The role of lipids determined by a mass spectrometry method in the development of cardiometabolic diseases in menopausal women


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

With menopause onset, most women gain weight and redistribute adipose tissue with the development of abdominal obesity and concomitant metabolic disorders, which is accompanied by a significant rise in cardiovascular diseases (CVD) and type 2 diabetes mellitus (type 2 DM). Almost all biochemical processes in the body are known to occur with the involvement of lipids. Due to this property, lipids can serve as predictors for various diseases. With the development of mass spectrometry methods, it has now become possible to assess lipid metabolism in more details. Mass spectrometry can identify hundreds of lipids, which significantly expands their diagnostic capabilities. The scientific literature contains data that most sphingolipids are associated with obesity, as well as with the development of type 2 DM and CVD. The levels of ceramides (a type of sphingolipids) differ in general and abdominal obesity. Measurement of plasma circulating ceramide levels can be useful for metabolic risk stratification in women during postmenopause when changes occur in their body composition. Higher levels of ceramides Cer) d18:1/24:0 and Cer d18:1/24:1, as well as phosphatidylcholine (PC) O36:1 and phosphatidylethanolamine (PE) 36:2 are detectable in postmenopausal versus premenopausal women. Studies of the levels of ceramide to assess the risk of CVD are already available in a number of foreign laboratories. Lipid and carbohydrate metabolic changes in women often occur already at the stage of the menopausal transition; therefore this period is of particular scientific interest. This article provides an overview of the available data on the lipid profile changes undetected by classical methods, and their potential role in the development of metabolic and endocrine disorders in menopausal women. Conclusion. The development of omix technologies is of fundamental importance for the elaboration of new approaches to the early diagnosis and treatment of cardiometabolic diseases.

全文:

受限制的访问

作者简介

Svetlana Yureneva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: syureneva@gmail.com
Ph.D, MD, Professor of Department of Obstetrics and Gynecology of the Department of Vocational Education

Veronika Komedina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: komedina.veronika@gmail.com
Ph.D. student of gynecological endocrinology department, obstetrician-gynecologist

Vitaliy Chagovets

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: vvchagovets@gmail.com
Ph.D., Senior Researcher, Laboratory of Proteomics and Metabolomics of Human Reproduction

Natalia Starodubtseva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: auruml9@mail.ru
Ph.D, Head of the Laboratory for Proteomics and Metabolomics of Human Reproduction

参考

  1. Suliga E., Koziel D., Ciesla E., Rqbak D., Gluszek S. Factors associated with adiposity, lipid profile disorders and the metabolic syndrome occurrence in premenopausal and postmenopausal women. PLoS One. 2016; 11(4): e0154511. https://dx.doi.org/10.1371/journal.pone.0154511.
  2. Brown H.L., Warner J.J., Gianos E., Gulati M., Hill A.J., Hollier L.M. et al. Promoting risk identification and reduction of cardiovascular disease in women through collaboration with obstetricians and gynecologists: a presidential advisory from the American Heart Association and the American College of Obstetricians and Gynecologists. Circulation. 2018; 137(24): e843-52. https:// dx.doi.org/10.1161/CIR.0000000000000582.
  3. Chedraui P., Perez-Lopez F.R. Metabolic syndrome during female midlife: what are the risks? Climacteric. 2019; 22(2): 127-32. https://dx.doi.org/ 10.1080/13697137.2018.1561666.
  4. Nogueira I.A.L., da Cruz E.J.S.N., Fontenele A.M.M., de Figueiredo Neto J.A. Alterations in postmenopausal plasmatic lipidome. PLoS One. 2018; 13(9): e0203027. https://dx.doi.org/10.1371/journal.pone.0203027.
  5. Лохов П.Г., Маслов Д.Л., Балашова Е.Е., Трифонова О.П., Медведева Н.В., Торховская Т.Н., Ипатова О.М.,Арчаков А.И., Малышев П.П., Кухарчук В.В., Шестакова Е.А., Дедов И.И. Масс-спектрометрический анализ липидома плазмы крови, как способ диагностики заболеваний, оценки эффективности и оптимизации лекарственной терапии. Биомедицинская химия. 2015; 61(1): 7-18. [Lokhov P.G., Maslov D.L., Balashova E.E., Trifonova O.P., Medvedeva N.V., Torkhovskaya T.I. et al. Mass spectrometric analysis of blood plasma lipidome as a method for diagnosing diseases, evaluating the effectiveness and optimization of drug therapy. Biomedical chemistry. 2015; 61(1): 7-18. (in Russian)].
  6. Meikle P.J., Wong G., Barlow C.K., Kingwell B.A. Lipidomics: potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease. Pharmacol. Ther. 2014; 143(1): 12-23. https://dx.doi.org/10.1016/j. pharmthera.2014.02.001.
  7. De Oliveira L., Camara N.O., Bonetti T., Lo Turco E.G., Bertolla R.P., Moron A.F. et al. Lipid fingerprinting in women with early-onset preeclampsia: a first look. Clin. Biochem. 2012; 45(10-11): 852-5. https://dx.doi.org/10.1016/j. clinbiochem.2012.04.012.
  8. Li J., Xie L.M., Song J.L., Yau L.F., Mi J.N., Zhang C.R. et al. Alterations of sphingolipid metabolism in different types of polycystic ovary syndrome. Sci. Rep. 2019; 9(1): 3204. https://dx.doi.org/10.1038/s41598-019-38944-6.
  9. Yin M.Z., Tan S., Li X., Hou Y., Cao G., Li K. et al. Identification of phosphatidylcholine and lysophosphatidylcholine as novel biomarkers for cervical cancers in a prospective cohort study. Tumour Biol. 2016; 37(4): 548592. https://dx.doi.org/10.1007/s13277-015-4164-x.
  10. Юренева С.В., Комедина В.И., Кузнецов С.Ю. Прибавка массы тела у женщин в перименопаузе: методы оценки композиционного состава тела и тактика ведения. Акушерство и гинекология. 2020; 2: 56-61. [Yureneva S.V., Komedina V.I., Kuznetsov S.Yu. Weight gain in perimenopausal women: methods for assessing body composition and management tactics. Obstetrics and gynecology. 2020; 2: 56-61. (in Russian)]. https: //dx.doi.org/10.18565/ aig.2020.2.56-61.
  11. Palmer B.F., Clegg D.J. The sexual dimorphism of obesity. Mol. Cell. Endocrinol. 2015; 402: 113-9. https://dx.doi.org/10.1016/j.mce.2014.11.029.
  12. Tchernof A., Despres J.-P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 2013; 93(1): 359-404. https://dx.doi.org/10.1152/ physrev.00033.2011.
  13. Чумакова Г.А., Кузнецова Т.Ю., Дружилов М.А., Веселовская Н.Г. Висцеральное ожирение как глобальный фактор сердечно-сосудистого риска. Российский кардиологический журнал. 2018; 23(5): 7-14. [Chumakova G.A., Kuznetsova T.Yu., Druzhilov M.A., Veselovskaya N.G. Visceral obesity as a global factor of cardiovascular risk. Russian Journal of Cardiology. 2018; 23 (5): 7-14. (in Russian)]. https://dx.doi.org/10.15829/1560-4071-2018-5-7-14.
  14. Neeland I.J., Singh S., McGuire D.K., Vega G.L., Roddy T., Reilly D.F. et al. Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study. Diabetologia. 2018; 61(12): 2570-9. https://dx.doi.org/10.1007/s00125-018-4720-1.
  15. Alshehry Z.H., Mundra P.A., Barlow C.K., Mellett N.A., Wong G., McConville M.J. et al. Plasma lipidomic profiles improve on traditional risk factors for the prediction of cardiovascular events in type 2 diabetes mellitus. Circulation. 2016; 134(21): 1637-50. https://dx.doi.org/10.1161/CIRCULATIONAHA.116.023233.
  16. de la Maza M.P., Rodriguez J.M., Hirsch S., Leiva L. Barrera G., Bunout D. Skeletal muscle ceramide species in men with abdominal obesity. J. Nutr. Health Aging. 2015; 19(4): 389-96. https://dx.doi.org/10.1007/s12603-014-0548-7.
  17. Mousa A., Naderpoor N., Mellett N., Wilson K., Plebanski M., Meikle P.J. et al. Lipidomic profiling reveals early-stage metabolic dysfunction in overweight or obese humans. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids. 2019; 1864(3): 335-43. https://dx.doi.org/10.1016/j.bbalip.2018.12.014.
  18. Vozella V., Basit A., Piras F., Realini N., Armirotti A., Bossu P. et al. Elevated plasma ceramide levels in post-menopausal women: a cross-sectional study. Aging (Albany NY). 2019; 11(1): 73-88. https://dx.doi.org/10.18632/ aging.101719.
  19. Wigger L., Cruciani-Guglielmacci C., Nicolas A., Denom J., Fernandez N., Fumeron F. et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 2017; 18(9): 2269-79. https://dx.doi. org/10.1016/j.celrep.2017.02.019.
  20. Havulinna A.S., Sysi-Aho M., Hilvo M. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 Cohort. Arterioscler. Thromb. Vasc. Biol. 2016; 36(12): 2424-30. https://dx.doi.org/ 10.1161/ATVBAHA.116.307497.
  21. Ke C., Hou Y., Zhang H., Yang K., Wang J., Guo B. et al. Plasma metabolic profiles in women are menopause dependent. PLoS One. 2015; 10(11): e0141743. https://dx.doi.org/10.1371/journal.pone.0141743.
  22. Meikle P.J., Summers S.A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. Endocrinol. 2017; 13(2): 79-91. https://dx.doi.org/10.1038/nrendo.2016.169.
  23. Lovric A., Graner M., Bjornson E., Arif M., Benfeitas R., Nyman K. et al. Characterization of different fat depots in NAFLD using inflammation-associated proteome, lipidome and metabolome. Sci. Rep. 2018; 8(1): 14200. https://dx.doi.org/10.1038/s41598-018-31865-w.
  24. Scheiblich H., Schlutter A., Golenbock D.T., Latz E., Martinez-Martinez P., Heneka M.T. Activation of the NLRP3 inflammasome in microglia: the role of ceramide. J. Neurochem. 2017; 143(5): 534-50. https://dx.doi.org/10.1111/ jnc.14225.
  25. Meeusen J.W., Donato L.J., Bryant S.C., Baudhuin L.M., Berger P.B., Jaffe A.S. Plasma ceramides. Arterioscler. Thromb. Vasc. Biol. 2018; 38(8): 1933-9. https://dx.doi.org/10.1161/ATVBAHA.118.311199.
  26. Braicu E.I., Darb-Esfahani S., Schmitt W.D., Koistinen K.M., Heiskanen L., Poho P. et al. High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget. 2017; 8(61): 102912-22. https:// dx.doi.org/10.18632/oncotarget.22076.
  27. Separovic D., Shields A.F., Philip P.A., Bielawski J., Bielawska A., Pierce J.S. et al. Altered levels of serum ceramide, sphingosine and sphingomyelin are associated with colorectal cancer: a retrospective pilot study. Anticancer Res. 2017; 37(3): 1213-8. https://dx.doi.org/10.21873/anticanres.11436.
  28. Hilvo M., Salonurmi T., Havulinna A.S., Kauhanen D., Pedersen E.R., Tell G.S. et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia. 2018; 61(6): 1424-34. https://dx.doi.org/10.1007/s00125-018-4590-6.
  29. Kurz J., Parnham M.J., Geisslinger G., Schiffnann S. Ceramides as novel disease biomarkers. Trends Mol. Med. 2019; 25(1): 20-32. https://dx.doi.org/ 10.1016/j. molmed.2018.10.009.
  30. Wigger L., Cruciani-Guglielmacci C., Nicolas A., Denom J., Fernandez N., Fumeron F. et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 2017; 18(9): 2269-79. https://dx.doi. org/10.1016/j.celrep.2017.02.019. Повтор № 19.
  31. Laaksonen R., Ekroos K., Sysi-Aho M., Hilvo M., Vihervaara T., Kauhanen D. et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016; 37(25): 1967-76. https://dx.doi.org/10.1093/eurheartj/ ehw148.
  32. Wang D.D., Toledo E., Hruby A., Rosner B.A., Willett W.C., Sun Q. et al. Plasma ceramides, Mediterranean diet, and incident cardiovascular disease in the PREDIMED Trial. Circulation. 2017; 135(21): 2028-40. https://dx.doi. org/10.1161/CIRCULATIONAHA.116.02426.
  33. Nicholls M. Plasma ceramides and cardiac risk. Eur. Heart J. 2017; 38(18): 135960. https://dx.doi.org/10.1093/eurheartj/ehx205.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2020
##common.cookie##