Stillbirths in the Russian Federation in 2020 (COVID-19 pandemic year)


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Objective: To compare maternal and placental conditions that caused stillbirths in the Russian Federation in the years 2020 (COVID-19pandemic year) and 2019. Materials and methods: The study analyzed statistical forms А05 of the Federal State Statistics Service (Rosstat) for the years 2019 and 2020 based on medical records of perinatal deaths related to stillbirths. Maternal and placental conditions that caused stillbirths were divided into 4 groups: I, maternal conditions unrelated to the index pregnancy; II, maternal complications of the index pregnancy; III, placental, umbilical cord and sheath complications; and IV, other complications of labor and other maternal conditions. Stillbirth rates were calculated as the ratio of the number of stillbirths to the total number of newborns born alive and dead, multiplied by 1000. Results: According to Rosstat data, in 2020 the absolute number of stillbirths and the stillbirth rate increased by 1.1% and 4.2%, respectively, compared to 2019. At the same time, the stillbirth rate as a result of respiratory disorders and a group of endocrine, metabolic, and other disorders specific to the perinatal period increased by 4.7% and 4.3%, respectively. The stillbirth rate from congenital anomalies, on the contrary, decreased by 15.4%. Among the conditions that contributed to stillbirth in 2020, dominated placental, umbilical cord, and fetal membrane lesions, which were noted in 45.7% of the observations. The stillbirth rate due to placental abnormalities increased by 5.6% compared to 2019. In 2020 compared to 2019, there was an increase in the proportion of parasitic diseases (by 29.5%) and the group of so-called other maternal respiratory and circulatory diseases (by 25.9%), as well as the number of multiple pregnancies (by 17.2%). There were significant differences between the rates of conditions that caused stillbirths in different Federal Districts of the Russian Federation. Conclusion: According to Rosstat data, in 2020 (the year of the COVID-19 pandemic) the absolute number of stillbirths and the stillbirth rate increased by 1.1% and 4.2%, respectively, compared to 2019. Analysis of the incidence of conditions that caused stillbirths showed an increase in the proportion and rate of stillbirths for maternal conditions unrelated to the index pregnancy and placental disorders.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Alexander Shchegolev

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: ashegolev@oparina4.ru
Dr. Med. Sci., Professor, Head of the 2nd Department of Anatomic Pathology

Uliana Tumanova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: u.n.tumanova@gmail.com
Dr. Med. Sci., Leading Researcher at the 2nd Department of Anatomic Pathology

Andrey Chausov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_chausov@oparina4.ru
Head of the Information and Analytical Center of the Department of Regional Cooperation and Integration

Marina Shuvalova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: m_shuvalova@oparina4.ru
Ph.D., Associate Professor, Deputy director - Head of the Department of regional cooperation and integration

Әдебиет тізімі

  1. Coronavirus Disease (COVID-19) Pandemic. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
  2. Li J., Huang D.Q., Zou B., Yang H., Hui W.Z., Rui F. et al. Epidemiology of COVID-19: a systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med. Virol. 2021; 93(3): 1449-58. https://dx.doi.org/10.1002/jmv.26424.
  3. Torres-Torres J., Martinez-Portilla R.J., Espino Y.S.S., Estrada-Gutierrez G., Solis-Paredes J.M., Villafan-Bernal J.R. et al. Comorbidity, poverty and social vulnerability as risk factors for mortality in pregnant women with confirmed SARS-CoV-2 infection: analysis of 13 062 positive pregnancies including 176 maternal deaths in Mexico. Ultrasound Obstet. Gynecol. 2022; 59(1): 76-82. https://dx.doi.org/10.1002/uog.24797.
  4. Huntley B.J.F., Mulder I.A., Di Mascio D., Vintzileos W.S., Vintzileos A.M., Berghella V. et al. Adverse pregnancy outcomes among individuals with and without severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a systematic review and meta-analysis. Obstet. Gynecol. 2021; 137(4): 585-96. https://dx.doi.org/10.1097/AOG.0000000000004320.
  5. Wei S.Q., Bilodeau-Bertrand M., Liu S., Auger N. The impact of COVID-19 on pregnancy outcomes: a systematic review and meta-analysis. CMAJ. 2021; 193(16): E540-8. https://dx.doi.org/10.1503/cmaj.202604.
  6. Papapanou M., Papaioannou M., Petta A., Routsi E., Farmaki M., Vlahos N. et al. Maternal and neonatal characteristics and outcomes of COVID-19 in pregnancy: an overview of systematic reviews. Int. J. Environ. Res. Public Health. 2021; 18(2): 596. https://dx.doi.ois/10.3390/ijerph18020596.
  7. Yan H., Ding Y., Guo W. Mental health of pregnant and postpartum women during the coronavirus disease 2019 pandemic: a systematic review and meta-analysis. Front. Psychol. 2020; 11: 617001. https://dx.doi.org/10.3389/fpsyg.2020.617001.
  8. Tumanova U.N., Shchegolev A.I., Chausov A.A., Shuvalova M.P. Analysis of causes of early neonatal mortality during covid-19 pandemic in 2020 in Russia. Bulletin of RSMU. 2021; 5: 71-7. https://dx.doi.org/10.24075/brsmu.2021.045.
  9. Щеголев А.И., Туманова У.Н., Чаусов А.А., Шувалова М.П. Сравнительный анализ причин мертворождения в Российской Федерации в 2019 и 2020 годах. Акушерство и гинекология. 2022; 2: 80-90. https://dx.doi.org/10.18565/aig.2022.2.80-90.
  10. Щеголев А.И., Туманова У.Н., Шувалова М.П., Фролова О.Г. Гипоксия как причина мертворождаемости в Российской Федерации. Здоровье, демография, экология финно-угорских народов. 2014; 3: 96-8.
  11. Salari N., Hosseinian-Far A., Jalali R., Vaisi-Raygani A., Rasoulpoor S., Mohammadi M. et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global. Health. 2020; 16(1): 57. https://dx.doi.org/10.1186/s12992-020-00589-w.
  12. Meaney S., Leitao S., Olander E.K., Pope J., Matvienko-Sikar K. The impact of COVID-19 on pregnant womens' experiences and perceptions of antenatal maternity care, social support, and stress-reduction strategies. Women Birth. 2022; 35(3): 307-16. https://dx.doi.org/10.1016/j.wombi.2021.04.013.
  13. Khoury J.E., Atkinson L., Bennett T., Jack S.M., Gonzalez A. Prenatal distress, access to services, and birth outcomes during the COVID-19 pandemic: Findings from a longitudinal study. Early Hum. Dev. 2022; 170: 105606. https://dx.doi.org/10.1016/j.earlhumdev.2022.105606.
  14. Khoury J.E., Atkinson L., Bennett T., Jack S.M., Gonzalez A. COVID-19 and mental health during pregnancy: The importance of cognitive appraisal and social support. J. Affect. Disord. 2021; 282: 1161-9. https://dx.doi.org/10.1016/j.jad.2021.01.027.
  15. Fan S., Guan J., Cao L., Wang M., Zhao H., Chen L. et al. Psychological effects caused by COVID-19 pandemic on pregnant women: a systematic review with meta-analysis. Asian J. Psychiatr. 2021; 56: 102533. https://dx.doi.org/10.1016/j.ajp.2020.102533.
  16. Pariente G., Wissotzky Broder O., Sheiner E., Lanxner Battat T., Mazor E., Yaniv Salem S. et al. Risk for probable post-partum depression among women during the COVID-19 pandemic. Arch. Womens Ment. Health. 2020; 23(6): 767-73. https://dx.doi.org/10.1007/s00737-020-01075-3.
  17. Bolten M.I., Wurmser H., Buske-Kirschbaum A., Papousek M., Pirke K.M., Hellhammer D. Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch. Womens Ment. Health. 2011; 14(1): 33-41. https://dx.doi.org/10.1007/s00737-010-0183-1.
  18. Coussons-Read M.E. Effects of prenatal stress on pregnancy and human development: mechanisms and pathways. Obstet. Med. 2013; 6(2): 52-7. https://dx.doi.org/10.1177/1753495X12473751.
  19. Wastnedge E., Reynolds R., van Boeckel S., Stock S., Denison F., May bin J. et al. Pregnancy and COVID-19. Physiol. Rev. 2021; 101(1): 303-12. https://dx.doi.org/10.1152/physrev.00024.2020.
  20. Liu H., Wang L.L., Zhao S.J., Kwak-Kim J., Mor G., Liao A.H. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J. Reprod. Immunol. 2020; 139: 103122. https://dx.doi.org/10.1016/j.jri.2020.103122.
  21. Di Mascio D., Khalil A., Saccone G., Rizzo G., Buca D., Liberati M. et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM. 2020; 2(2): 100107. https://dx.doi.org/10.1016/j.ajogmf.2020.100107.
  22. Evans P.C., Rainger G.E., Mason J.C., Guzik T.J., Osto E., Stamataki Z. et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020; 116(14): 2177-84. https://dx.doi.org/10.1093/cvr/cvaa230.
  23. Zheng Y.Y., Ma Y.T., Zhang J.Y., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020; 17(5): 259-60. https://dx.doi.org/10.1038/s41569-020-0360-5.
  24. Ayala-Ramirez P., Gonzalez M., Escudero C., Quintero-Arciniegas L., Giachini F.R., Alves de Freitas R. et al. Severe acute respiratory syndrome coronavirus 2 infection in pregnancy. A non-systematic review of clinical presentation, potential effects of physiological adaptations in pregnancy, and placental vascular alterations. Front. Physiol. 2022; 13: 785274. https://dx.doi.org/10.3389/fphys.2022.785274.
  25. Han Y., Ma H., Suo M., Han F., Wang F., Ji J. et al. Clinical manifestation, outcomes in pregnant women with COVID-19 and the possibility of vertical transmission: a systematic review of the current data. J. Perinat. Med. 2020; 48(9): 912-24. https://dx.doi.org/10.1515/jpm-2020-0431.
  26. Lambelet V., Vouga M., Pomar L., Favre G., Gerbier E., Panchaud A. et al. SARS-CoV-2 in the context of past coronaviruses epidemics: Consideration for prenatal care. Prenat. Diagn. 2020; 40(13): 1641-54. https://dx.doi.org/10.1002/pd.5759.
  27. Mullins E., Evans D., Viner R.M., O. 'Brien P., Morris E. Coronavirus in pregnancy and delivery: rapid review. Ultrasound Obstet. Gynecol. 2020; 55(5): 586-92. https://dx.doi.org/10.1002/uog.22014.
  28. Della Gatta A.N., Rizzo R., Pilu G., Simonazzi G. Coronavirus disease 2019 during pregnancy: a systematic review of reported cases. Am. J. Obstet. Gynecol. 2020; 223(1): 36-41. https://dx.doi.org/10.1016/j.ajog.2020.04.013.
  29. Hernandez-Pacheco J.A., Torres-Torres J., Martinez-Portilla R.J., Solis-Paredes J.M., Estrada-Gutierrez G., Mateu-Rogell P. et al. sFlt-1 is an independent predictor of adverse maternal outcomes in women with SARS-CoV-2 infection and hypertensive disorders of pregnancy. Front. Med. (Lausanne). 2022; 9: 894633. https://dx.doi.org/10.3389/fmed.2022.894633.
  30. Wei S.Q., Bilodeau-Bertrand M., Liu S., Auger N. The impact of COVID-19 on pregnancy outcomes: a systematic review and metaanalysis. CMAJ. 2021; 193(16): E540-8. https://dx.doi.org/10.1503/cmaj.202604.
  31. Papageorghiou A.T., Deruelle P., Gunier R.B., Rauch S., Garcia-May P.K., Mhatre M. et al. Preeclampsia and COVID-19: results from the INTERCOVID prospective longitudinal study. Am. J. Obstet. Gynecol. 2021; 225(3): e289. https://dx.doi.org/10.1016/J.AJOG.2021.05.014.
  32. Anton L., Merrill D.C., Neves L.A., Stovall K., Gallagher P.E., Diz D.I. et al. Activation of local chorionic villi angiotensin II levels but not angiotensin (1-7) in preeclampsia. Hypertension. 2008; 51(4): 1066-72. https://dx.doi.org/10.1161/HYPERTENSIONAHA.107.103861.
  33. Gilbert J.S., LaMarca B.B., Granger J.P. ACE2 and ANG-(1-7) in the gravid uterus: the new players on the block. Am. J. Physiol. 2008; 294(3): 915-6. https://dx.doi.org/10.1152/ajpregu.00018.2008.
  34. Mendoza M., Garcia-Ruiz I., Maiz N., Rodo C., Garcia-Manau P., Serrano B. et al. Pre-eclampsia-like syndrome induced by severe COVID-19: a prospective observational study. BJOG. 2020; 127(11): 1374-80. https://dx.doi.org/10.1111/1471-0528.16339.
  35. Shchegolev A.I., Kulikova G.V., Lyapin V.M., Shmakov R.G., Sukhikh G.T. The number of syncytial knots and VEGF expression in placental villi in parturient woman with COVID-19 depends on the disease severity. Bull. Exp. Biol. Med. 2021; 171(3): 399-403. https://dx.doi.org/10.1007/s10517-021-05236-x.
  36. Dubova E.A., Pavlov K.A., Lyapin V.M., Shchyogolev A.I., Sukhikh G.T. Vascular endothelial growth factor and its receptors in the placental villi of pregnant patients with pre-eclampsia. Bull. Exp. Biol. Med. 2013; 154(6): 792-5. https://dx.doi.org/10.1007/s10517-013-2058-8.
  37. Sisman J., Jaleel M.A., Moreno W., Rajaram V., Collins R.R.J., Savani R.C. et al. Intrauterine transmission of SARS-COV-2 infection in a preterm infant. Pediatr. Infect. Dis. J. 2020; 39(9): e265-7. https://dx.doi.org/10.1097/INF.0000000000002815.
  38. Vivanti A.J., Vauloup-Fellous C., Prevot S., Zupan V., Suffee C., do Cao J. et al. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 2020; 11(1): 3572. https://dx.doi.org/10.1038/s41467-020-17436-6.
  39. Sukhikh G., Petrova U., Prikhodko A., Starodubtseva N., Chingin K., Chen H., Bugrova A., Kononikhin A., Bourmenskaya O., Brzhozovskiy A., Polushkina E., Kulikova G., Shchegolev A., Trofimov D., Frankevich V., Nikolaev E., Shmakov R.G. Vertical transmission OF SARS-COV-2 in second trimester associated with severe neonatal pathology. Viruses. 2021; 13(3): 447. https://dx.doi.org/10.3390/v13030447.
  40. Hsu A.L., Guan M., Johannesen E., Stephens A.J., Khaleel N., Kagan N. et al. Placental SARS-CoV-2 in a pregnant woman with mild COVID-19 disease. J. Med. Virol. 2021; 93(2): 1038-44. https://dx.doi.org/10.1002/jmv.26386.
  41. Oltean I., Tran J., Lawrence S., Ruschkowski B.A., Zeng N., Bardwell C. et al. Impact of SARS-CoV-2 on the clinical outcomes and placental pathology of pregnant women and their infants: a systematic review. Heliyon. 2021; 7(3): e06393. https://dx.doi.org/10.1016/j.heliyon.2021.e06393.
  42. Щеголев А.И., Туманова У.Н., Серов В.Н. Поражения плаценты у беременных с SARS-CoV-2-инфекцией. Акушерство и гинекология. 2020: 12: 44-52. https://dx.doi.org/10.18565/aig.2020.12.44-52.
  43. Boelig R.C., Aghai Z.H., Chaudhury S., Kazan A.S., Chan J.S.Y., Bergmann-Leitner E. Impact of COVID-19 disease and COVID-19 vaccination on maternal or fetal inflammatory response, placental pathology, and perinatal outcomes. Am. J. Obstet. Gynecol. 2022: S0002-9378(22)00414-8. https://dx.doi.org/10.1016/j.ajog.2022.05.049.
  44. Shanes E.D., Mithal L.B., Otero S., Azad H.A., Miller E.S., Goldstein J.A. Placental pathology in COVID-19. Am. J. Clin. Pathol. 2020; 154(1): 23-32. https://dx.doi.org/10.1093/ajcp/aqaa089.
  45. Meyer J., Roman A., Limaye M., Grossman T., Flaifel A., Vaz M. et al. Association of SARS-CoV-2 placental histopathology findings with maternal fetal comorbidities and severity of COVID-19 hypoxia. J. Matern. Fetal Neonatal Med. 2021 Sep. 20: 1-7.https://dx.doi.org/10.1080/14767058.2021.1977791.
  46. Edlow A.G., Li J.Z., Collier A.R.Y., Atyeo C., James K.E., Boatin A.A. et al. Assessment of maternal and neonatal SARS-CoV-2 viral load, transplacental antibody transfer, and placental pathology in pregnancies during the COVID-19 pandemic. JAMA Netw Open. 2020; 3(12): e2030455. https://dx.doi.org/10.1001/jamanetworkopen.2020.30455.
  47. Щеголев А.И., Ляпин В.М., Туманова У.Н., Воднева Д.Н., Шмаков Р.Г. Гистологические изменения плаценты и васкуляризация ее ворсин при ранней и поздней преэклампсии. Архив патологии. 2016; 78(1): 13-8. https://dx.doi.org/10.17116/patol201678113-18.
  48. Щеголев А.И., Туманова У.Н., Ляпин В.М., Серов В.Н. Синцитиотрофобласт ворсин плаценты в норме и при преэклампсии. Акушерство и гинекология. 2020; 6: 21-8. https://dx.doi.org/10.18565/aig.2020.6.21-28.
  49. Shchegolev A.I., Kulikova G.V., Tumanova U.N., Shmakov R.G., Sukhikh G.T. Morphometric parameters of placental villi in parturient women with COVID-19. Bull. Exp. Biol. Med. 2021; 172(1): 85-9. https://dx.doi.org/10.1007/s10517-021-05337-7.
  50. Shchyogolev A.I., Dubova E.A., Pavlov K.A., Lyapin V.M., Kulikova G.V., Shmakov R.G. Morphometric characteristics of terminal villi of the placenta in pre-eclampsia. Bull. Exp. Biol. Med. 2012; 154(1): 92-5. https://dx.doi.org/10.1007/s10517-012-1883-5.
  51. Туманова У.Н., Щеголев А.И. Поражения плаценты в генезе мертворождения (обзор литературы). Международный журнал прикладных и фундаментальных исследований. 2017; 3(ч. 1): 77-81.
  52. Щеголев А.И., Туманова У.Н., Шувалова М.П., Фролова О.Г. Сравнительный анализ мертворождаемости в Российской Федерации в 2010 и 2012 годах. Российский вестник перинатологии и педиатрии. 2015; 3: 58-62.
  53. Щеголев А.И., Павлов К.А., Дубова Е.А., Фролова О.Г. Ранняя неонатальная смертность в Российской Федерации в 2010г. Архив патологии. 2013; 75(4): 15-9.
  54. Щеголев А.И., Туманова У.Н., Шувалова М.П. Роль хориоамнионита в генезе мертворождения. Международный журнал прикладных и фундаментальных исследований. 2017; 2(ч. 2): 205-9.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2022

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>