Lipidome profile of follicular fluid in patients with ovarian endometrioma and its role in predicting IVF outcomes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Relevance: Lipidome profile of follicular fluid (FF) in patients with ovarian endometrioma (OMA) offers valuable information about oocyte competence, embryo viability, and IVF outcomes.

Objective: To create a model for predicting the probability of clinical pregnancy in patients with OMA undergoing IVF based on the lipidome profile of follicular fluid.

Materials and methods: Patients baseline characteristics were collected, lipidome profile of FF and IVF outcomes in patients with OMA were analyzed (n=41). The lipidome signature of follicular fluid was analyzed using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to create a differential model.

Results: Comparative analysis of FF samples from women who achieved pregnancy versus those with negative result revealed differences in lipidome signature within each group that correlated with IVF outcomes. Based on these findings, a predictive OPLS model was developed. The model allows to differentiate pregnant and non-pregnant women based on the levels of lipids belonging to the following classes: cholesteryl esters, phosphatidylcholines, sphingomyelins and triglycerides.

Conclusion: Lipidome profiling of follicular fluid using HPLC-MS allows for fairly accurate differentiation between women who achieve pregnancy and those who do not. These results are consistent with international data and confirm the potential for using this method to predict IVF outcomes in patients with ovarian endometriomas.

Texto integral

Acesso é fechado

Sobre autores

Victoria Vardanyan

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Autor responsável pela correspondência
Email: vvictoria5@yandex.ru
ORCID ID: 0000-0001-9057-1736

PhD student, Department of IVF named after Prof. B.V. Leonov

Rússia, Moscow

Veronika Smolnikova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_smolnikova@oparina4.ru
ORCID ID: 0000-0002-8025-4849

Dr. Med. Sci., Leading Researcher, Department of IVF named after Prof. B.V. Leonov

Rússia, Moscow

Vitaly Chagovets

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: vvchagovets@gmail.com
ORCID ID: 0000-0002-5120-376X

PhD (in Physics and Mathematics), Head of the Laboratory of Metabolomics and Bioinformatics

Rússia, Moscow

Natalya Makarova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru
ORCID ID: 0000-0003-1396-7272

Dr. Med. Sci., Leading Researcher, Department of IVF named after Prof. B.V. Leonov

Rússia, Moscow

Elena Kalinina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
ORCID ID: 0000-0002-8922-2878

Dr. Med. Sci., Professor, Head of the IVF Department named after Prof. B.V. Leonov

Rússia, Moscow

Bibliografia

  1. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Эндометриоз. 2024. [Ministry of Health of the Russian Federation. Clinical guidelines. Endometriosis. 2024. (in Russian)].
  2. Leone U., Chiappa V., Ceccaroni M., Roviglione G., Savelli L., Ferrero S. et al. Epidemiology of infertility in women with endometriosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2024; 92: 102454. https://dx.doi.org/10.1016/j.bpobgyn.2023.102454
  3. Casalechi M., Di Stefano G., Fornelli G., Somigliana E., Viganò P. Impact of endometriosis on the ovarian follicles. Best Pract. Res. Clin. Obstet. Gynaecol. 2024; 92: 102430. https://dx.doi.org/10.1016/j.bpobgyn.2023.102430
  4. Giacomini E., Sanchez A., Sarais V., Beitawi S., Candiani M., Viganò P. Characteristics of follicular fluid in ovaries with endometriomas. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017; 209: 34-8. https://dx.doi.org/10.1016/j.ejogrb.2016.01.032
  5. Brinca A.T., Peiró A.M., Evangelio P.M., Eleno I., Oliani A.H., Silva V. et al. Follicular fluid and blood monitorization of infertility biomarkers in women with endometriosis. Int. J. Mol. Sci. 2024; 25(13): 7177. https://dx.doi.org/10.3390/ijms25137177
  6. Fiscus J., Fraison É., Renault L., Salle B., Panthu B., Labrune E. Metabolic signature of follicular fluid to understand infertility-related diseases: a narrative review. Reprod. Biomed. Online. 2024; 48(6): 103762. https://dx.doi.org/10.1016/j.rbmo.2023.103762
  7. Wallace M., Cottell E., Gibney M.J., McAuliffe F.M., Wingfield M., Brennan L. An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil. Steril. 2012; 97(5): 1078-84.e1-8. https://dx.doi.org/10.1016/j.fertnstert.2012.01.122
  8. Singh R., Sinclair K.D. Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology. 2007; 68 Suppl. 1: S56-62. https://dx.doi.org/10.1016/j.theriogenology.2007.04.007
  9. Dabaja M.Z., Santos A.A., Christofolini D.M., Barbosa C.P., de Oliveira D.N., de Oliveira A.N. et al. Comparative metabolomic profiling of women undergoing in vitro fertilization procedures reveals potential infertility-related biomarkers in follicular fluid. Sci. Rep. 2022; 12(1): 20531. https://dx.doi.org/10.1038/s41598-022-24775-5
  10. Zhang Y., He C., He Y., Zhu Z. Follicular fluid metabolomics: tool for predicting IVF outcomes of different infertility causes. Reprod. Sci. 2025; 32(4): 921-34. https://dx.doi.org/10.1007/s43032-024-01664-y
  11. Adamyan L., Pivazyan L., Zarova E., Avetisyan J., Laevskaya A., Sarkisova A. et al. Metabolomic biomarkers of endometriosis: a systematic review. Journal of Endometriosis and Uterine Disorders. 2024; 7: 100077. https://dx.doi.org/10.1016/j.jeud.2024.100077
  12. Kobayashi H., Imanaka S. Recent progress in metabolomics for analyzing common infertility conditions that affect ovarian function. Reprod. Med. Biol. 2024; 23(1): e12609. https://dx.doi.org/10.1002/rmb2.12609
  13. Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957; 226(1): 497-509.
  14. Trygg J., Wold S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002; 16: 119-28. https://dx.doi.org/10.1002/cem.695
  15. Wold S., Sjöström M., Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001; 58(2): 109-30. https://dx.doi.org/10.1016/S0169-7439(01)00155-1
  16. Guo H., Zhu Q., Gao H., Lyu Q., Chai W., Wu L. et al. Metabolomics analysis of follicular fluid in ovarian endometriosis women receiving progestin-primed ovary stimulation protocol for in vitro fertilization. Sci. Rep. 2023; 13(1): 5747. https://dx.doi.org/10.1038/s41598-023-32797-w
  17. Revelli A., Gennarelli G., Biasoni V., Chiadò A., Carosso A., Evangelista F. et al. The ovarian sensitivity index (OSI) significantly correlates with ovarian reserve biomarkers, is more predictive of clinical pregnancy than the total number of oocytes, and is consistent in consecutive IVF cycles. J. Clin. Med. 2020; 9(6): 1914. https://dx.doi.org/10.3390/jcm9061914
  18. Фортыгина Ю.А., Макарова Н.П., Драпкина Ю.С., Новоселова А.В., Чаговец В.В., Франкевич В.Е., Калинина Е.А. Сравнительный анализ липидного профиля крови и фолликулярной жидкости женщин, проходящих лечение бесплодия методами вспомогательных репродуктивных технологий. Акушерство и гинекология. 2024; 4: 93-102. [Fortygina Yu.A., Makarova N.P., Drapkina Yu.S., Novoselova A.V., Gamisonia A.M., Chagovets V.V., Frankevich V.E., Kalinina E.A. Comparative analysis of blood and follicular fluid lipid profiles in women undergoing infertility treatment with assisted reproductive technologies. Obstetrics and Gynecology. 2024; (4): 93-102 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.62
  19. Jiang Y.C., Che Q., Lu X., Liu M., Ye Y., Cao X. et al. Follicular fluid and plasma lipidome profiling and associations towards embryonic development outcomes during ART treatment. Front. Endocrinol. (Lausanne). 2024; 15: 1464171. https://dx.doi.org/10.3389/fendo.2024.1464171
  20. Vouk K., Hevir N., Ribič-Pucelj M., Haarpaintner G., Scherb H., Osredkar J. et al. Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Hum. Reprod. 2012; 27(10): 2955-65. https://dx.doi.org/10.1093/humrep/des152
  21. Pocate-Cheriet K., Santulli P., Kateb F., Bourdon M., Maignien C., Batteux F. et al. The follicular fluid metabolome differs according to the endometriosis phenotype. Reprod. Biomed. Online. 2020; 41(6): 1023-37. https://dx.doi.org/10.1016/j.rbmo.2020.09.002
  22. Liu T., Qu J., Tian M., Yang R., Song X., Li R. et al. Lipid metabolic process involved in oocyte maturation during folliculogenesis. Front. Cell. Dev. Biol. 2022; 10: 806890. https://dx.doi.org/10.3389/fcell.2022.806890
  23. Zarezadeh R., Nouri M., Hamdi K., Shaaker M., Mehdizadeh A., Darabi M. Fatty acids of follicular fluid phospholipids and triglycerides display distinct association with IVF outcomes. Reprod. Biomed. Online. 2021; 42(2): 301-9. https://dx.doi.org/10.1016/j.rbmo.2020.09.024
  24. Sturmey R.G., Reis A., Leese H.J., McEvoy T.G. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 2009; 44 Suppl. 3: 50-8. https://dx.doi.org/10.1111/j.1439-0531.2009.01402.x
  25. Turkoglu O., Zeb A., Graham S., Szyperski T., Szender J.B., Odunsi K. et al. Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics. 2016; 12(4): 60. https://dx.doi.org/10.1007/s11306-016-0990-0
  26. Zhang M., Wang Y., Di J., Zhang X., Liu Y., Zhang Y. et al. High coverage of targeted lipidomics revealed lipid changes in the follicular fluid of patients with insulin-resistant polycystic ovary syndrome and a positive correlation between plasmalogens and oocyte quality. Front. Endocrinol. (Lausanne). 2024; 15: 1414289. https://dx.doi.org/10.3389/fendo.2024.1414289
  27. Zhang Y., Liu X., Deng M., Xu C., Zhang Y., Wu D. et al. Ferroptosis induced by iron overload promotes fibrosis in ovarian endometriosis and is related to subpopulations of endometrial stromal cells. Front. Pharmacol. 2022; 13: 930614. https://dx.doi.org/10.3389/fphar.2022.930614
  28. Turathum B., Gao E.-M., Grataitong K., Liu Y.-B., Wang L., Dai X. et al. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front. Endocrinol. (Lausanne). 2022; 13: 906570. https://dx.doi.org/10.3389/fendo.2022.906570

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. A graph of scores constructed based on the results of OPLS-DA analysis of follicular fluid lipid levels in patients with endometrioid cysts. Green dots correspond to samples from pregnant patients, red dots to samples from non-pregnant patients.

Baixar (88KB)
3. Fig. 2. ROC curve of the OPLS-DA model constructed during the analysis of patients with pregnancy and non-pregnancy in the presence of endometrioid ovarian cysts

Baixar (60KB)
4. Fig. 3. Comparison of lipid levels that contribute most to the model constructed from the analysis of patients with endometrioid ovarian cysts who did or did not conceive. The box boundaries are the first and third quartiles, the line in the middle is the median, and the ends of the whiskers are the difference between the first quartile and one and a half times the interquartile distance, and the sum of the third quartile and one and a half times the interquartile distance.

Baixar (169KB)

Declaração de direitos autorais © Bionika Media, 2025