Role of maternal hemodynamics in choosing antihypertensive therapy: concept shift

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Antihypertensive drugs used in pregnancy can reduce blood pressure (BP) by different mechanisms; however, none of these drugs has an advantage over the other. Due to the comparable efficacy and safety profile as outlined in national and international guidelines, the choice of antihypertensive drug in pregnancy is ultimately dependent on the doctor’s expertise, consideration of potential side effects and contraindications, availability, and cost. The risk for hypertension in pregnancy is determined by a woman’s baseline hemodynamic profile. Thus, as a rule, there is a decrease in cardiac output and increased peripheral vascular resistance in patients with preeclampsia even before pregnancy. Numerous hemodynamic studies with promising results suggest a new, phenotype-based approach to the selection of antihypertensive therapy used in pregnancy. The choice of hypotensive therapy is based on hemodynamic changes in a woman rather than on BP readings. It is recommended to prescribe a beta-blocker if cardiac output is increased (usually it is accompanied by decreased vascular resistance), but if vascular resistance is increased (usually it is accompanied by decreased cardiac output), it is recommended to prescribe a vasodilator. It is possible to correct the prescribed therapy during dynamic monitoring of its effectiveness if hemodynamic parameters normalize. This innovative concept has been shown to lead to better pregnancy outcomes, namely, faster achievement of target BP, lower incidence of severe hypertension, decreased rates of iatrogenic preterm labor and low birth weight babies.

Conclusion: Further large-scale studies are necessary to determine the optimal BP in pregnancy, as currently, there is no general consensus regarding this issue. Additionally, there is a need to investigate the efficacy of hemodynamically-based therapy for hypertension in pregnancy. This will facilitate the development of individualized therapeutic approaches.

Full Text

Restricted Access

About the authors

Kamilla T. Muminova

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: kamika91@mail.ru

Junior Researcher at High Risk Pregnancy Department

Russian Federation, Moscow

Marina M. Ziganshina

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: m_ziganshina@oparina4.ru

Senior Researcher at the Department of Clinical Immunology

Russian Federation, Moscow

Zulfiya S. Khodzhaeva

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: zkhodjaeva@mail.ru

Dr. Med. Sci., Professor, Head of High Risk Pregnancy Department

Russian Federation, Moscow

Igor I. Baranov

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: i_baranov@oparina4.ru

Dr. Med. Sci., Professor, Head of Scientific and Educational Programs Department

Russian Federation, Moscow

References

  1. Garovic V.D., Dechend R., Easterling T., Karumanchi S.A., McMurtry Baird S., Magee L.A. et al.; American Heart Association Council on Hypertension; Council on the Kidney in Cardiovascular Disease, Kidney in Heart Disease Science Committee; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Lifestyle and Cardiometabolic Health; Council on Peripheral Vascular Disease; and Stroke Council. Hypertension in pregnancy: diagnosis, blood pressure goals, and pharmacotherapy: a scientific statement from the American Heart Association. Hypertension. 2022; 79(2): e21-e41. https://dx.doi.org/10.1161/HYP.0000000000000208.
  2. Brown M.A., Magee L.A., Kenny L.C., Karumanchi S.A., McCarthy F.P., Saito S. et al.; International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension. 2018; 72(1): 24-43. https://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10803.
  3. Sinkey R.G., Battarbee A.N., Bello N.A., Ives C.W., Oparil S., Tita A.T.N. Prevention, diagnosis, and management of hypertensive disorders of pregnancy: a comparison of International Guidelines. Curr. Hypertens. Rep. 2020; 22(9): 66. https://dx.doi.org/10.1007/s11906-020-01082-w.
  4. Abalos E., Duley L., Steyn D.W., Gialdini C. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst. Rev. 2018; 10(10): CD002252. https://dx.doi.org/10.1002/ 14651858.CD002252.pub4.
  5. Sanusi A.A., Sinkey R.G., Tita A.T.N. Clinical trials that have changed obstetric practice: the Chronic Hypertension and Pregnancy (CHAP) trial. Clin. Obstet. Gynecol. 2024; 67(2): 411-7. https://dx.doi.org/10.1097/GRF.0000000000000857.
  6. Tita A.T., Szychowski J.M., Boggess K., Dugoff L., Sibai B., Lawrence K. et al.; Chronic Hypertension and Pregnancy (CHAP) Trial Consortium. Treatment for mild chronic hypertension during pregnancy. N. Engl. J. Med. 2022; 386(19): 1781-92. https://dx.doi.org/10.1056/NEJMoa2201295.
  7. Whelton P.K., Carey R.M., Aronow W.S., Casey D.E. Jr, Collins K.J., Dennison Himmelfarb C. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018; 71(6): e13-e115. https://dx.doi.org/10.1161/HYP.0000000000000065.
  8. Norton E., Shofer F., Schwartz H., Dugoff L. Adverse perinatal outcomes associated with stage 1 hypertension in pregnancy: a retrospective cohort study. Am. J. Perinatol. 2023; 40(16): 1781-8. https://dx.doi.org/10.1055/ s-0041-1739470.
  9. Xiao Y., Liu J., Teng H., Ge W., Han B., Yin J. Stage 1 hypertension defined by the 2017 ACC/AHA guidelines and neonatal outcomes: systematic review and meta-analysis. Pregnancy Hypertens. 2021; 25: 204-12. https://dx.doi.org/ 10.1016/j.preghy.2021.06.011.
  10. Li Q., Zheng L., Gu Y., Jiang D., Wang G., Li J. et al. Early pregnancy stage 1 hypertension and high mean arterial pressure increased risk of adverse pregnancy outcomes in Shanghai, China. J. Hum. Hypertens. 2022; 36(10): 917-24. https://dx.doi.org/10.1038/s41371-021-00523-6.
  11. SPRINT Research Group; Wright J.T. Jr, Williamson J.D., Whelton P.K., Snyder J.K., Sink K.M., Rocco M.V. et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 2015; 373(22): 2103-16. https://dx.doi.org/10.1056/NEJMoa1511939.
  12. Johnson S., Liu B., Kalafat E., Thilaganathan B., Khalil A. Maternal and perinatal outcomes of white coat hypertension during pregnancy: a systematic review and meta-analysis. Hypertension. 2020; 76(1): 157-66. https://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14627.
  13. Ananth C.V., Duzyj C.M., Yadava S., Schwebel M., Tita A.T.N., Joseph K.S. Changes in the prevalence of chronic hypertension in pregnancy, United States, 1970 to 2010. Hypertension. 2019; 74(5): 1089-95. https://dx.doi.org/10.1161/HYPERTENSIONAHA.119.12968.
  14. Teng H., Wang Y., Han B., Liu J., Cao Y., Wang J. et al. Gestational systolic blood pressure trajectories and risk of adverse maternal and perinatal outcomes in Chinese women. BMC Pregnancy Childbirth. 2021; 21(1): 155. https://dx.doi.org/10.1186/s12884-021-03599-7.
  15. Ditisheim A., Wuerzner G., Ponte B., Vial Y., Irion O., Burnier M. et al. Prevalence of hypertensive phenotypes after preeclampsia: a prospective cohort study. Hypertension. 2018; 71(1): 103-9. https://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09799.
  16. Bellos I., Pergialiotis V., Antsaklis A., Loutradis D., Daskalakis G. Safety of non-steroidal anti-inflammatory drugs in postpartum period in women with hypertensive disorders of pregnancy: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2020; 56(3): 329-39. https://dx.doi.org/10.1002/uog.21997.
  17. ACOG Practice Bulletin No. 202: Gestational hypertension and preeclampsia. Obstet. Gynecol. 2019; 133(1): 1. https://dx.doi.org/10.1097/AOG.0000000000003018.
  18. Wright D., Syngelaki A., Akolekar R., Poon L.C., Nicolaides K.H. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am. J. Obstet. Gynecol. 2015; 213(1): 62.e1-62.e10. https://dx.doi.org/10.1016/j.ajog.2015.02.018.
  19. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде. 2021. [Ministry of Health of the Russian Federation. Clinical guidelines. Preeclampsia. Eclampsia. Edema, proteinuria, and hypertensive disorders during pregnancy, delivery, and postpartum. 2021. (in Russian)].
  20. Rana S., Lemoine E., Granger J.P., Karumanchi S.A. Preeclampsia: pathophysiology, challenges, and perspectives. Circ. Res. 2019; 124(7): 1094-112. https://dx.doi.org/10.1161/CIRCRESAHA.118.313276.
  21. Sircar M., Thadhani R., Karumanchi S.A. Pathogenesis of preeclampsia. Curr. Opin. Nephrol. Hypertens. 2015; 24(2): 131-8. https://dx.doi.org/10.1097/MNH.0000000000000105.
  22. El-Sayed A.A.F. Preeclampsia: A review of the pathogenesis and possible management strategies based on its pathophysiological derangements. Taiwan J. Obstet. Gynecol. 2017; 56(5): 593-8. https://dx.doi.org/10.1016/ j.tjog.2017.08.004.
  23. Grandi S.M., Filion K.B., Yoon S., Ayele H.T., Doyle C.M., Hutcheon J.A. et al. Cardiovascular disease-related morbidity and mortality in women with a history of pregnancy complications. Circulation. 2019; 139(8): 1069-79. https://dx.doi.org/10.1161/CIRCULATIONAHA.118.036748.
  24. Garovic V.D., White W.M., Vaughan L., Saiki M., Parashuram S., Garcia-Valencia O. et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J. Am. Coll. Cardiol. 2020; 75(18): 2323-34. https://dx.doi.org/10.1016/j.jacc.2020.03.028.
  25. Honigberg M.C., Natarajan P. Women's cardiovascular health after hypertensive pregnancy: the long view from labor and delivery becomes clearer. J. Am. Coll. Cardiol. 2020; 75(18): 2335-7. https://dx.doi.org/10.1016/ j.jacc.2020.01.064.
  26. Ferrazzi E., Stampalija T., Monasta L., Di Martino D., Vonck S., Gyselaers W. Maternal hemodynamics: a method to classify hypertensive disorders of pregnancy. Am. J. Obstet. Gynecol. 2018; 218(1): 124.e1-124.e11. https://dx.doi.org/10.1016/j.ajog.2017.10.226.
  27. Meah V.L., Cockcroft J.R., Backx K., Shave R., Stöhr E.J. Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses. Heart. 2016; 102(7): 518-26. https://dx.doi.org/10.1136/heartjnl-2015-308476.
  28. de Haas S., Ghossein-Doha C., van Kuijk S.M., van Drongelen J., Spaanderman M.E. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017; 49(2): 177-87. https://dx.doi.org/10.1002/uog.17360.
  29. Loerup L., Pullon R.M., Birks J., Fleming S., Mackillop L.H., Gerry S. et al. Trends of blood pressure and heart rate in normal pregnancies: a systematic review and meta-analysis. BMC Med. 2019; 17(1): 167. https://dx.doi.org/10.1186/ s12916-019-1399-1.
  30. Sanghavi M., Rutherford J.D. Cardiovascular physiology of pregnancy. Circulation. 2014; 130(12): 1003-8. https://dx.doi.org/10.1161/CIRCULATIONAHA.114.009029.
  31. Verburg P.E., Roberts C.T., McBean E., Mulder M.E., Leemaqz S., Erwich J.J.H.M. et al. Peripheral maternal haemodynamics across pregnancy in hypertensive disorders of pregnancy. Pregnancy Hypertens. 2019; 16: 89-96. https://dx.doi.org/10.1016/j.preghy.2019.02.006.
  32. Novelli G.P., Vasapollo B., Valensise H. Hemodynamic prediction and stratification of hypertensive disorders of pregnancy: a dream that is coming true? J. Am. Heart Assoc. 2018; 7(14): e010084. https://dx.doi.org/10.1161/JAHA.118.010084.
  33. Ives C.W., Sinkey R., Rajapreyar I., Tita A.T.N., Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020; 76(14): 1690-702. https://dx.doi.org/10.1016/ j.jacc.2020.08.014.
  34. Lindheimer M.D., August P. Aldosterone, maternal volume status and healthy pregnancies: a cycle of differing views. Nephrol. Dial. Transplant. 2009; 24(6): 1712-4. https://dx.doi.org/10.1093/ndt/ gfp093.
  35. Муминова К.Т., Ходжаева З.С., Горина К.А., Шмаков Р.Г., Зиганшина М.М. Сравнительный анализ влияния двух схем гипотензивной терапии на гемодинамические показатели матери при преэклампсии с ранним и поздним началом. Акушерство и гинекология. 2023; 1: 55-66. [Muminova K.T., Khodzhaeva Z.S., Gorina K.A., Shmakov R.G., Ziganshina M.M. Comparative analysis of the effect of two antihypertensive therapy regimens on maternal hemodynamic parameters in early- and late-onset preeclampsia. Obstetrics and Gynecology. 2023; (1): 55-66. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.290.
  36. Зиганшина М.М., Муминова К.Т., Ходжаева З.С., Баранов И.И., Сухих Г.Т. Патогенетическое обоснование неэффективности гипотензивной терапии на основании анализа «вазоактивного статуса» у пациенток с ранней преэклампсией. Акушерство и гинекология. 2023; 11: 60-70. [Ziganshina M.M., Muminova K.T., Khodzhaeva Z.S., Baranov I.I., Sukhikh G.T. Pathogenetic rationale for the ineffectiveness of antihypertensive therapy based on vasoactive status analysis in patients with early-onset preeclampsia. Obstetrics and Gynecology. 2023; (11): 60-70. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.231.
  37. Bateman B.T., Huybrechts K.F., Fischer M.A., Seely E.W., Ecker J.L., Oberg A.S. et al. Chronic hypertension in pregnancy and the risk of congenital malformations: a cohort study. Am. J. Obstet. Gynecol. 2015; 212(3): 337.e1-14. https://dx.doi.org/10.1016/ j.ajog.2014.09.031.
  38. Gelder M.M., Van Bennekom C.M., Louik C., Werler M.M., Roeleveld N., Mitchell A.A. Maternal hypertensive disorders, antihypertensive medication use, and the risk of birth defects: a case-control study. BJOG. 2015; 122(7): 1002-9. https://dx.doi.org/10.1111/1471-0528.13138.
  39. Boesen E.I. Consequences of in-utero exposure to antihypertensive medication: the search for definitive answers continues. J. Hypertens. 2017; 35(11): 2161-4. https://dx.doi.org/10.1097/HJH.0000000000001486.
  40. Magee L.A., Brown M.A., Hall D.R., Gupte S., Hennessy A., Karumanchi S.A. et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2022; 27: 148-69. https://dx.doi.org/10.1016/ j.preghy.2021.09.008.
  41. Bellos I., Pergialiotis V., Papapanagiotou A., Loutradis D., Daskalakis G. Comparative efficacy and safety of oral antihypertensive agents in pregnant women with chronic hypertension: a network metaanalysis. Am. J. Obstet. Gynecol. 2020; 223(4): 525-37. https://dx.doi.org/10.1016/j.ajog.2020.03.016.
  42. Buawangpong N., Teekachunhatean S., Koonrungsesomboon N. Adverse pregnancy outcomes associated with first-trimester exposure to angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers: A systematic review and meta-analysis. Pharmacol. Res. Perspect. 2020; 8(5): e00644. https://dx.doi.org/10.1002/prp2.644.
  43. Vasapollo B., Novelli G.P., Valensise H. Hemodynamic guided treatment of hypertensive disorders in pregnancy: is it time to change our mind? J. Matern. Fetal Neonatal Med. 2021; 34(22): 3830-1. https://dx.doi.org/10.1080/ 14767058.2019.1695771.
  44. Stott D., Papastefanou I., Paraschiv D., Clark K., Kametas N.A. Serial hemodynamic monitoring to guide treatment of maternal hypertension leads to reduction in severe hypertension. Ultrasound Obstet. Gynecol. 2017; 49(1): 95-103. https://dx.doi.org/10.1002/uog.17341.
  45. Stott D., Bolten M., Paraschiv D., Papastefanou I., Chambers J.B., Kametas N.A. Longitudinal hemodynamics in acute phase of treatment with labetalol in hypertensive pregnant women to predict need for vasodilatory therapy. Ultrasound Obstet. Gynecol. 2017; 49(1): 85-94. https://dx.doi.org/10.1002/uog.17335.
  46. Mulder E.G., Ghossein-Doha C., Cauffman E., Lopes van Balen V.A., Schiffer V.M.M.M., Alers R.J. et al. Preventing recurrent preeclampsia by tailored treatment of nonphysiologic hemodynamic adjustments to pregnancy. Hypertension. 2021; 77(6): 2045-53. https://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16502.
  47. McLaughlin K., Snelgrove J.W., Sienas L.E., Easterling T.R., Kingdom J.C., Albright C.M. Phenotype-directed management of hypertension in pregnancy. J. Am. Heart Assoc. 2022; 11(7): e023694. https://dx.doi.org/10.1161/JAHA.121.023694.
  48. Chaffin D., Cottrell J., Cummings K., Jude D. 821: Directed antihypertensive therapy improves growth restriction and perinatal mortality in women with chronic hypertension. Am. J. Obstet. Gynecol. 2020; 222 (1 Suppl): S516-S517. https://dx.doi.org/10.1016/j.ajog.2019.11.836.
  49. di Pasquo E., Giannubilo S.R., Valentini B., Salvi S., Rullo R., Fruci S. et al. The "Preeclampsia and Hypertension Target Treatment" study: a multicenter prospective study to evaluate the effectiveness of the antihypertensive therapy based on maternal hemodynamic findings. Am. J. Obstet. Gynecol. MFM. 2024; 6(5): 101368. https://dx.doi.org/10.1016/j.ajogmf.2024.101368.
  50. Palmrich P., Haase N., Sugulle M., Kalafat E., Khalil A., Binder J. Maternal haemodynamics in Hypertensive Disorders of Pregnancy under antihypertensive therapy (HyperDiP): study protocol for a prospective observational case-control study. BMJ Open. 2023; 13(6): e065444. https://dx.doi.org/10.1136/bmjopen-2022-065444.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies