Choosing an optimal algorithm for the assessment of the condition of regional lymph nodes in patients with breast cancer using modern ultrasound diagnostics


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Objective. To develop a diagnostic algorithm for assessing the condition of the axillary lymphatic collector in patients with early stages of breast cancer. Materials and methods. The study included 118 patients with clinical stage T1-2 and the absence of palpable axillary lymph nodes (N0).Results. Elastometric evaluation showed that the shear wave velocity in the axillary lymph nodes averaged 1.54(±0.44) m/s in the case of a benign lesion and 2.94(±1.19) m/s in a metastatic lesion. Thus, the shear wave velocity in the axillary lymph nodes in patients with metastatic nodes differed significantly from that in patients without metastatic lymph nodes. During the ROC analysis, a threshold value of the shear wave velocity was calculated; the model showed sensitivity in detecting metastases in lymph nodes at the rate of 1.85 m/s in 90% (27 out of 30 patients), and specificity in 72.7% (64 out of 88 patients) of cases. The accuracy of the method was 77.1%, positive predictive value was 52.9%, and negative predictive value was 95.5%. Conclusion. The comprehensive ultrasound assessment revealed 27 patients with metastases in the axillary lymph nodes compared to 22patients with nodes detected by B-mode ultrasonography (90% and 73%, respectively). The patients underwent lymphadenectomy, sentinel lymph node biopsy in this case was not performed.

Texto integral

Acesso é fechado

Sobre autores

Nafset Khakurinova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: nafset2701@mail.ru
Oncologist, Department of the day hospital (chemotherapeutic and surgical methods of treatment)

Vyacheslav Snitkin

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: snitkinvm@yandex.ru
post-graduate student of the Department of ultrasound diagnostics of the Research Institute of Clinical and Experimental Radiology

Vladimir Sholokhov

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: vnshell@mail.ru
MD, Professor, leading researcher of the Department of ultrasound diagnostics of the Research Institute of Clinical and Experimental Radiology

Alexander Petrovsky

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: alexpetrovsky@hotmail.com
PhD, deputy director for the development of cancer care in the regions, Research Institute of Clinical Oncology

Ramiz Valiev

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: info@ronc.ru
PhD., Head of the Oncological Department of surgical methods of treatment No. 13, Research Institute of Clinical Oncology

Dmitry Avtomonov

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: info@ronc.ru
PhD., assistant of the Department of Oncology, Institute of Clinical Medicine named after N.V. Sklifosovsky

Igor Samoylenko

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: i.samoylenko@ronc.ru
PhD, senior researcher, Oncological Department of surgical methods of treatment No. 12 (oncodermatology)

Bibliografia

  1. Yang T., Niu J., Dang Y., Zhou Y., Cao Y., Zeng M., Lv M. An innovative ultrasound strain elastographic method for the differential diagnosis of breast tumors. Ultrasound Med. Biol. 2019; 45(1): 56-67. https://dx.doi.org/10.1016/j. ultrasmedbio.2018.08.025.
  2. Graziano L., Bitencourt A.G., Cohen M.P., Guatelli C.S., Poli M.R., Souza J.A., Marques E.F. Elastographic evaluation of indeterminate breast masses on ultrasound. Rev. Bras. Ginecol. Obstet. 2017; 39(2): 72-9. https://dx.doi. org/10.1055/s-0036-1597753.
  3. Lee S.H., Moon W.K., Cho N., Chang J.M., Moon H.G., Han W. et al. Shear-wave elastographic features of breast cancers: comparison with mechanical elasticity and histopathologic characteristics. Invest. Radiol. 2014; 49(3): 147-55. https:// dx.doi.org/10.1097/RLI.0000000000000006.
  4. Evans A., Whelehan P., Thomson K., McLean D., Brauer K., Purdie C. et al. Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology. 2012; 263(3): 673-7. https://dx.doi. org/10.1148/radiol.12111317.
  5. Park Y.M., Fornage B.D., Benveniste A.P., Fox P.S., Bassett R.L.Jr., Yang W.T. Strain elastography of abnormal axillary nodes in breast cancer patients does not improve diagnostic accuracy compared with conventional ultrasound alone. AJR Am. J. Roentgenol. 2014; 203(6): 1371-8. https://dx.doi.org/10.2214/ AJR.13.12349.
  6. Choi J.J., Kang B.J., Kim S.H., Lee J.H., Jeong S.H., Yim H.W. et al. Role of sonographic elastography in the differential diagnosis of axillary lymph nodes in breast cancer. J. Ultrasound Med. 2011; 30(4): 429-36. https://dx.doi. org/10.7863/jum.2011.30.4.429.
  7. Taylor K., O Keeffe S., Britton P.D., Wallis M.G., Treece G.M., Housden J. et al. Ultrasound elastography as an adjuvant to conventional ultrasound in the preoperative assessment of axillary lymph nodes in suspected breast cancer: a pilot study. Clin. Radiol. 2011; 66(11): 1064-71. https://dx.doi.org/10.1016/j. crad.2011.05.015.
  8. Tsai W.C., Lin C.K., Wei H.K., Yu B.L., Hung C.F., Cheng S.H., Chen C.M. Sonographic elastography improves the sensitivity and specificity of axilla sampling in breast cancer: a prospective study. Ultrasound Med. Biol. 2013; 39(6): 941-9. https://dx.doi.org/10.1016/j.ultrasmedbio.2012.12.013.
  9. Youk J.H., Gweon H.M., Son E.J., Han K.H., Kim J.A. Diagnostic value of commercially available shear-wave elastography for breast cancers: integration into BI-RADS classification with subcategories of category 4. Eur. Radiol. 2013; 23(10): 2695-704. https://dx.doi.org/10.1007/s00330-013-2873-3.
  10. Park C.S., Kim S.H., Jung N.Y., Choi J.J., Kang B.J., Jung H.S. Interobserver variability of ultrasound elastography and the ultrasound BI-RADS lexicon of breast lesions. Breast Cancer. 2015; 22(2): 153-60. https://dx.doi.org/10.1007/ s12282-013-0465-3.
  11. Yoon J.H., Kim M.H., Kim E.K., Moon H.J., Kwak J.Y., Kim M.J. Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. AJR Am. J. Roentgenol. 2011; 196(3): 730-6. https:// dx.doi.org/10.2214/AJR.10.4654.
  12. Berg W.A., Mendelson E.B., Cosgrove D.O., Dore C.J., Gay J., Henry J.P., Cohen-Bacrie C. Quantitative maximum shear-wave stiffness of breast masses as a predictor of histopathologic severity. AJR Am. J. Roentgenol. 2015; 205(2): 448-55. https://dx.doi.org/10.2214/AJR.14.13448.
  13. Cosgrove D.O., Berg W.A., Dore C.J., Skyba D.M., Henry J.P., Gay J. et al. Shear wave elastography for breast masses is highly reproducible. Eur. Radiol. 2012; 22(5): 1023-32. https://dx.doi.org/10.1007/s00330-011-2340-y.
  14. Tourasse C., Denier J.F., Awada A., Gratadour A.C., Nessah-Bousquet K., Gay J. Elastography in the assessment of sentinel lymph nodes prior to dissection. Eur. J. Radiol. 2012; 81(11): 3154-9. https://dx.doi.org/10.1016/j.ejrad.2012.04.031.
  15. Kilic F., Velidedeoglu M., Ozturk T., Kandemirli S.G., Dikici A.S., Er M.E. et al. Ex vivo assessment of sentinel lymph nodes in breast cancer using shear wave elastography. J. Ultrasound Med. 2016; 35(2): 271-7. https://dx.doi. org/10.7863/ultra.15.03039.
  16. Zhao Q., Sun J.W., Zhou H., Du L.Y., Wang X.L., Tao L. et al. Pre-operative conventional ultrasound and sonoelastography evaluation for predicting axillary lymph node metastasis in patients with malignant breast lesions. Ultrasound Med. Biol. 2018; 44(12): 2587-95. https://dx.doi.org/10.1016/j. ultrasmedbio.2018.07.017.
  17. Youk J.H., Son E.J., Kim J.A., Gweon H.M. Pre-operative evaluation of axillary lymph node status in patients with suspected breast cancer using shear wave elastography. Ultrasound Med. Biol. 2017; 43(8): 1581-6. https://dx.doi. org/10.1016/j.ultrasmedbio.2017.03.016.
  18. Seo M., Sohn Y.M. Differentiation of benign and metastatic axillary lymph nodes in breast cancer: additive value of shear wave elastography to B-mode ultrasound. Clin. Imaging. 2018; 50: 258-63. https://dx.doi.org/10.1016/j. clinimag.2018.04.013.
  19. Gennisson J.L., Deffieux T., Fink M., Tanter M. Ultrasound elastography: principles and techniques. Diagn. Interv. Imaging. 2013; 94(5): 487-95.
  20. Shiina T., Nightingale K.R., Palmeri M.L., Hall T.J., Bamber J.C., Barr R.G. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med. Biol. 2015; 41(5): 1126-47. https://dx.doi.org/10.1016/j.ultrasmedbio.2015.03.009.
  21. Sigrist R.M.S., Liau J., Kaffas A.E., Chammas M.C., Willmann J.K. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017; 7(5): 1303-29. https://dx.doi.org/10.7150/thno.18650.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2020

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies