Omics data analysis using deep learning-based framework in differential diagnosis of ovarian cancer
- Authors: Iurova M.V.1, Tokareva A.O.1, Chagovets V.V.1, Starodubtseva N.L.1, Frankevich V.E.1
-
Affiliations:
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia
- Issue: No 10 (2025)
- Pages: 117-127
- Section: Original Articles
- Published: 14.11.2025
- URL: https://journals.eco-vector.com/0300-9092/article/view/696016
- DOI: https://doi.org/10.18565/aig.2025.222
- ID: 696016
Cite item
Abstract
Relevance: The course of malignant epithelial ovarian tumors is considered to be highly aggressive. Limitations of diagnostic methods are associated with the late detection of tumors at stages III–IV, which is the cause with high mortality.
Objective: To compare the effectiveness of machine learning (ML) methods for minimally invasive diagnosis of early-stage ovarian cancer (OC) using scalable, objective lipid biomarker profile data.
Materials and methods: A single-center observational retrospective cohort clinical study included 239 patients with early-stage high-grade ovarian cancer (HGOC, n=10); with other tumor/proliferative processes (n=203, of which: including 30 cystadenomas, 59 endometrioid cysts, 21 teratomas, 28 borderline tumors; 16 – low-grade ovarian cancer (LSOC), HGOC of III-IV stages and control group women (n=26). Lipid extraction, analysis by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry, and data preprocessing were performed. The SHAP method was used to interpret the predictions generated by building complex models. For multi-class classification, 7 ML methods were tested, including Naive Bayes classification, PLS discriminant analysis, Random Forest, External Gradient Boosting classification, Multilayer Percepton, and Convolutional Network. For binary classification, the following were additionally tested: support vector machine and extreme gradient boosting (Xgboos) classifications.
Results: In Stages I–II HGOC, a decrease in PC O-18:1/18:0, PE P-18:0/18:2, LPC O-16:0, PC 18:0_18:2, OxTG 16:0_18:1_16:1(CHO), OxPC 18:2_16:1(COOH), OxPC 20:4_14:0(COOH) and an increase in PC 16:0_18:0, PC P-18:1/20:4, PC 18:1_18:2, PC 16:0_18:0, PC 18:2_18:2 (compared to the control group) occurred, as well as a decrease in Cer-NS d18:1/22:0, PC P-16:0/18:1, PC P-18:1/20:4, PC P-18:0/18:1, oxidized lipids, carboxy- and carbohydroxy-derivatized and an increase in PC P-18:0/18:2, PC P-20:0/20:4 (compared to patients with OC). The best differentiation ability between the control group and the OC group was demonstrated by OPLS models, as well as random forest, and support vector machine with a radial kernel (90%).
Conclusion: The use of advanced ML methods strengthens the diagnostic potential of omics data and can be applied in gynecological oncology.
Full Text
About the authors
Mariia V. Iurova
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia
Author for correspondence.
Email: hi5melisa@gmail.com
ORCID iD: 0000-0002-0179-7635
PhD, obstetrician-gynecologist, oncologist, Senior Researcher at the Scientific Polyclinic Department
Russian Federation, MoscowAlisa O. Tokareva
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia
Email: alisa.tokareva@phystech.edu
ORCID iD: 0000-0001-5918-9045
PhD (Physico-Mathematical Sciences), Specialist at the Laboratory of Clinical Proteomics
Russian Federation, MoscowVitaliy V. Chagovets
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia
Email: vvchagovets@gmail.com
PhD (Physico-Mathematical Sciences), Head of the Laboratory of Metabolomics and Bioinformatics
Russian Federation, MoscowNatalia L. Starodubtseva
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia
Email: n_starodubtseva@oparina4.ru
ORCID iD: 0000-0001-6650-5915
PhD (Bio), Head of the Laboratory of Clinical Proteomics
Russian Federation, MoscowVladimir E. Frankevich
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia
Email: v_vfrankevich@oparina4.ru
Dr. Sci. (Physico-Mathematical Sciences), Deputy Director of the Institute of Translational Medicine
Russian Federation, MoscowReferences
- Feng Y., Yang W., Zhu J., Wang S., Wu N., Zhao H. et al. Clinical utility of various liquid biopsy samples for the early detection of ovarian cancer: a comprehensive review. Front. Oncol. 2025; 15: 1594100. https://dx.doi.org/10.3389/fonc.2025.1594100
- Cancer Research UK. Health inequalities: breaking down barriers to cancer screening. Available at: https://news.cancerresearchuk.org/2022/09/23/health-inequalities-breaking-down-barriers-to-cancer-screening/ (accessed on August 13, 2025)
- Mikami M., Tanabe K., Imanishi T., Ikeda M., Hirasawa T., Yasaka M. et al. Comprehensive serum glycopeptide spectra analysis to identify early-stage epithelial ovarian cancer. Sci. Rep. 2024; 14(1): 20000. https://dx.doi.org/10.1038/s41598-024-70228-6
- Юрова М.В., Токарева А.О., Чаговец В.В., Стародубцева Н.Л., Франкевич В.Е. Дифференциальная диагностика злокачественных новообразований яичников на ранней стадии на основании биоинформационного исследования метаболома крови. Акушерство и гинекология. 2024; 12: 118-26. [Iurova M.V., Tokareva A.O., Chagovets V.V., Starodubtseva N.L., Frankevich V.E. Differential diagnosis of early-stage ovarian cancer based on the bioinformatic analysis of the blood metabolome. Obstetrics and Gynecology. 2024; (12): 118-26 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.283
- Tokareva A., Iurova M., Starodubtseva N., Chagovets V., Novoselova A., Kukaev E. et al. Machine learning framework for ovarian cancer diagnostics using plasma lipidomics and metabolomics. Int. J. Mol. Sci. 2025; 26(14): 6630. https://dx.doi.org/10.3390/ijms26146630
- Iurova M.V., Chagovets V.V., Pavlovich S.V., Starodubtseva N.L., Khabas G.N., Chingin K.S. et al. Lipid alterations in early-stage high-grade serous ovarian cancer. Front. Mol. Biosci. 2022; 9: 770983. https://dx.doi.org/10.3389/fmolb.2022.770983
- Prat J.; FIGO Committee on Gynecologic Oncology. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int. J. Gynaecol. Obstet. 2014; 124(1): 1-5. https://dx.doi.org/10.1016/j.ijgo.2013.10.001
- Liang D., Yi B., Cao W., Zheng Q. Exploring ensemble oversampling method for imbalanced keyword extraction learning in policy text based on three-way decisions and SMOTE. Expert Systems with Applications. 2022; 188(1): 116051. https://dx.doi.org/10.1016/j.eswa.2021.116051
- Lundberg S.M., Erion G., Chen H., DeGrave A., Prutkin J.M., Nair B. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020; 2(1): 56-67. https://dx.doi.org/10.1038/s42256-019-0138-9
- Юрова М.В., Франкевич В.Е., Павлович С.В., Чаговец В.В., Стародубцева Н.Л., Хабас Г.Н., Ашрафян Л.А., Сухих Г.Т. Диагностика серозного рака яичников высокой степени злокачественности Iа–Iс стадии по липидному профилю сыворотки крови. Гинекология. 2021; 23(4): 335-40. [Iurova M.V., Frankevich V.E., Pavlovich S.V., Chagovets V.V., Starodubtseva N.L., Khabas G.N., Ashrafyan L.A., Sukhikh G.T. Diagnosis of Ia–Ic stages of serous highgrade ovarian cancer by the lipid profile of blood serum. Gynecology. 2021; 23(4): 335-40 (in Russian)]. https://dx.doi.org/10.26442/20795696.2021.4.200911
- Sharma A., Vans E., Shigemizu D., Boroevich K.A., Tsunoda T. DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture. Sci. Rep. 2019; 9(1): 11399. https://dx.doi.org/10.1038/s41598-019-47765-6
- Fan L., Yin M., Ke C., Ge T., Zhang G., Zhang W. et al. Use of plasma metabolomics to identify diagnostic biomarkers for early stage epithelial ovarian cancer. J. Cancer. 2016; 7(10): 1265-72. https://dx.doi.org/10.7150/jca.15074
- Li J., Wang Z., Liu W., Tan L., Yu Y., Liu D. et al. Identification of metabolic biomarkers for diagnosis of epithelial ovarian cancer using internal extraction electrospray ionization mass spectrometry (iEESI-MS). Cancer Biomark. 2023; 37(2): 67-84. https://dx.doi.org/10.3233/CBM-220250
- Garcia E., Andrews C., Hua J., Kim H.L., Sukumaran D.K., Szyperski T. et al. Diagnosis of early stage ovarian cancer by 1H NMR metabonomics of serum explored by use of a microflow NMR probe. J. Proteome Res. 2011; 10(4): 1765-71. https://dx.doi.org/10.1021/pr101050d
- Ke C., Hou Y., Zhang H., Fan L., Ge T., Guo B. et al. Large-scale profiling of metabolic dysregulation in ovarian cancer. Int. J. Cancer. 2015; 136(3): 516-26. https://dx.doi.org/10.1002/ijc.29010
- Chistyakov D.V., Guryleva M.V., Stepanova E.S., Makarenkova L.M., Ptitsyna E.V., Goriainov S.V. et al. Multi-omics approach points to the importance of oxylipins metabolism in early-stage breast cancer. Cancers. 2022; 14(8): 2041. https://dx.doi.org/10.3390/cancers14082041
- Gaul D.A., Mezencev R., Long T.Q., Jones C.M., Benigno B.B., Gray A. et al. Highly-accurate metabolomic detection of early-stage ovarian cancer. Sci. Rep. 2015; 5: 16351. https://dx.doi.org/10.1038/srep16351
- Ban D., Housley S.N., Matyunina L.V., McDonald L.D., Bae-Jump V.L., Benigno B.B. et al. A personalized probabilistic approach to ovarian cancer diagnostics. Gynecol. Oncol. 2024; 182: 168-75. https://dx.doi.org/10.1016/j.ygyno.2023.12.030
- Gaillard D.H.K., Lof P., Sistermans E.A., Mokveld T., Horlings H.M., Mom C.H. et al. Evaluating the effectiveness of pre-operative diagnosis of ovarian cancer using minimally invasive liquid biopsies by combining serum human epididymis protein 4 and cell-free DNA in patients with an ovarian mass. Int. J. Gynecol. Cancer. 2024; 34(5): 713-21. https://dx.doi.org/10.1136/ijgc-2023-005073
Supplementary files




