–76 [Markov P.A., Kostromina E.Yu., Fesyun A.D. et al. Rationale of Using Magnetically Sensitive Biomaterials in Bone Tissue Therapy: a Review. Bulletin of Rehabilitation Medicine. 2024; 23 (3): 69–76 (in Russ.)]. doi: 10.38025/2078-1962-2024-23-3-69-76
- Schussler O., Falcoz P.E., Chachques J.C. et al. Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. Int J Mol Sci. 2021; 22 (22): 12563. doi: 10.3390/ijms222212563
- Sobczak-Kupiec A., Drabczyk A., Florkiewicz W. et al. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. Materials (Basel). 2021; 14 (9): 2096. doi: 10.3390/ma14092096
- Na K.S., Fernandes-Cunha G.M., Varela I.B. et al. Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model. Cytotherapy. 2021; 23 (6): 500–9. doi: 10.1016/j.jcyt.2021.02.001
- Vasile C., Pamfil D., Stoleru E. et al. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules. 2020; 25 (7): 1539. doi: 10.3390/molecules25071539
- Марков П.А., Соколов А.С., Артемьева И.А. и др. Коллагеновый гидрогель защищает эпителиальные клетки кишечника от индометацин-индуцированного повреждения: результаты эксперимента in vitro. Вестник восстановительной медицины. 2024; 23 (2): 25–33 [Markov P.A., Sokolov A.S., Artemyeva I.A. et al. Collagen Hydrogel Protects Intestinal Epithelial Cells From Indomethacin-Induced Damage: Results of an in vitro Experiment. Bulletin of Rehabilitation Medicine. 2024; 23 (2): 25–33 (in Russ.)]. doi: 10.38025/2078-1962-2024-23-2-25-33
补充文件
