Применение алгоритмов машинного обучения в патоморфологии и вспомогательных репродуктивных технологиях


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Модели машинного обучения повсеместно применяются для анализа изображений, сигналов и видео. На первый взгляд, это хорошо разработанный процесс, сводящийся к этапам сбора данных, разметке, обучению модели и в итоге - ее применению в той или иной области (распознавание автомобильных номеров, лиц в смартфонах и т.д.). Однако в области медицины все гораздо сложнее: применение моделей искусственного интеллекта - серьезный вызов. Методы машинного обучения становятся все более и более используемыми в морфологических науках и биомедицинских исследованиях. Внедрение искусственного интеллекта для анализа изображений позволяет снизить нагрузку на оператора (патолога, гистолога), исключить фактор субъективной оценки и снизить вероятность ошибки. В данном обзоре приводится краткий экскурс в историю возникновения методов машинного обучения, рассматриваются примеры их использования в двух областях, где они получили наибольшее распространение - патоморфологии и вспомогательных репродуктивных технологиях, а также указываются ограничения и сложности, с которыми сталкиваются разработчики при обучении нейронных сетей. Заключение: Авторами также предлагаются решения для преодоления трудностей связанных со сбором, совместной разметкой данных и обучением моделей: создание инфраструктуры высокого качества, привлечение высококвалифицированных специалистов, размечающих данные, передовой научный подход к технологиям искусственного интеллекта, в качестве основы для масштабируемого хранения и анализа биомедицинских данных предлагается использовать облачные платформы.

Полный текст

Доступ закрыт

Об авторах

Полина Александровна Вишнякова

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

Email: p_vishnyakova@oparina4.ru
к.б.н., с.н.с. лаборатории регенеративной медицины

Евгений Андреевич Капрулевич

ФГБУН «Институт системного программирования им. В.П. Иванникова» Российской академии наук

н.с. отдела «Информационные системы»

Анастасия Олеговна Кириллова

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

Email: stasia.kozyreva@gmail.com
к.б.н., с.н.с. 1-го гинекологического отделения

Владислав Валерьевич Ананьев

ФГБУН «Институт системного программирования им. В.П. Иванникова» Российской академии наук

программист отдела «Информационные системы»

Антон Юрьевич Наумов

ФГБУН «Институт системного программирования им. В.П. Иванникова» Российской академии наук

стажер-исследователь отдела «Информационные системы»

Тимур Хайсамудинович Фатхудинов

ФГАОУ ВО «Российский университет дружбы народов», Министерства науки и высшего образования Российской Федерации

Email: tfat@yandex.ru
д.м.н., заместитель директора, Научно-исследовательский институт морфологии человека РАН; заведующий кафедрой гистологии, цитологии и эмбриологии, заместитель директора по научной работе Медицинского института

Список литературы

  1. Ker J., Bai Y., Lee H.Y., Rao J., Wang L. Automated brain histology classification using machine learning. J. Clin. Neurosci. 2019; 66: 239-45. https://dx.doi.org/10.1016/j.jocn.2019.05.019.
  2. Alom M.Z., Yakopcic C., Nasrin M.S., Taha T.M., Asari V.K. Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. J. Digit. Imaging. 2019; 32(4): 605-17. https://dx.doi.org/10.1007/s10278-019-00182-7.
  3. Yan R., Ren F., Wang Z., Wang L., Zhang T., Liu Y. et al. Breast cancer histopathological image classification using a hybrid deep neural network. Methods. 2019; 173: 52-60. https://dx.doi.org/10.1016/j.ymeth.2019.06.014.
  4. Hekler A., Utikal J.S., Enk A.H., Solass W., Schmitt M., Klode J. et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur. J. Cancer. 2019; 118: 91-6. https://dx.doi.org/10.1016/j.ejca.2019.06.012.
  5. Hannun A.Y., Rajpurkar P., Haghpanahi M., Tison G.H., Bourn C., Turakhia M.P., Ng A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019; 25: 65-9. https://dx.doi.org/10.1038/s41591-018-0268-3.
  6. Korbar B., Olofson A., Miraflor A., Nicka C., Suriawinata M., Torresani L. et al. Deep learning for classification of colorectal polyps on whole-slide images. J. Pathol. Inform. 2017; 8: 30. https://dx.doi.org/10.4103/jpi.jpi_34_17.
  7. Wei J.W., Jackson C.R., Ren B. , Suriawinata A.A., Hassanpour S. Automated detection of celiac disease on duodenal biopsy slides: A deep learning approach. J. Pathol.Inform. 2019; 10: 7.https://dx.doi.org/10.4103/jpi.jpi_87_18.
  8. Martin D.R., Hanson J.A., Gullapalli R.R., Schultz F.A., Sethi A., Clark D.P. A deep learning convolutional neural network can recognize common patterns of injury in gastric pathology. Arch. Pathol. Lab. Med. 2020; 144(3): 370-8. https://dx.doi.org/10.5858/arpa.2019-0004-0A.
  9. İnik Ö., Ceyhan A., Balcıoğlu E., Ülker E. A new method for automatic counting of ovarian follicles on whole slide histological images based on convolutional neural network. Comput. Biol. Med. 2019; 112: 103350. https://dx.doi.org/10.1016/j.compbiomed.2019.103350
  10. Sun H., Zeng X., Xu T., Peng G., Ma Y. Computer-aided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms. IEEE J. Biomed. Heaalth Inform. 2020; 24(6): 1664-76. https://dx.doi.org/10.1109/JBHI.2019.2944977.
  11. Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Conference on computer vision and pattern recognition. Miami, FL, USA 20-25 June 2009: 248-55. https://dx.doi.org/10.1109/cvpr.2009.5206848.
  12. Kaufmann S.J., Eastaugh J.L., Snowden S., Smye S.W., Sharma V. The application of neural networks in predicting the outcome of in-vitro fertilization. Hum. Reprod. 1997; 12(7): 1454-7. https://dx.doi.org/10.1093/humrep/127.1454.
  13. Raef B., Ferdousi R. A review of machine learning approaches in assisted reproductive technologies. Acta Inform. Med. 2019; 27(3): 205-11. https://dx.doi.org/10.5455/aim.2019.27.205-211.
  14. Balaban B., Brison D., Calderon G., Catt J., Conaghan J., Cowan L. et al. Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting, Reprod. Biomed. Online. 2011; 22(6): 632-46. https://dx.doi.org/10.1016/j.rbmo.2011.02.001.
  15. Cummins J.M., Breen T.M., Harrison K.L., Shaw J.M., Wilson L.M., Hennessey J.F. A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J. In Vitro Fert. Embryo Transf. 1986; 3(5): 284-95. https:/dx./doi.org/10.1007/bf01133388.
  16. Fragouli E., Alfarawati S., Spath K., Wells D. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol. Hum. Reprod. 2014; 20(2): 117-26. https://dx.doi.org/10.1093/MOLEHR/GAT073.
  17. Gardner D.K., Lane M., Stevens J., Schoolcraft W.B. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil. Steril. 2001; 76(6): 1175-80. https://dx.doi.org/10.1016/S0015-0282(01)02888-6.
  18. Leese H.J. Metabolism of the preimplantation embryo: 40 years on. Reproduction. 2012; 143(4): 417-27. https://dx.doi.org/10.1530/REP-11-0484.
  19. Сысоева А.П., Макарова Н.П., Калинина Е.А., Скибина Ю.С., Занишевская А.А., Янчук Н.О., Грязнов А.Ю. Повышение эффективности вспомогательных репродуктивных технологий с помощью искусственного интеллекта и машинного обучения на эмбриологическом этапе. Акушерство и гинекология. 2020; 7: 28-36. https://dx.doi.org/10.18565/aig.2020.7.28-36.
  20. Валиахметова Э.З., Кулакова Е.В., Скибина Ю.С., Грязнов А.Ю., Сысоева А.П., Макарова Н.П., Калинина Е.А. Неинвазивное тестирование преимплантационных эмбрионов человека in vitro как способ прогнозирования исходов программ экстракорпорального оплодотворения. Акушерство и гинекология. 2021; 5: 5-16. https://dx.doi.org/10.18565/aig.2021.5.5-16.
  21. Montag M., Toth B., Strowitzki T. New approaches to embryo selection, Reprod. Biomed. Online. 2013; 27(5): 539-46. https://dx.doi.org/10.1016/j.rbmo.2013.05.013.
  22. Ahlstrom A., Wikland M., Rogberg L., Barnett J.S., Tucker M., Hardarson T. Cross-validation and predictive value of near-infrared spectroscopy algorithms for day-5 blastocyst transfer. Reprod. Biomed. Online. 2011; 22(5): 477-84. https://dx.doi.org/10.1016/j.rbmo.2011.01.009.
  23. Johnson M.H., Day M.L. Egg timers: how is developmental time measured in the early vertebrate embryo? Bioessays. 2000; 22: 57-63. https://dx.doi.org/10.1002/(SICI)1521-1878(200001)22:1<57:: AID-BIES10>3.0.m;2-L.
  24. Castello D., Motato Y., Basile N., Remohi J., Espejo-Catena M., Meseguer M. How much have we learned from time-lapse in clinical IVF? Mol. Hum. Reprod. 2016; 22(10): 719-27. https://dx.doi.org/10.1093/MOLEHR/GAW056.
  25. Lemmen J.G., Agerholm I., Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod. Biomed. Online. 2008; 17(3): 385-91. https://dx.doi.org/10.1016/S1472-6483(10)60222-2.
  26. Adamson G.D., Abusief M.E., Palao L., Witmer J., Palao L.M., Gvakharia M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil. Steril. 2016; 105(2): 369-75.e6. https://dx.doi.org/10.1016/j.fertnstert.2015.10.030.
  27. Pribenszky C., Nilselid A.M., Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis. Reprod. Biomed. Online. 2017; 35(5): 511-20. https://dx.doi.org/10.1016/j.rbmo.2017.06.022.
  28. Wong C.C., Loewke K.E., Bossert N.L., Behr B., De Jonge C.J., Baer T.M., Pera R.A.R. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 2010; 28(10): 1115-21. https://dx.doi.org/10.1038/nbt.1686.
  29. Meseguer M., Herrero J., Tejera A., Hilligsoe K.M., Ramsing N.B., Remoh J. The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 2011; 26(10) : 2658-71. https://dx.doi.org/10.1093/humrep/der256.
  30. Polanski L.T., Coelho Neto M.A., Nastri C.O., Navarro P.A., Ferriani R.A., Raine-Fenning N., Martins W.P. Time-lapse embryo imaging for improving reproductive outcomes: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2014; 44(4): 394-401. https://dx.doi.org/10.1002/uog.13428.
  31. Fishel S., Campbell A., Foad F., Davies L., Best L., Davis N. et al. Evolution of embryo selection for IVF from subjective morphology assessment to objective time-lapse algorithms improves chance of live birth. Reprod. Biomed. Online. 2020; 40: 61-70. https://dx.doi.org/10.1016/j.rbmo.2019.10.005.
  32. Gardner D.K., Lane M., Stevens J., Schlenker T., Schoolcraft W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000; 73(6): 1155-8. https://dx.doi.org/10.1016/S0015-0282(00)00518-5.
  33. Rienzi L., Cimadomo D., Delgado A., Minasi M.G., Fabozzi G., del Gallego R. et al. Time of morulation and trophectoderm quality are predictors of a live birth after euploid blastocyst transfer: a multicenter study. Fertil. Steril. 2019; 112(6): 1080-93.e1. https://dx.doi.org/10.1016/j.fertnstert.2019.07.1322.
  34. Романов А.Ю., Ковальская Е.В., Макарова Н.П., Сыркашева А.Г., Долгушина Н.В. Использование цейтраферной съемки для оценки качества эмбрионов человека в программах экстракорпорального оплодотворения. Цитология. 2017; 59(7): 462-6.
  35. Benchoufi M., Matzner-Lober E., Molinari N., Jannot A.S., Soyer P. Interobserver agreement issues in radiology. Diagn. Interv. Imaging. 2020; 101(10): 639-41. https://dx.doi.org/10.1016/j.diii.2020.09.001.
  36. Kang J.H., Choi S.H., Lee J.S., Park S.H., Kim K.W., Kim S.Y. et al. Interreader agreement of liver imaging reporting and data system on MRI: a systematic review and meta-analysis. J. Magn. Reson. Imaging. 2020; 52(3): 795-804. https://dx.doi.org/10.1002/jmri.27065.
  37. Lu M.Y., Chen R.J., Wang J., Dillon D., Mahmood F. Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding. Available at: http://arxiv.org/abs/1910.10825 Accessed June 10, 2021.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2021

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах