Diagnosis, therapy and prevention of neonatal infections caused by multidrug-resistant opportunistic microorganisms: historical overview and current concepts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The present literature review describes in detail the issue of multidrug resistance of bacterial microflora to antimicrobials in neonatal intensive care units. The existing data from the first reported cases of resistance among individual strains of opportunistic microorganisms up to the present time have been analyzed. The results of the literature review revealed the key reasons of the rapid formation of bacterial resistance, showed its leading trends and provided the latest data on the main cellular mechanisms of antimicrobial resistance. Thus, new opportunities to affect the targets of microorganisms aimed at overcoming their resistance can be found. Given the high frequency of lethal outcomes in newborns with neonatal sepsis, the review presents relevant information on modern methods for diagnosing opportunistic microorganisms and determining their spectrum of resistance to antimicrobial drugs in order to timely prescribe effective eradication therapy.

Conclusion: The increasing multidrug resistance in hospital strains of opportunistic microorganisms in neonatal units presents a significant threat to the health of newborns. Therefore, there is a need for a comprehensive study of new strategies for the diagnosis and treatment of bacterial infections.

Texto integral

Acesso é fechado

Sobre autores

Ivan Amelin

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Autor responsável pela correspondência
Email: suomi161@gmail.com
ORCID ID: 0000-0002-4240-3161

postgraduate student at the Department of Neonatology

Rússia, Moscow

Irina Nikitina

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: i_nikitina@oparina4.ru
ORCID ID: 0000-0002-1103-1908
Scopus Author ID: 57189233499
Researcher ID: AAH-3465-2019

Dr. Med. Sci., Leading Researcher at the Neonatal Intensive Care Unit №2 of the Institute of Neonatology and Pediatrics, Professor at Neonatology Department

Rússia, Moscow

Alexey Gordeev

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_gordeev@oparina4.ru
ORCID ID: 0000-0002-9171-5276

Ph.D. (Bio), Head of the Department of Molecular Microbiology and Bioinformatics, Institute of Microbiology, Antimicrobial Therapy and Epidemiology

Rússia, Moscow

Tatiana Priputnevich

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: priput1@gmail.com
ORCID ID: 0000-0002-4126-9730

Corresponding Member of the Russian Academy of Sciences, Dr. Med. Sci., Associate Professor, Head of the Institute of Microbiology, Antimicrobial Therapy and Epidemiology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Professor at the Department of Microbiology and Virology, Faculty of Pediatrics, Pirogov Russian National Research Medical University, Ministry of Health of Russia

Rússia, Moscow; Moscow

Viktor Zubkov

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia

Email: victor.zubkov@mail.ru
ORCID ID: 0000-0002-9697-9596

Dr. Med. Sci., Director of the Institute of Neonatology and Pediatrics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Professor at Neonatal Department at Pediatric Faculty, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)

Rússia, Moscow; Moscow

Bibliografia

  1. Ribeiro da Cunha B., Fonseca L.P., Calado C.R.C. Antibiotic discovery: where have we come from, where do we go? Antibiotics (Basel). 2019; 8(2): 45. https://dx.doi.org/10.3390/antibiotics8020045.
  2. Infectious drug resistance. N. Engl. J. Med. 1966; 275(5): 277. https:// dx.doi.org/10.1056/NEJM196608042750513.
  3. CDC. The biggest antibiotic-resistant threats in the U.S. Centers for Disease Control and Prevention; 2022. Available at: https:// www.cdc.gov/drugresistance/biggest-threats.html
  4. von Wintersdorff C.J., Penders J., van Niekerk J.M., Mills N.D., Majumder S., van Alphen L.B. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016; 7: 173. https://dx.doi.org/10.3389/fmicb.2016.00173.
  5. Gauba A., Rahman K.M. Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics (Basel). 2023; 12(11): 1590. https:// dx.doi.org/10.3390/antibiotics12111590.
  6. Chokshi A., Sifri Z., Cennimo D., Horng H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019; 11(1): 36-42. https://dx.doi.org/10.4103/jgid.jgid_110_18.
  7. Holmes A.H., Moore L.S., Sundsfjord A., Steinbakk M., Regmi S., Karkey A. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016; 387(10014): 176-87. https://dx.doi.org/10.1016/S0140-6736(15)00473-0.
  8. Choi U., Lee C.R. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front. Microbiol. 2019; 10: 953. https://dx.doi.org/10.3389/fmicb.2019.00953.
  9. Lorusso A.B., Carrara J.A., Barroso C.D.N., Tuon F.F., Faoro H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022; 23(24): 15779. https://dx.doi.org/10.3390/ijms232415779.
  10. Bush K., Jacoby G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010; 54(3): 969-76. https://dx.doi.org/ 10.1128/AAC.01009-09.
  11. Pucci M.J., Dougherty T.J. Direct quantitation of the numbers of individual penicillin-binding proteins per cell in Staphylococcus aureus. J. Bacteriol. 2002; 184(2): 588-91. https://dx.doi.org/10.1128/JB.184.2.588-591.2002.
  12. Stogios P.J., Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020, 29(3): 654-69. https://dx.doi.org/10.1002/pro.3819.
  13. De Oliveira D.M.P., Forde B.M., Kidd T.J., Harris P.N.A., Schembri M.A., Beatson S.A. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020; 33(3): e00181-19. https://dx.doi.org/10.1128/CMR.00181-19.
  14. Dettori S., Portunato F., Vena A., Giacobbe D.R., Bassetti M. Severe infections caused by difficult-to-treat Gram-negative bacteria. Curr. Opin. Crit. Care. 2023; 29(5): 438-45. https://dx.doi.org/10.1097/MCC.0000000000001074.
  15. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012; 18(3): 268-81. https://dx.doi.org/10.1111/j.1469-0691.2011.03570.x.
  16. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review of Antimicrobial Resistance. 2016. 84p.
  17. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399(10325): 629-55. https://dx.doi.org/10.1016/S0140-6736(21)02724-0.
  18. UNICEF. Levels and trends in child mortality report 2017. 2017. Available at: https://www.unicef.org/reports/levels-and-trends-child- mortality-report-2017 (accessed: 09.03.2024).
  19. Liu L., Oza S., Hogan D., Chu Y., Perin J., Zhu J. et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016; 388(10063): 3027-35. https://dx.doi.org/10.1016/S0140-6736(16)31593-8.
  20. Oza S., Lawn J.E., Hogan D.R., Mathers C., Cousens S.N. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000-2013. Bull. World Health Organ. 2015; 93(1): 19-28. https://dx.doi.org/10.2471/BLT.14.139790.
  21. Stoll B.J., Hansen N.I., Bell E.F., Walsh M.C., Carlo W.A., Shankaran S. et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015; 314(10): 1039-51. https://dx.doi.org/10.1001/jama.2015.10244.
  22. Mukhopadhyay S., Puopolo K.M., Hansen N.I., Lorch S.A., DeMauro S.B., Greenberg R.G. et al.; NICHD Neonatal Research Network. Neurodevelopmental outcomes following neonatal late-onset sepsis and blood culture-negative conditions. Arch. Dis. Child Fetal. Neonatal. Ed. 2021; 106(5): 467-73. https://dx.doi.org/10.1136/archdischild-2020-320664.
  23. Крог-Йенсен О.А., Никитина И.В., Брагина О.Н., Исаева Е.Л., Припутневич Т.В., Зубков В.В., Дегтярев Д.Н., Ленюшкина А.А. Клиническая значимость микробиологического исследования отделяемого со слизистой верхних дыхательных путей и желудочно-кишечного тракта у недоношенных новорожденных в первые сутки жизни. Акушерство и гинекология. 2022; 8: 108-23. [Krogh-Jensen O.A., Nikitina I.V., Bragina O.N., Isaeva E.L., Priputnevich T.V., Zubkov V.V., Degtyarev D.N., Lenyushkina A.A. Body surface cultures in preterm neonates on the first day of life: clinical usefulness. Obstetrics and Gynecology. 2022; (8): 108-23. (in Russian)]. https:// dx.doi.org/10.18565/aig.2022.8.108-123.
  24. Glaser M.A., Hughes L.M., Jnah A., Newberry D. Neonatal sepsis: a review of pathophysiology and current management strategies. Adv. Neonatal Care. 2021; 21(1): 49-60. https://dx.doi.org/10.1097/ANC.0000000000000769.
  25. Stoll B.J., Puopolo K.M., Hansen N.I., Sánchez P.J., Bell E.F., Carlo W.A. et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 2020; 174(7): e200593. https://dx.doi.org/10.1001/jamapediatrics.2020.0593.
  26. Lim W.H., Lien R., Huang Y.C., Chiang M.C., Fu R.H., Chu S.M. et al. Prevalence and pathogen distribution of neonatal sepsis among very-low-birth-weight infants. Pediatr Neonatol. 2012; 53(4): 228-34. https://dx.doi.org/10.1016/ j.pedneo.2012.06.003
  27. Bulkowstein S., Ben-Shimol S., Givon-Lavi N., Melamed R., Shany E., Greenberg D. Comparison of early onset sepsis and community-acquired late onset sepsis in infants less than 3 months of age. BMC Pediatr. 2016; 16(1): 82. https://dx.doi.org/10.1186/s12887-016-0618-6
  28. Celik I.H., Hanna M., Canpolat F.E., Mohan Pammi. Diagnosis of neonatal sepsis: the past, present and future. Pediatr. Res. 2022; 91(2): 337-50. https://dx.doi.org/10.1038/s41390-021-01696-z.
  29. Hornik C.P., Fort P., Clark R.H., Watt K., Benjamin D.K. Jr, Smith P.B. et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum. Dev. 2012; 88 Suppl 2(Suppl 2): S69-74. https://dx.doi.org/10.1016/S0378-3782(12)70019-1.
  30. Pammi M., Flores A., Versalovic J., Leeflang M.M. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database Syst. Rev. 2017; 2(2): CD011926. https://dx.doi.org/10.1002/14651858.CD011926.pub2.
  31. Scott J.S., Sterling S.A., To H., Seals S.R., Jones A.E. Diagnostic performance of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry in blood bacterial infections: a systematic review and meta-analysis. Infect. Dis. (Lond). 2016; 48(7): 530-6. https://dx.doi.org/10.3109/23744235.2016. 1165350.
  32. Milas G.P., Issaris V. Proadrenomedullin and neonatal sepsis: a systematic review and meta-analysis of diagnostic accuracy. Eur. J. Pediatr. 2022; 181(1): 59-71. https://dx.doi.org/10.1007/s00431-021-04214-9.
  33. Woldu M.A., Tamiru M.T., Berha A.B., Haile D.B. Challenges to the empiric management of neonatal sepsis using gentamicin plus ampicillin. Curr. Pediatr. Res. 2016; 20(1-2): 288-93.
  34. Hile G.B., Musick K.L., Dugan A.J., Bailey A.M., Howington G.T. Occurrence of hyperbilirubinemia in neonates given a short-term course of ceftriaxone versus cefotaxime for sepsis. J. Pediatr. Pharmacol. Ther. 2021; 26(1): 99-103. https://dx.doi.org/10.5863/1551-6776-26.1.99.
  35. Антонов А.Г., Байбарина Е.Н., Балашова Е.Н., Дегтярев Д.Н., Зубков В.В., Иванов Д.О., Ионов О.В., Карпова А.Л., Киртбая А.Р., Крохина К.Н., Крючко Д.С., Ленюшкина А.А., Ли А.Г., Малютина Л.В., Мебелова И.И., Никитина И.В., Петренко Ю.В., Рындин А.Ю., Рюмина И.И., Романенко В.А. Врожденная пневмония (клинические рекомендации). Неонатология: новости, мнения, обучение. 2017; 4: 133-48. [Antonov A.G., Baybarina E.N., Balashova E.N., Degtyarev D.N., Zubkov V.V., Ivanov D.O. et al. Congenital pneumonia (clinical guidelines). Neonatology: News, Opinions, Training. 2017; (4): 133-48. (in Russian)]. https://dx.doi.org/10.24411/ 2308-2402-2017-00049.
  36. Puopolo K.M., Benitz W.E., Zaoutis T.E.; Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of neonates born at ≥35 0/7 weeks' gestation with suspected or proven early-onset bacterial sepsis. Pediatrics. 2018; 142(6): e20182894. https://dx.doi.org/10.1542/peds.2018-2894.
  37. Folgori L., Ellis S.J., Bielicki J.A., Heath P.T., Sharland M., Balasegaram M. Tackling antimicrobial resistance in neonatal sepsis. Lancet Glob. Health. 2017; 5(11): e1066-e1068. https://dx.doi.org/10.1016/S2214-109X(17)30362-5.
  38. Rose W., Fantl M., Geriak M., Nizet V., Sakoulas G. Current paradigms of combination therapy in methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: does it work, which combination, and for which patients? Clin. Infect. Dis. 2021; 73(12): 2353-60. https://dx.doi.org/10.1093/cid/ ciab452.
  39. Stryjewski M.E., Barriere S.L., O'Riordan W., Dunbar L.M., Hopkins A., Genter F.C. et al. Efficacy of telavancin in patients with specific types of complicated skin and skin structure infections. J. Antimicrob. Chemother. 2012; 67(6): 1496-502. https://dx.doi.org/10.1093/jac/dks081.
  40. Folgori L., Bielicki J., Heath P.T., Sharland M. Antimicrobial-resistant Gram-negative infections in neonates: burden of disease and challenges in treatment. Curr. Opin. Infect. Dis. 2017; 30(3): 281-8. https://dx.doi.org/10.1097/QCO.0000000000000371.
  41. Gray J.W., Ubhi H., Milner P. Antimicrobial treatment of serious gram-negative infections in newborns. Curr. Infect. Dis. Rep. 2014; 16(2): 400. https:// dx.doi.org/10.1007/s11908-014-0400-6.
  42. Rallis D., Giapros V., Serbis A., Kosmeri C., Baltogianni M. Fighting antimicrobial resistance in neonatal intensive care units: rational use of antibiotics in neonatal sepsis. Antibiotics (Basel). 2023; 12(3): 508. https://dx.doi.org/10.3390/antibiotics12030508.
  43. Esaiassen E., Fjalstad J.W., Juvet L.K., van den Anker J.N., Klingenberg C. Antibiotic exposure in neonates and early adverse outcomes: a systematic review and meta-analysis. J. Antimicrob. Chemother. 2017; 72(7): 1858-70. https://dx.doi.org/10.1093/jac/dkx088.
  44. Money N., Newman J., Demissie S., Roth P., Blau J. Anti-microbial stewardship: antibiotic use in well-appearing term neonates born to mothers with chorioamnionitis. J. Perinatol. 2017; 37: 1304-9. https://dx.doi.org/10.1038/jp.2017.137.
  45. Gathwala G., Sindwani A., Singh J., Choudhry O., Chaudhary U. Ten days vs. 14 days antibiotic therapy in culture-proven neonatal sepsis. J. Trop. Pediatr. 2010; 56(6): 433-5. https://dx.doi.org/10.1093/tropej/fmq012.
  46. Припутневич Т.В., Любасовская Л.А., Шабанова Н.Е., Мелкумян А.Р., Трубинов С.С., Исаева Е.Л., Никитина И.В., Ионов О.В., Зубков В.В. Организация микробиологической диагностики и мониторинга возбудителей инфекций, связанных с оказанием медицинской помощи в отделениях неонатального профиля. Акушерство и гинекология. 2020; 8: 177-86. [Priputnevich T.V., Lyubasovskaya L.A., Shabanova N.E., Melkumyan A.R., Trubinov S.S., Isaeva E.L., Nikitina I.V., Ionov O.V., Zubkov V.V. Microbiological diagnostics and monitoring of healthcare-associated pathogens in neonatal units. Obstetrics and Gynecology. 2020; (8): 177-86. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.8.177-186.
  47. Припутневич Т.В., Любасовская Л.А., Шувалова М.П., Байбарина Е.Н., Сухих Г.Т. Инфекции, связанные с оказанием медицинской помощи, в родовспомогательных учреждениях Российской Федерации (состояние проблемы в начале XXI в.). Вестник РАМН. 2021; 76(2): 133-41. [Priputnevich T.V., Lyubasovskaya L.A., Shuvalova M.P., Baibarina E.N., Sukhikh G.T. Healthcare-associated infections in maternity hospitals of Russian Federation (the state of the problem at the beginning of the XXI century). Annals of the Russian Academy of Medical Sciences. 2021; 76(2): 133-41. (in Russian)]. https://dx.doi.org/10.15690/vramn1523.
  48. Зубков В.В., Любасовская Л.А., Рюмина И.И., Припутневич Т.В., Анкмрская А.С., Тютюнник В.Л. Микробиологический мониторинг в системе инфекционного контроля неонатальных стационаров. Российский вестник перинатологии и педиатрии. 2014; 59(1): 51-6. [Zubkov V.V., Lyubasovskaya L.A., Ryumina I.I., Priputnevich T.V., Ankirskaya A.S., Tyutyunnik V.L. Microbiological monitoring of the infectious control system of neonatal hospitals. Russian Bulletin of Perinatology and Pediatrics. 2014; 59(1): 51-6. (in Russian)].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies