Progesterone-induced blocking factor: from molecular biology to clinical medicine


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Pregnancy is a unique immunological situation when two allogeneic organisms live in close symbiosis without rejecting each other. Progesterone-induced blocking factor (PIBF) is a protein produced by activated lymphocytes in healthy pregnant women under the influence of progesterone. The specific immune tolerance of a mother to her fetus is known to be supported by several factors, which are the focus of current studies in the field of reproductive immunology. One of these factors is PIBF. It was originally discovered as a protein expressed by the peripheral lymphocytes in healthy pregnant women under the action of progesterone. PIBF performs immunomodulatory functions in vivo and in vitro, which are important for establishing maternal-fetal immune tolerance and therefore for the normal course of pregnancy. In recent years, several tumors producing PIBF have been identif ied; thus, it is possible to consider PIBF as a potential new tumor biomarker and to develop new therapeutic strategies in the future. Conclusion. PIBF is a unique protein that is not present in normal cells, but it can be found primarily in fastgrowing embryo tissues or cancer cells. This review presents the current views of the Russian and foreign scientists on progesterone-induced blocking factor and its role in reproduction and oncogenesis; the leading pathogenetic role of this factor in maintaining a normal pregnancy is demonstrated.

Texto integral

Acesso é fechado

Sobre autores

O. Prokhorova

Ural State Medical University, Ministry of Health of Russia

MD, PhD, Assistant Professor, Department of Obstetrics and Gynecology 620014, Russia, Yekaterinburg, Repin str., 3

A. Olina

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology; E.I. Vagner Perm State Medical University, Ministry of Health of Russia

Email: olina29@mail.ru
MD, PhD, DSci (Medicine), Professor, Deputy Director 199034, Russia, St. Petersburg, Mendeleevskaya line, 3

G. Tolibova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

MD, DSci (Medicine), Head of Immunohystochemistry Laboratory 199034, Russia, St. Petersburg, Mendeleevskaya line, 3

T. Tral

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

MD, PhD, Pathologist, Head of Pathologic Laboratory 199034, Russia, St. Petersburg, Mendeleevskaya line, 3

Bibliografia

  1. Medawar P.B. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 1953; 7: 320-38.
  2. Ermisch C., Markert U.R. PIBF - progesterone-induced blocking factor. Z. Geburtshilfe Neonatol. 2011; 215(3): 93-7. https://dx.doi. org/10.1055/s-0031-1271742.
  3. Shah N.M., Lai P.F., Imami N., Johnson M.R. Progesterone-related immune modulation of pregnancy and labor. Front. Endocrinol. 2019; 10: 198. https:// dx.doi.org/10.3389/fendo.2019.00198.
  4. Szekeres-Bartho J., Balasch J. Progestogen therapy for recurrent miscarriage. Hum. Reprod. Update. 2008; 14(1): 27-35. https://dx.doi.org/10.1093/ humupd/dmm035.
  5. Mesiano S. Myometrial progesterone responsiveness. Semin. Reprod. Med. 2007; 25(1): 5-13. https://dx.doi.org/10.1055/s-2006-956771.
  6. Brown A.G., Leite R.S., Strauss J.F. Mechanisms underlying "Functional" progesterone withdrawal at parturition. Ann. N. Y. Acad. Sci. 2004; 1034: 36-49. https://dx.doi.org/10.1196/annals.1335.004.
  7. Herington J.L., O'Brien C., Robuck M.F., Lei W., Brown N., Slaughter J.C. et al. Prostaglandin-endoperoxide synthase 1 mediates the timing of parturition in mice despite unhindered uterine contractility. Endocrinology. 2018; 159(1): 490-505. https://dx.doi.org/10.1210/en.2017-00647.
  8. Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. J. Soc. Gynecol. Investig. 2004; 11(4): 193-202. https://dx.doi. org/10.1016 / j.jsgi.2003.12.004.
  9. Siiteri P.K., Febres F., Clemens L.E., Chang R.J., Gondos B., Stites D.P. Progesterone and the maintenance of pregnancy: is progesterone nature‘s immunosuppressant? Ann. N. Y. Acad. Sci. 1997; 286: 384-97. https://dx.doi. org/10.1111/j.1749-6632.1977.tb29431.x.
  10. Szekeres-Bartho J., Weill B.J., Mike G., Houssin D., Chaouat G. Progesterone receptors in lymphocytes of liver-transplanted and transfused patients. Immunol. Lett. 1989; 22(4): 259-61. https://dx.doi.org/10.1016/0165-2478(89)90162-4.
  11. Lachmann M., Gelbmann D., Kalman E., Polgar B., Buschle M., Von Gabain A., Szekeres-Bartho J., Nagy E. PIBF (progesterone induced blocking factor) is overexpressed in highly proliferating cells and associated with the centrosome. Int. J. Cancer. 2004; 112(1): 51-60. https://dx.doi.org/10.1002/ ijc.20326.
  12. Gonzdlez-Arenas A., Valadez-Cosmes P., Jimenez-Arellano C., Lopez-Sdnchez M., Camacho-Arroyo I. Progesterone-induced blocking factor is hormonally regulated in human astrocytoma cells, and increases their growth through the IL-4R/JAK1/STAT6 pathway. J. Steroid Biochem. Mol. Biol. 2014; 144(Pt B): 463-70. https://dx.doi.org/10.1016/josbmb.2014.09.007.
  13. Polgar B., Kispal G.Y., Lachmann M., Paar C., Nagy E., Csere P. et al. Molecular cloning and immunological characterization of a novel cDNA coding for PIBF. J. Immunol. 2003; 171(11): 5956-63. https://dx.doi.org/10.4049/ jimmunol.171.11.5956.
  14. Mulac-Jericevic B, Sucurovic S., Gulic T., Szekeres-Bartho J. The involvement of the progesterone receptor in PIBF and Gal-1 expression in the mouse endometrium. Am. J. Reprod. Immunol. 2019; 81(5): e13104. https://dx.doi. org/10.1111/aji.13104.
  15. Szekeres-Bartho J., Faust Z., Varga P. The expression of a progesterone -induced immunomodulatory protein in pregnancy lymphocytes. Am. J. Reprod. Immunol. 1995; 34(6): 342-8. https://dx.doi.org/10.1111/j.1600-0897.1995. tb00962.x.
  16. Kim K., Lee K., Rhee K. CEP90 is required for the assembly and centrosomal accumulation of centriolar satellites, which is essential for primary cilia formation. PLoS One. 2012; 7(10): e48196. 10.1371/journal.pone.0048196.
  17. Kim K., Rhee K. The pericentriolar satellite protein CEP90 is crucial for integrity of the mitotic spindle pole. J. Cell Sci. 2011; 124(Pt 3): 338-47. https:// dx.doi.org/10.1242/jcs.078329.
  18. Miko E., Halasz M., Jericevic-Mulac B., Wicherek L., Arck P., Arato G. et al. Progesterone-induced blocking factor (PIBF) and trophoblast invasiveness. J. Reprod. Immunol. 2011; 90(1): 50-7. https://dx.doi.org/10.1016/ j.jri.2011.03.005.
  19. Halasz M., Polgar B., Berta G., Czimbalek L., Szekeres-Bartho J. Progesterone-induced blocking factor differentially regulates trophoblast and tumor invasion by altering matrix metalloproteinase activity. Cell. Mol. Life Sci. 2013; 70(23): 4617-30. https://dx.doi.org/10.1007/s00018-013-1404-3.
  20. Balassa T., Berta G., Jakab L., Bohonyi N., Szekeres-Bartho J. The effect of the progesterone-induced blocking factor (PIBF) on E-cadherin expression, cell motility and invasion of primary tumour cell lines. J. Reprod. Immunol. 2018; 125: 8-15. https://dx.doi.org/10.1016/j.jri.2017.10.047.
  21. Polgar B., Nagy E., Miko E., Varga P., Szekeres-Bartho J. Urinary progesterone-induced blocking factor concentration is related to pregnancy outcome. Biol. Reprod. 2004; 71(5): 1699-705. https://dx.doi.org/10.1095/ biolreprod.104.030437.
  22. Pallinger E., Bognar Z, Bogdan A., Csabai T., Abraham H., Szekeres-Bartho J. PIBF+ extracellular vesicles from mouse embryos affect IL-10 production by CD8+ cells. Sci. Rep. 2018; 8(1): 4662. https://dx.doi.org/10.1038/ s41598-018-23112-z.
  23. Anderle C., Hammer A., Polgar B., Hartmann M., Wintersteiger R., Blaschitz A. et al. Human trophoblast cells express the immunomodulator progesterone-induced blocking factor. J. Reprod. Immunol. 2008; 79: 26-36. https:// dx.doi.org/10.1016/j.jri.2008.06.002.
  24. Szekeres-Bartho J., Sucurovic S., Mulac-Jericevic B. The role of extracellular vesicles and PIBF in embryo-maternal immune-interactions. Front. Immunol. 2018; 9: 2890. https://dx.doi.org/10.3389/fimmu.2018.02890.
  25. Druckmann R., Druckmann M.A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 2005; 97(5): 389-96. https:// dx.doi.org/10.1016/j.jsbmb.2005.08.010.
  26. Koopman L.A., Kopcow H.D., Rybalov B., Boyson J.E., Orange J.S., Schatz F. et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 2003; 198(8): 1201-12. https:// dx.doi.org/10.1084/jem.20030305.
  27. Redhead M.L., Portilho N.A., Felker A.M., Mohammad S., Mara D.L., Croy B.A. The transcription factor NFIL3 is essential for normal placental and embryonic development but not for uterine natural killer (UNK) cell differentiation in mice. Biol. Reprod. 2016; 94(5): 101. https://dx.doi.org/10.1095/ biolreprod.116.138495.
  28. Quillay H., El Costa H., Duriez M., Marlin R., Cannou C., Madec Y. et al. NK cells control HIV-1 infection of macrophages through soluble factors and cellular contacts in the human decidua. Retrovirology. 2016; 13: 39. https:// dx.doi.org/10.1186/s12977-016-0271-z.
  29. Barel M.T., Ressing M., Pizzato N., van Leeuwen D., Le Bouteiller P., Lenfant F. et al. Human cytomegalovirus-encoded US2 differentially affects surface expression of MHC class I locus products and targets membrane-bound, but not soluble HLA-G1 for degradation. J. Immunol. 2003; 171(12): 6757-65. https:// dx.doi.org/10.4049/jimmunol.171.12.6757.
  30. Szekeres-Bartho J. The role of Ppogesterone in feto-maternal immunological cross talk. Med. Princ. Pract. 2018; 27(4): 301-7. https:// dx.doi.org/10.1159/000491576.
  31. Raghupathy R., Al-Mutawa E., Al-Azemi M., Makhseed M., Azizieh F., Szekeres-Bartho J. The progesterone-induced blocking factor (PIBF) modulates cytokine production by lymphocytes from women with recurrent miscarriage and with preterm delivery. J. Reprod. Immunol. 2009; 80: 91-9. https://dx.doi. org/10.1016/j.jri.2009.01.004.
  32. Huang B., Faucette A.N., Pawlitz M.D., Pei B., Goyert J.W., Zhou J.Z. et al. Interleukin-33-induced expression of PIBF1 by decidual B cells protects against preterm labor. Nat. Med. 2017; 23(1): 128-35. https://dx.doi.org/10.1038/ nm.4244.
  33. Polgar B., Kispal G., Lachmann M., Paar C., Nagy E., Csere P. et al. Molecular cloning and immunologic characterization of a novel cDNA coding for progesterone-induced blocking factor. J. Immunol. 2003; 171 (11): 5956-63. https://dx.doi.org/10.4049/ jimmunol.171.11.5956.
  34. Lim M.K., Ku C.W., Tan T.C., Lee Y.H.J., Allen J.C., Tan N.S. Characterisation of serum progesterone and progesterone-induced blocking factor (PIBF) levels across trimesters in healthy pregnant women. Sci. Rep. 2020; 10(1): 3840. https://dx.doi.org/10.1038/s41598-020-59452-y.
  35. Szekeres-Bartho J., Polgar B. PIBF: the double edged sword. Pregnancy and tumor. Am. J. Reprod. Immunol. 2010; 64(2): 77-86. https:// dx.doi.org/10.1111/j.1600-0897.2010.00833.x.
  36. Nakamura K., Sheps S., Arck P.C. Stress and reproductive failure: past notions, present insights and future directions. J. Assist. Reprod. Genet. 2008; 25(2): 47-62. https://dx.doi.org/ 10.1007/s10815-008-9206-5.
  37. Szekeres-Bartho J., Faust Z., Varga P., Szereday L., Kelemen K. The immunological pregnancy protective effect of progesterone is manifested via controlling cytokine production. Am. J. Reprod. Immunol. 1996; 35: 348-51. https://dx.doi.org/10.1111/j.1600-0897.1996.tb00492.x.
  38. Hossein H., Mahroo M., Abbas A., Firouzeh A., Nadia H. Cytokine production by peripheral blood mononuclear cells in RM. Cytokine. 2004; 28(2): 83-6. https:// dx.doi.org/10.1016/j.cyto.2004.07.002.
  39. Siew S., Yan H., Celene Y., Tan T.C., Allen J.C., Malhotra R., Ostbye T. Micronized Progesterone Compared With Dydrogesterone for Threatened Miscarriage. Obstet & Gynecol. 2015; 125:104S. https://dx.doi.org/10.1097/ 01.AOG.0000463637.28791.
  40. Siew J.Y.S., Allen J.C., Hui C.Y.Y., Ku C.W, Malhotra R., 0stbye T., Tan T.C. The randomised controlled trial of micronised progesteron e and dydrogesterone (TRoMaD) for threatened miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018; 228: 319-24. https://dx.doi.org/10.1016/j. ejogrb.2018.07.028.
  41. Hudic I., Stray-Pedersen B., Szekeres-Bartho J., Fatusic Z., Dizdarevic-Hudic L., Tomic V. et al. Maternal serum progesterone-induced blocking factor (PIBF) in the prediction of preterm birth. J. Reprod. Immunol. 2015; 109: 36-40. https:// dx.doi.org/10.1016/j.jri.2015.02.006.
  42. Lee G.W., Boomer J.S., Gilman-Sachs A., Chedid A., Gudelj L., Rukavina D., Beaman K.D. Regeneration and tolerance factor of the human placenta induces IL-10 production. Eur. J. Immunol. 2001; 31: 687-91.
  43. Rodriguez-Dorantes M., Camacho-Arroyo I. Transcriptional activity regulated by progesterone receptor isoforms. Mol. Endocrinol. 2006; 2006(2): 25-38.
  44. Valadez-Cosmes P, Vazquez-Martinez E.R., Cerbon M., Camacho-Arroyo I. Membrane progesterone receptors in reproduction and cancer. Mol. Cell. Endocrinol. 2016; 434: 166-75. https://dx.doi.org/10.1016/j.mce.2016.06.027.
  45. Kraus W.L., Katzenellenbogen B.S. Regulation of progesterone receptor gene expression and growth in the rat uterus: modulation of estrogen action by progesterone and sex steroid hormone antagonists. Endocrinology. 1993; 132(6): 2371-9. https://dx.doi.org/10.1210/endo.1326.8504742.
  46. Rider V. Progesterone and the control of uterine cell proliferation and differentiation. Front Biosci. 2002; 7: d1545-55. https://dx.doi.org/10.2741/ A859.
  47. Balassa T., Berta G, Jakab L., Bohonyi N., Szekeres-Bartho J. The effect of the progesterone-induced blocking factor (PIBF) on E-cadherin expression, cell motility and invasion of primary tumour cell lines. J. Reprod. Immunol. 2018; 125: 8-15. https://dx.doi.org/10.1016/j.jri.2017.10.047.
  48. Check J.H., Check D. Therapy aimed to suppress the production of the immunosuppressive protein progesterone induced blocking factor (PIBF) may provide palliation and/or increased longevity for patients with a variety of different advanced cancers - A review. Anticancer Res. 2019; 39(7): 3365-72. https://dx.doi.org/10.21873/anticanres.13479.
  49. Kyurkchiev D, Naydenov E., Tumangelova-Yuzeir K., Ivanova-Todorova E., Belemezova K., Bochev I. et al. Cells isolated from human glioblastoma multiforme express progesterone-induced blocking factor (PIBF). Cell. Mol. Neurobiol. 2014; 34(4): 479-89. https://dx.doi.org/10.1007/s10571-014-0031-3.
  50. Kyurkchiev D.S., Ivanova-Todorova E., Kyurkchiev S.D. Effect of progesterone on human mesenchymal stem cells. Vitam. Horm. 2011; 87: 217-37. https:// dx.doi.org/10.1016/B978-0-12-386015-6.00040-8.
  51. Srivastava M.D., Thomas A., Srivastava B.I., Check J.H. Expression and modulation of progesterone induced blocking factor (PIBF) and innate immune factors in human leukemia cell lines by progesterone and mifepristone. Leuk. Lymphoma. 2007; 48(8): 1610-7. https://dx.doi.org/10.1080/10428190701471999.
  52. Gutierrez-Rodriguez A., Hansberg-Pastor V., Camacho-Arroyo I. Proliferative and invasive effects of progesterone-induced blocking factor in human glioblastoma cells. Biomed. Res. Int. 2017; 2017: 1295087. 10.1155/2017/ 1295087.
  53. Rodriguez F.J., Lewis-Tuffin L.J., Anastasiadis P.Z. E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta. 2012; 1826(1): 23-31. https://dx.doi.org/10.1016/j.bbcan.2012.03.002.
  54. Anderle C., Hammer A., Polgar B., Hartmann M., Wintersteiger R., Blaschitz A. et al. Human trophoblast cells express the immunomodulator progesterone-induced blocking factor. J Reprod Immunol. 2008; 79(1): 26-36. https://dx.doi. org/10.1016/j.jri.2008.06.002.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2021

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies