Comparative analysis of the reliability of data on the molecular karyotype of the embryo obtained by whole-genome amplification methods based on NGS technology of trophectoderm of individual cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aneuploidies in human embryos play a significant role in the development of implantation failures and early reproductive losses in assisted reproductive technology (ART) programs. Preimplantation genetic testing for aneuploidy (PGT-A) is the most commonly used method for assessing embryo ploidy. The introduction of PGT-A into clinical practice has greatly reduced the chances of transferring aneuploid embryos to the uterus and has increased the effectiveness of ART programs.

Different PGT-A methods and sampling techniques have advantages and disadvantages, and there are various reasons for potential false-positive and false-negative PGT-A results. Since only a few cells are used for the study, the uniformity of DNA amplification is crucial for obtaining reliable analysis results. Therefore, the most important stage of PGT-A is whole-genome amplification (WGA).

This article presents an analysis of the current literature regarding the effectiveness and reliability of methods for amplifying small quantities of DNA. The results of our study, which compares different methods of whole-genome amplification of individual trophectoderm cells, are presented in order to obtain reliable data on the molecular karyotype of embryos using NGS. The effectiveness of using domestic WGA kits has been demonstrated.

Conclusion: Comparing PGT-A results using various kits has shown that the "hybrid" protocol we developed, which allows for the use of both foreign and domestic WGA kits, is applicable. This approach has demonstrated the high reliability of WGA kits with SD polymerase for preparing materials for PGT of human embryos, and can also be applied in other areas of biomedicine and forensic research where high reliability and accuracy in amplifying extremely small quantities of DNA is required.

Full Text

Restricted Access

About the authors

Oleg S. Glotov

Pediatric Research and Clinical Center for Infectious Diseases; Serbalab LLC; D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Author for correspondence.
Email: olglotov@mail.ru
ORCID iD: 0000-0002-0091-2224

Dr. Bio. Sci., Head of the Department of Experimental Medical Virology, Molecular Genetics and Biobanking; Senior Researcher at the Department of Genomic Medicine

Russian Federation, St. Petersburg; St. Petersburg; St. Petersburg

Alsu F. Saifitdinova

Herzen State Pedagogical University of Russia; International Centre for Reproductive Medicine

Email: saifitdinova@mail.ru
ORCID iD: 0000-0002-1221-479X

Dr. Bio. Sci., Professor at the Department of Human and Animal Anatomy and Physiology; Deputy Head of the Laboratory of Assisted Reproductive Technologies

Russian Federation, St. Petersburg; St. Petersburg

Olga A. Pavlova

International Centre for Reproductive Medicine; Beagle Ltd.

Email: pavlova@biobeagle.com
ORCID iD: 0000-0001-9488-6903

PhD, Biologist, Laboratory of Assisted Reproductive Technologies; Leading Specialist

Russian Federation, St. Petersburg; St. Petersburg

Olga A. Leonteva

International Centre for Reproductive Medicine

Email: olga_leont@mail.ru
ORCID iD: 0000-0002-3667-0511

Embryologist, Laboratory of Assisted Reproductive Technologies

Russian Federation, St. Petersburg

Irena V. Poliakova

Serbalab LLC

Email: irena.88@inbox.ru
ORCID iD: 0000-0002-5738-8443

Biologist

Russian Federation, St. Petersburg

Arkadiy B. Maslennikov

Novosibirsk City Clinical Hospital

Email: mab2000@mail.ru
ORCID iD: 0009-0002-8046-3816

PhD (Med), Head of the Novosibirsk Regional DNA-Diagnostics Laboratory

Russian Federation, Novosibirsk

References

  1. Малышева О.В., Бичевая Н.К., Гзгзян А.М., Глотов О.С., Кинунен А.А., Лобенская А.Ю., Мекина И.Д., Полякова И.В., Пуппо И.Л., Сайфитдинова А.Ф., Щербак С.Г., Коган И.Ю. Технологические платформы преимплантационного генетического тестирования на анеуплоидии: сравнительная эффективность диагностики хромосомной патологии. Акушерство и гинекология. 2020; 4: 65-71. [Маlysheva О.V., Bichevaya N.K., Gzgzyan А.М., Glotov О.S., Kinunen А.А., Lobenskaya А.Yu., Меkina I.D., Polyakova I.V., Puppo I.L., Saifitdinova А.F., Shcherbak S.G., Kоgan I.Yu. Technological platforms for preimplantation genetic testing for aneuplody: comparative effectiveness of diagnosing chromosomal abnormalities. Obstetrics and Gynecology. 2020; (4): 65-71. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.4.65-71.
  2. Clark G., Babariya D., Del A., Cano C., Fernández Marcos E., Parnell L. et al. P-727. New methods reveal the true incidence of DNA contamination in PGT-A samples for the first time and avoid errors that could result in serious misdiagnoses. Hum. Reprod. 2023; 38(Suppl.1): i171. https://dx.doi.org/ 10.1093/humrep/dead093.337.
  3. Klenow H., Henningsen I. Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc. Natl. Acad. Sci. USA. 1970; 65(1): 168-75. https://dx.doi.org/10.1073/pnas.65.1.168.
  4. Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988; 239(4839): 487-91. https://dx.doi.org/10.1126/science.2448875.
  5. Telenius H., Carter N.P., Bebb C.E., Nordenskjold M., Ponder B.A., Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992; 13(3): 718-25. https://dx.doi.org/10.1016/0888-7543(92)90147-k.
  6. Aliotta J.M., Pelletier J.J., Ware J.L., Moran L.S., Benner J.S., Kong H. Thermostable Bst DNA polymerase I lacks a 3'-->5' proofreading exonuclease activity. Genet. Anal. 1996; 12(5-6): 185-95.
  7. Aviel-Ronen S., Qi Zhu C., Coe B.P., Liu N., Watson S.K., Lam W.L. et al. Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues. BMC Genomics. 2006; 7: 312. https://dx.doi.org/10.1186/1471-2164-7-312.
  8. Blanco L., Bernad A., Lázaro J.M., Martín G., Garmendia C., Salas M. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 1989; 264(15): 8935-40.
  9. Linck L., Resch-Genger U. Identification of efficient fluorophores for the direct labeling of DNA via rolling circle amplification (RCA) polymerase φ29. Eur. J. Med. Chem. 2010; 45(12): 5561-6. https://dx.doi.org/10.1016/ j.ejmech.2010.09.005.
  10. Твеленёва А.А., Мусатова Е.В., Шилова Н.В. Методы полногеномной амплификации генетического материала едничных клеток. Медицинская генетика. 2017; 16(11): 3-6. [Tveleneva A.A., Musatova E.V., Shilova N.V. Whole genome amplification as a method for analysis of single cells. Medical Genetics. 2017; 16(11): 3-6. (in Russian)].
  11. Zong C., Lu S., Chapman A.R., Xie X.S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012; 338(6114): 1622-6. https://dx.doi.org/10.1126/ science.1229164.
  12. Ignatov K.B., Barsova E.V., Fradkov A.F., Blagodatskikh K.A., Kramarova T.V., Kramarov V.M. A strong strand displacement activity of thermostable DNA polymerase markedly improves the results of DNA amplification. Biotechniques. 2014; 57(2): 81-7. https://dx.doi.org/10.2144/ 000114198.
  13. Blagodatskikh K.A., Kramarov V.M., Barsova E.V., Garkovenko A.V., Shcherbo D.S., Shelenkov A.A. et al. Improved DOP-PCR (iDOP-PCR): a robust and simple WGA method for efficient amplification of low copy number genomic DNA. PLoS One. 2017; 12(9): e0184507. https://dx.doi.org/10.1371/journal.pone.0184507.
  14. Сайфитдинова А.Ф., Павлова О.А., Зелинский А.А., Рябинина М.В., Глотов О.С., Богомаз Д.И., Рубель А.А. Полногеномная амплификация малых количеств ДНК для определения молекулярного кариотипа клеток. Интегративная физиология. 2023; 4(3): 324-34. [Saifitdinova A.F., Pavlova O.A., Zelinskii A.A., Ryabinina M.V., Glotov O.S., Bogomaz D.I., Rubel’ A.A. Whole genome amplification of small amounts of DNA to determine the molecular karyotype of cells. Integrative Physiology. 2023; 4(3): 324-34. (in Russian)]. https://dx.doi.org/ 10.33910/2687-1270-2023-4-3-324-334.
  15. Корсак В.С., Балахонов А.В., Бичевая Н.К., Корнеев И.А., Кузнецова Р.А., Леонтьева О.А., Панина А.Н., Решетников И.В., Сайфитдинова А.Ф., Трофимова И.Л. Руководство по клинической эмбриологии. 3-е изд. М.: Медиа Сфера; 2022. 250с. [Korsak V.S., Balakhonov A.V., Bichevaya N.K., Korneev I.A., Kuznetsova R.A., Leont’eva O.A., Panina A.N., Reshetnikov I.V., Saifitdinova A.F., Trofimova I.L. Clinical embryology guidelines. 3rd ed. Moscow: Media Sphere; 2022. 250p. (in Russian)].
  16. Saifitdinova A.F., Glotov O.S., Poliakova I.V., Bichevaya N.K., Loginova J.A., Kuznetsova R.A. et al. Mosaicism in preimplantation human embryos. Integrative Physiology. 2020; 1(3): 225-30. https://dx.doi.org/10.33910/ 2687-1270-2020-1-3-225-230.
  17. Tšuiko O., Fernandez Gallardo E., Voet T., Vermeesch J.R. Preimplantation genetic testing: single-cell technologies at the forefront of PGT and embryo research. Reproduction. 2020; 160(5): A19-A31. https://dx.doi.org/10.1530/REP-20-0102.
  18. Глотов О.С., Чернов А.Н., Глотов А.С., Баранов В.С. Перспективы применения экзомного секвенирования для решения проблем в репродукции человека (часть 1). Акушерство и гинекология. 2022; 12: 34-9. [Glotov O.S., Chernov A.N., Glotov A.S., Baranov V.S. Prospects for using exome sequencing to solve problems in human reproduction (Part I). Obstetrics and Gynecology. 2022; (12): 34-9. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.221.
  19. Глотов О.С., Чернов А.Н., Глотов А.С., Баранов В.С. Перспективы применения экзомного секвенирования для решения проблем в репродукции человека (часть 2). Акушерство и гинекология. 2022; 12: 40-5. [Glotov O.S., Chernov A.N., Glotov A.S., Baranov V.S. Prospects for using exome sequencing to solve problems in human reproduction (Part II). Obstetrics and Gynecology. 2022; (12): 40-5. (in Russian)]. https://dx.doi.org/ 10.18565/aig.2022.220.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electropherogram of WGA products of the same sample No. 1 (0SP2, 5-1.5-1x) (trophectoderm cells), obtained using different kits: 1 - SurePLEX DNA Amplification System (Illumina, USA); 2 - SC WGA Display (Biolink, Novosibirsk) without additional PCR; 3 - SC WGA Display (Biolink, Novosibirsk) with additional PCR.

Download (749KB)
3. Fig.2 A. General scheme of the study. B. Results of embryo sequencing.

Download (1MB)

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies