Fetal growth restriction (retardation): everything the practitioner should know


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper reviews international clinical recommendations, practical guidelines, and the results of modern evidence-based researches into fetal growth restriction (retardation) (FGR) as one of the main causes of fetal hypoxic complications and perinatal death. It provides evidence that it is necessary to early form a group of pregnant women at high risk for this complication in order to use preventive treatment and describes the prognostic abilities of maternal, biochemical, and biophysical markers and the combined algorithms introduced into clinical practice in our country. The paper describes in detail the novel diagnostic criteria for early- and late-onset FGR, which are common to the whole world, the reference ranges for fetometric parameters and estimated fetal weight in the international INTERGROWTH-21st Project, which are recommended by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG). The paper publishes the reference ranges for uterine and umbilical artery pulsatility indices and cerebroplacental ratio, which have been obtained using the results of large-scale European studies and Fetal Medicine Foundation ones. It also presents a stage-based algorithm for the monitoring of FGR cases: the frequency of Doppler measurements, the number of evaluated vessels, and criteria of normality for computerized cardiotocography according to the duration of pregnancy and the presence of preeclampsia, by determining indications for delivery and choosing its method. Conclusion. The introduction of modern predictive algorithms, effective prevention methods, unified diagnostic criteria, and the principles of management of FGR cases, which are based on the results of studies with a high reliable level of evidence, into daily clinical practice will be the basis for a considerable reduction in perinatal morbidity and mortality rates.

Texto integral

Acesso é fechado

Sobre autores

Tamara Yarygina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: tamarayarygina@gmail.com
MD, Ultrasound and Functional Diagnostics Department, Radiology Division

Alexandr Gus

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: a_gus@oparina4.ru
MD, Doctor of Medicine, Professor, the Head of Ultrasound and Functional Diagnostics Department, Radiology Division

Bibliografia

  1. Brosens I., Pijnenborg R., Vercruysse L.,. Romero R. The "Great Obstetrical Syndromes" are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 2011; 204(3): 193-201. https://dx.doi.org/10.1016/ j.ajog.2010.08.009.
  2. Gardosi J., Madurasinghe V., Williams M., Malik A., Francis A. Maternal and fetal risk factors for stillbirth: population based study. BMJ. 2013; 346: f108. https:// dx.doi.org/10.1136/bmj.f108.
  3. Malacova E., Regan A., Nassar N., Raynes-Greenow C., Leonard H., Srinivasjois R. et al. Risk of stillbirth, preterm delivery, and fetal growth restriction following exposure in a previous birth: systematic review and meta-analysis. BJOG. 2018; 125(2): 183-92. https://dx.doi.org/10.1111/1471-0528.14906.
  4. Silver R.M. Examining the link between placental pathology, growth restriction, and stillbirth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018; 49: 89-102. https:// dx.doi.org/10.1016/j.bpobgyn.2018.03.004.
  5. Lawn J.E., Gravett M.G., Nunes T.M., Rubens C.E., Stanton C.; GAPPS Review Group. Global report on preterm birth and stillbirth (1 of 7): definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth. 2010; 10(Suppl. 1): S1. https://dx.doi.org/10.1186/1471-2393-10-S1-S1.
  6. Lawn J.E., Blencowe H., Waiswa P., Amouzou A., Mathers C., Hogan D. et al. Stillbirths: rates, risk factors, and acceleration towards 2030. Lancet. 2016; 387(10018): 587-603. https://dx.doi.org/10.1016/S0140-6736(15)00837-5.
  7. McEwen E.C., Guthridge S.L., He V.Y., McKenzie J.W., Boulton T.J., Smith R. What birthweight percentile is associated with optimal perinatal mortality and childhood education outcomes? Am. J. Obstet. Gynecol. 2018; 218(2S): S712 24. https://dx.doi.org/10.1016/j.ajog.2017.11.574
  8. Основные показатели здоровья матери и ребенка, деятельность службы охраны детства и родовспоможения в Российской Федерации за 2018 г. М.: Министерство здравоохранения Российской Федерации; 2019. 170с. [The main indicators of maternal and child health, the activities of the children and maternity facilities in the Russian Federation for 2018. Moscow: Ministry of Health of the Russian Federation. 2019; 170 p. (in Russian)].
  9. Nawathe A., David A.L. Prophylaxis and treatment of foetal growth restriction. Best Pract Res Clin Obstet Gynaecol. 2018; 49: 66-78. https://dx.doi. org/10.1016/j.bpobgyn.2018.02.007.
  10. Patel R.M. Short- and Long-term outcomes for extremely preterm infants. Am. J. Perinatol. 2016; 33(3): 318-28. https://dx.doi.org/10.1055/s-0035-1571202.
  11. Natarajan G., Shankaran S. Short- and long-term outcomes of moderate and late preterm infants. Am. J. Perinatol. 2016; 33(3): 305-17. https://dx.doi. org/10.1055/s-0035-1571150.
  12. Groom K.M., Ganzevoort W., Alfirevic Z., Lim K., Papageorghiou A.T.; STRIDER Consortium. Clinicians should stop prescribing sildenafil for fetal growth restriction (FGR): comment from the STRIDER Consortium. Ultrasound Obstet. Gynecol. 2018; 52(3): 295-6. https://dx.doi.org/10.1002/uog.19186.
  13. Roberge S., Nicolaides K., Demers S., Hyett J., Chaillet N., Bujold E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2017; 216(2): 11020. e6. https://dx.doi.org/10.1016/j.ajog.2016.09.076.
  14. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet. Gynecol. 2019; 133(2): e97-109. https://dx.doi.org/10.1097/AOG.0000000000003070.
  15. Royal College of Obstetricians and Gynecologists. The investigation and management of the small-for-gestational-age fetus. Green-top Guideline No. 31. 2013. 2nd ed. Available at: https://www.rcog.org.uk/globalassets/ documents/guidelines/gtg_31.pdf. 2013 Accessed September 10, 2017.
  16. Lausman A., Kingdom J.; Maternal Fetal Medicine Committee. Intrauterine growth restriction: screening, diagnosis, and management. J. Obstet. Gynaecol. Can. 2013; 35(8): 741-8. https://dx.doi.org/10.1016/S1701-2163(15)30865-3.
  17. Institute of Obstetricians and Gynecologists Royal College of Physicians of Ireland. Fetal growth restriction-recognition, diagnosis management. Clinical Practice Guideline No. 28. 2017. Version 1.1. Available at: http://www.hse.ie/ eng/services/publications/Clinical-Strategy-and-Programmes/Fetal-Growth-Restriction.pdf. March 2014 Updated March 2017. Accessed September 10, 2017.
  18. Vayssiere C., Sentilhes L., Ego A., Bernard C., Cambourieu D., Flamant C. et al. Fetal growth restriction and intra-uterine growth restriction: guidelines for clinical practice from the French College of Gynecologists and Obstetricians. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015; 193: 10-8. https:// dx.doi.org/10.1016/j.ejogrb.2015.06.021.
  19. Kehl S., Dotsch J., Hecher K., Schlembach D., Schmitz D., Stepan H., Gembruch U. Intrauterine Growth Restriction. Guideline of the German Society of Gynecology and Obstetrics (S2k-Level, AWMF Registry No. 015/080, October 2016). Geburtshilfe Frauenheilkd. 2017; 77(11): 1157-73. https:// dx.doi.org/10.1055/s-0043-118908.
  20. Dall'Asta A., Girardelli S., Usman S., Lawin-O'Brien A., Paramasivam G., Frusca T., Lees C.C. Etiology and perinatal outcome of periviable fetal growth restriction associated with structural or genetic anomaly. Ultrasound Obstet. Gynecol. 2020; 55(3): 368-74. https://dx.doi.org/10.1002/uog.20368.
  21. Meier E., Sisterna S., Borrell A. Genetic syndromes associated with isolated fetal growth restriction. Prenat. Diagn. 2020; 40(4): 432-46. https://dx.doi. org/10.1002/pd.5635.
  22. Khalil A., Rezende J., Akolekar R., Syngelaki A., Nicolaides K.H. Maternal racial origin and adverse pregnancy outcome: a cohort study. Ultrasound Obstet. Gynecol. 2013; 41(3): 278-85. https://dx.doi.org/10.1002/uog.12313.
  23. Monier I., Blondel B., Ego A., Kaminski M., Goffinet F., Zeitlin J. Does the presence of risk factors for fetal growth restriction increase the probability of antenatal detection? A French National Study. Paediatr. Perinat. Epidemiol. 2016; 30(1): 46-55. https://dx.doi.org/10.1111/ppe.12251.
  24. Жученко Л.А., Андреева Е.Н., Одегова Н.О., Степнова С.В., Лагкуева Ф.К., Леонова В.Ю. Современная концепция и инновационные алгоритмы пренатальной диагностики в рамках нового национального проекта Министерства здравоохранения и социального развития Российской Федерации «Дородовая (пренатальная) диагностика нарушений развития ребенка». Российский вестник акушера-гинеколога. 2011; 11(1): 8-12.
  25. Ярыгина Т.А., Батаева Р.С. Прогнозирование рождения маловесного для гестационного возраста ребенка: оценка эффективности алгоритма Фонда медицины плода (Fetal Medicine Foundation) в первом триместре беременности. Ультразвуковая и функциональная диагностика. 2019; 2: 16-32.
  26. Vandenberghe G., Mensink I., Twisk J.W.R., Blankenstein M.A., Heijboer A.C., van Vugt J.M.G. First trimester screening for intra-uterine growth restriction and early-onset pre-eclampsia. Prenat. Diagn. 2011; 31(10): 955-61. https://dx.doi. org/10.1002/pd.2807.
  27. Zhong Y., Fufan Zhu F., Dinget Y. Serum screening in first trimester to predict pre-eclampsia, small for gestational age and preterm delivery: systematic review and meta-analysis. BMC Pregnancy Childbirth. 2015; 15: 191. https://dx.doi. org/10.1186/s12884-015-0608-y.
  28. Velauthar L., Plana M.N., Kalidindi M., Zamora J., Thilaganathan B., Illanes S.E., Thangaratinam S. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55 974 women. Ultrasound Obstet. Gynecol. 2014; 43(5): 500-7. https://dx.doi.org/10.1002/uog.13275.
  29. Crovetto F., Crispi F., Scazzocchio E., Mercade I., Meier E., Figueras F., Gratacos E. First-trimester screening for early and late small-for-gestational-age neonates using maternal serum biochemistry, blood pressure and uterine artery Doppler. Ultrasound Obstet. Gynecol. 2014; 43(1): 34-40. https://dx.doi. org/10.1002/uog.
  30. Poon L.C., Syngelaki A, Akolekar R., Lai J., Nicolaides K.H. Combined screening for preeclampsia and small for gestational age at 11-13 weeks. Fetal Diagn. Ther. 2013; 33(1): 16-27. https://dx.doi.org/10.1159/000341712.
  31. Ярыгина Т.А., Батаева Р.С., Гус А.И. Совершенствование тактики ведения беременности у пациенток с ложноположительным риском хромосомных аномалий плода. Акушерство и гинекология. 2020; 1: 71-7. https:// dx.doi.org/10.18565/aig.2020.1.71-77. [Yarygina T.A., Bataeva R.S., Gus A.I. Improving pregnancy management tactics in patients with a false-positive risk of fetal chromosomal abnormalities. Obstetrics and gynecology. 2020; 1: 71-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.1.71-77.
  32. Yarygina T.A., Bataeva R.S, Benitez L., Figueras F. First-trimester prediction of small-for-gestational age in women at false-positive high and intermediate risk for aneuploidy. Ultrasound Obstet. Gynecol. 2020; Jan 7. https://dx.doi. org/10.1002/uog.21965.
  33. Fratelli N., Valcamonico A, Prefumo F., Pagani G., Guarneri T., Frusca T. Effects of antenatal recognition and follow-up on perinatal outcomes in small-for-gestational age infants delivered after 36 weeks. Acta Obstet. Gynecol. Scand. 2013; 92(2): 223-9. https://dx.doi.org/10.1111/aogs.12020.
  34. Roma E., Arnau A., Berdala R., Bergos C., Montesinos J., Figueras F. Ultrasound screening for fetal growth restriction at 36 vs 32 weeks' gestation: a randomized trial (ROUTE). Ultrasound Obstet. Gynecol. 2015; 46(4): 391-7. https://dx.doi. org/10.1002/uog.14915.
  35. Ciobanu A, Khan N., Syngelaki A., Akolekar R., Nicolaides K.H. Routine ultrasound at 32 vs 36 weeks' gestation: prediction of small-for-gestational-age neonates. Ultrasound Obstet. Gynecol. 2019; 53(6): 761-8. https://dx.doi. org/10.1002/uog.20258.
  36. Sovio U., White I.R., Dacey A., Pasupathy D., Smith G.C.S. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet. 2015; 386(10008): 2089-97. https://dx.doi.org/10.1016/S0140-6736(15)00131-2.
  37. Akolekar R., Panaitescu A.M., Ciobanu A., Syngelaki A., Nicolaides K.H. Two-stage approach for prediction of small-for-gestational-age neonate and adverse perinatal outcome by routine ultrasound examination at 35-37 weeks' gestation. Ultrasound Obstet. Gynecol. 2019; 54(4): 484-91. https://dx.doi.org/10.1002/ uog.20391.
  38. Triunfo S., Crispi F., Gratacos E., Figueras F. Prediction of delivery of small-for-gestational-age neonates and adverse perinatal outcome by fetoplacental Doppler at 37 weeks' gestation. Ultrasound Obstet. Gynecol. 2017; 49(3): 364 71. https://dx.doi.org/10.1002/uog.15979
  39. Hromadnikova I., Dvorakova L., Kotlabova K., Krofta L. The prediction of gestational hypertension, preeclampsia and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAs. Int. J. Mol. Sci. 2019; 20(12): 2972. https://dx.doi.org/10.3390/ijms20122972.
  40. Morano D., Rossi S., Lapucci C., Pittalis M.C., Farina A. Cell-free DNA (cfDNA) fetal fraction in early- and late-onset fetal growth restriction. Mol. Diagn. Ther. 2018; 22(5): 613-9. https://dx.doi.org/10.1007/s40291-018-0353-9.
  41. Leite D.F.B., Morillon A.C., Melo Junior E.F., Souza R.T., McCarthy F.P., Khashan A. et al. Examining the predictive accuracy of metabolomics for small-for-gestational-age babies: a systematic review. BMJ Open. 2019; 9(8): e031238. https://dx.doi.org/10.1136/bmjopen-2019-031238
  42. Salomon L.J., Alfirevic Z., Berghella V., Bilardo C., Hernandez-Andrade E., Johnsen S.L. et al. Practice guidelines for performance of the routine midtrimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2011; 37(1): 116 26. https://dx.doi.org/10.1002/uog.8831
  43. Salomon L.J., Alfirevic Z., Da Silva Costa F., Deter R.L., Figueras F., Ghi T. et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 2019; 53(6): 715-23. https://dx.doi. org/10.1002/uog.20272.
  44. Hammami A., Mazer Zumaeta A., Syngelaki A., Akolekar R., Nicolaides K.H. Ultrasonographic estimation of fetal weight: development of new model and assessment of performance of previous models. Ultrasound Obstet. Gynecol. 2018; 52(1): 35-43. https://dx.doi.org/10.1002/uog.19066.
  45. Hadlock F.P., Harrist R.B., Sharman R.S., Deter R.L., Park S.K. Estimation of fetal weight with the use of head, body, and femur measurements-- a prospective study. Am. J. Obstet. Gynecol. 1985; 151(3): 333-7. https://dx.doi. org/10.1016/0002-9378(85)90298-4.
  46. Papageorghiou A.T., Ohuma E.O., Altman D.G., Todros T., Cheikh Ismail L., Lambert A. et al. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21 st Project. Lancet. 2014; 384(9946): 869-79. https:// dx.doi.org/10.1016/S0140-6736(14)61490-2.
  47. Papageorghiou A.T., Kennedy S.H., Salomon L.J., Ohuma E.O., Cheikh IsmailL., BarrosF.C. et al. International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown-rump length in the first trimester of pregnancy. Ultrasound Obstet. Gynecol. 2014; 44(6): 641-8. https://dx.doi. org/10.1002/uog.13448.
  48. Papageorghiou A.T., Kemp B., Stones W., Ohuma E.O., Kennedy S.H., Purwar M. et al. Ultrasound-based gestational-age estimation in late pregnancy. Ultrasound Obstet. Gynecol. 2016; 48(6): 719-26. https://dx.doi.org/10.1002/ uog.15894.
  49. Bhide A., Acharya G., Bilardo C.M., Brezinka C., Cafici D., Hernandez-Andrade E. et al. ISUOG practice guidelines: use of Doppler ultrasonography in obstetrics. Ultrasound Obstet. Gynecol. 2013; 41(2): 233-9. https://dx.doi. org/10.1002/uog.12371.
  50. Frusca T., Todros T., Lees C., Bilardo C.M.; TRUFFLE Investigators. Outcome in early-onset fetal growth restriction is best combining computerized fetal heart rate analysis with ductus venosus Doppler: insights from the Trial of Umbilical and Fetal Flow in Europe. Am. J. Obstet. Gynecol. 2018; 218(2S): S783-9. https://dx.doi.org/10.1016/j.ajog.2017.12.226.
  51. Monaghan C., Binder J., Thilaganathan B., Morales-Rosello J., Khalil A. Perinatal loss at term: role of uteroplacental and fetal Doppler assessment. Ultrasound Obstet. Gynecol. 2018; 52(1): 72-7. https://dx.doi.org/10.1002/ uog.17500.
  52. Khalil A., Morales-Rosello J., Khan N., Nath M., Agarwal P., Bhide A. et al. Is cerebroplacental ratio a marker of impaired fetal growth velocity and adverse pregnancy outcome? Am. J. Obstet. Gynecol. 2017; 216(6): 606. e1-10.
  53. DeVore G.R. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am. J. Obstet. Gynecol. 2015; 213(1): 5-15. https://dx.doi.org/10.1016/j.ajog.2015.05.024.
  54. Gomez O., Figueras F, Fernandez S., Bennasar M., Martinez J.M., Puerto B., Gratacos E. Reference ranges for uterine artery mean pulsatility index at 11-41 weeks of gestation. Ultrasound Obstet. Gynecol. 2008; 32(2): 128-32. https:// dx.doi.org/10.1002/uog.5315.
  55. Ciobanu A, Wright A., Syngelaki A., Wright D., Akolekar R., Nicolaides K.H. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet. Gynecol. 2019; 53(4): 465-72. https://dx.doi.org/10.1002/uog.20157.
  56. Gordijn S.J., Beune I.M., Thilaganathan B., Papageorghiou A., Baschat A.A., Baker P.N. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet. Gynecol. 2016; 48(3): 333-9. https://dx.doi. org/10.1002/uog.15884.
  57. Tsuge M., Hi da A.I., Minematsu T., Honda N., Oshiro Y., Yokoyama M., Kondo Y. Prospective cohort study of congenital cytomegalovirus infection during pregnancy with fetal growth restriction: serologic analysis and placental pathology. J. Pediatr. 2019; 206: 42-8. e2. https://dx.doi.org/10.1016/j. jpeds.2018.10.003.
  58. Borrell A., Grande M., Meler E., Sabria J., Mazarico E., Munoz A. et al. Genomic microarray in fetuses with early growth restriction: A multicenter study. Fetal Diagn. Ther. 2017; 42(3): 174-80. https://dx.doi.org/10.1159/000452217.
  59. Figueras F., Gratacos E. An integrated approach to fetal growth restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 2017; 38: 48-58. https://dx.doi. org/10.1016/j.bpobgyn.2016.10.006.
  60. Stampalija T., Arabin B., Wolf H., Bilardo C.M., Lees C.; TRUFFLE investigators. Is middle cerebral artery Doppler related to neonatal and 2-year infant outcome in early fetal growth restriction? Am. J. Obstet. Gynecol. 2017; 216(5): 521. e1-521. e13. https://dx.doi.org/10.1016/j.ajog.2017.01.001.
  61. Morales-Rosello J., Khalil A. Fetal cerebral redistribution: a marker of compromise regardless of fetal size. Ultrasound Obstet. Gynecol. 2015; 46: 385 8. https://dx.doi.org/10.1002/uog.15664
  62. Flood K., Unterscheider J., Daly S., Geary M.P., Kennelly M.M., McAuliffe F.M. et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am. J. Obstet. Gynecol. 2014; 211: 288. e1-288. e5. https://dx.doi.org/10.1016/j. ajog.2014.05.008.
  63. Khalil A.A., Morales-Rosello J., Elsaddig M., Khan N., Papageorghiou A., Bhide A., Thilaganathan B. The association between fetal Doppler and admission to neonatal unit at term. Am. J. Obstet. Gynecol. 2015; 213(1): 57. e1-57. e7. https://dx.doi.org/10.1016/j.ajog.2014.10.013.
  64. Cruz-Martmez R., Figueras F., Hernandez-Andrade E., Oros D., Gratacos E. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet. Gynecol. 2011; 117(3): 618-26. https://dx.doi.org/10.1097/AOG.0b013e31820b0884.
  65. Boers K.E., van Wyk L., van der Post J.A., Kwee A., van Pampus M.G., Spaanderdam M.E. et al. Neonatal morbidity after induction vs expectant monitoring in intrauterine growth restriction at term: a subanalysis of the DIGITAT RCT. Am. J. Obstet. Gynecol. 2012; 206(4): 344. e1-344. e7. https:// dx.doi.org/10.1016/j.ajog.2012.01.015.
  66. Caradeux J., Martinez-Portilla R.J., Basuki T.R., Kiserud T., Figueras F. Risk of fetal death in growth-restricted fetuses with umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2018; 218(2S): 774-82. e21. https://dx.doi.org/10.1016/j.ajog.2017.11.566.
  67. Ganzevoort W., Mensing Van Charante N., Thilaganathan B., Prefumo F., Arabin B., Bilardo C.M. et al. How to monitor pregnancies complicated by fetal growth restriction and delivery before 32 weeks: post-hoc analysis of TRUFFLE study. Ultrasound Obstet. Gynecol. 2017; 49(6): 769-77. https://dx.doi.org/10.1002/ uog.17433.
  68. Visser G.H.A., Bilardo C.M., Derks J.B., Ferrazzi E., Fratelli N., Frusca T. et al. Fetal monitoring indications for delivery and 2-year outcome in 310 infants with fetal growth restriction delivered before 32 weeks' gestation in the TRUFFLE study. Ultrasound Obstet. Gynecol. 2017; 50(3): 347-52. https:// dx.doi.org/10.1002/uog.17361.
  69. Marsal K. Physiological adaptation of the growth-restricted fetus. Best Pract. Res. Clin. Obstet. Gynaecol. 2018; 49: 37-52. https://dx.doi.org/10.1016/j. bpobgyn.2018.02.006.
  70. Lawin-O'Brien A.R., Dall'Asta A., Knight C., Sankaran S., Scala C., Khalil A. et al. Short-term outcome of periviable small-for-gestational-age babies: is our counseling up to date? Ultrasound Obstet. Gynecol. 2016; 48(5): 636-41. https://dx.doi.org/10.1002/uog.15973.
  71. Nabhan A.F., Abdelmoula Y.A. Amniotic fluid index versus single deepest vertical pocket as a screening test for preventing adverse pregnancy outcome. Cochrane Database Syst. Rev. 2008; (3): CD006593. https://dx.doi.org/10.1002/14651858. CD006593.pub2.
  72. Kehl S., Schelkle A., Thomas A., Puhl A., Meqdad K., Tuschy B. et al. Single deepest vertical pocket or amniotic fluid index as evaluation test for predicting adverse pregnancy outcome (SAFE trial): a multicenter, open-label, randomized controlled trial. Ultrasound Obstet. Gynecol. 2016; 47(6): 674-9. https://dx.doi. org/10.1002/uog.14924.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2020

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies