SOMATIC TISSUE CHROMOSOME 16 MOSAICISM AND ITS RELATIONSHIP TO FETAL GROWTH RETARDATION


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The review analyzes the data available in current literature on topical aspects of the development of fetal growth retardation syndrome (FGRS). Fetal FGRS continues to be one of the most important problems in public health and modern obstetrics. According to the modern concepts, the causes of FGR are at once associated with several factors, both fetal and maternal and placental ones. Fetal chromosomal abnormalities, including their mosaic forms, are one of the causes of FGRS. Trisomy 16 is the most common trisomy leading to spontaneous miscarriage. The mosaic forms of trisomy 16 during prolonged pregnancy are associated with FGR, fetal malformations, and other adverse consequences. However, various clinical outcomes, including those depending on the proportion of cells with an altered karyotype, have been reported. Scientific literature has published the results of USA studies that included a description of 5 clinical cases of the birth of babies with mosaic chromosome 16. Noninvasive prenatal screening (NIPS) tests are most commonly used to diagnose fetal chromosomal abnormalities, including their mosaic forms. The resolution of NIPS tests makes it possible to detect even mosaicism in deletions and duplications affecting only part of a chromosome. Clinically, NIPS is a safer technique. The widespread introduction of NIPS into routine clinical practice, which is taking place today, will contribute to the higher detection rate of placental chromosomal disorders, including those leading to FGR. This review is devoted to these issues. Conclusion: It is necessary to further investigate the genetic aspects of FGR, in particular, the effect of mosaic chromosomal abnormalities on its development, as well as to work out and improve prenatal diagnosis and counseling in pregnant women with this pathology.

全文:

受限制的访问

作者简介

Shagane GASYMOVA

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: shagane2501@mail.ru
ultrasound diagnostics doctor, obstetrician-gynecologist, Department of Ultrasound and Functional Diagnostics Moscow, Russia

Andrey DONNIKOV

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: donnikov@dna-technology.ru
PhD, Doctor of clinical laboratory diagnostics, Head of the Laboratory of Molecular Genetic Methods Moscow, Russia

参考

  1. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins-Obstetrics and the Society for Maternal-Fetal Medicine. ACOG Practice Bulletin No. 204: Fetal growth restriction. Obstet. Gynecol. 2019; 133(2): e97-e109. https://dx.doi.org/10.1097/AOG.0000000000003070.
  2. Unterscheider J., Daly S., Geary M.P., Kennedy M.M., McAuliffe F.M., O’Donoghue K. et al. Optimizing the definition of intrauterine growth restriction: The multicenter prospective PORTO study. Am. J. Obstet. Gynecol. 2013; 208(4); 290.e1-6. https://dx.doi.org/10.1016/j.ajog.2013.02.007.
  3. Battaglia F.C., Lubchenco L.O. A practical classification of newborn infants by weight and gestational age. J. Pediatr. 1967; 71(2): 159-63. https://dx.doi.org/10.1016/s0022-3476(67)80066-0.
  4. Royal College of Obstetricians and Gynaecologists. The Investigation and Management of the Small-for-Gestational-Age Fetus. Green-top Guideline No. 31. 2nd ed. February 2013; Minor revisions - January 2014.
  5. Володин Н.Н. Неонатология. Национальное руководство. M.: ГЭОТАР-Медиа; 2007.
  6. March M.I., Warsof S.L., Chauhan S.P. Fetal biometry: relevance in obstetrical practice. Clin. Obstet. Gynecol. 2012; 55(1): 281-7. https://dx.doi.org/10.1097/GRF.0b013e3182446e9b.
  7. Curtin W.M., Millington K.A., Ibekwe T.O., Ural S.H. Suspected fetal growth restriction at 37 weeks: a comparison of Doppler and placental pathology. Biomed. Res.Int. 2017; 2017: 3723879. https://dx.doi.org/10.1155/2017/3723879.
  8. Холин А.М., Гус А.И., Ходжаева З.С., Баев О.Р., Рюмина И.И., Villar J., Kennedy S., Papageorghiou A.T. Подходы к стандартизации фетометрии в России: проект INTERGROWTH-21 и его внедрение. Акушерство и гинекология. 2018; 9: 170-5. https://dx.doi.org/10.18565/aig.2018.9.170-175.
  9. Sharma D., Sharma P., Shastri S. Genetic, metabolic and endocrine aspect of intrauterine growth restriction: an update. J. Matern. Fetal Neonatal Med. 2017; 30(19): 2263-75. https://dx.doi.org/10.1080/14767058.2016.1245285.
  10. Mandy G.T. Infants with fetal (intrauterine) growth restriction. UpToDate. 2016.
  11. Ларина Е.Б., Мамедов Н.Н., Нефедова Н.А., Москвина Л.В., Андреев А.И., Панина О.Б., Мальков П.Г. Синдром задержки роста плода: клиникоморфологические аспекты. Вопросы гинекологии, акушерства и перинатологии. 2013; 12(1): 22-7
  12. Su M.T., Liang Y.L., Chen J.C., Sun H.S., Chang F.M., Kuo P.L. Non-mosaic uniparental trisomy 16 presenting with asplenia syndrome and placental abruption: a case report and literature review. Eur. J. Med. Genet. 2013; 56(4): 197-201. https://dx.doi.org/10.1016Zj.ejmg.2013.01.010.
  13. Peng H., Yang J., Wang D., Guo F., Hou Y., Yin A. Outcomes of pregnancies with trisomy 16 mosaicism detected by NIPT: a series of case reports. Mol. Cytogenet. 2021; 14(1): 44. https://dx.doi.org/10.1186/s13039-021-00559-w.
  14. Benn P. Trisomy 16 and trisomy 16 Mosaicism: a review. Am. J. Med. Genet. 1998; 79(2): 121-33.
  15. Cusick W., Bork M., Fabri B., Benn P., Rodis J.F., Buttino L. Trisomy 16 fetus surviving into the second trimester. Prenat. Diagn. 1995; 15(11): 1078-81. https://dx.doi.org/10.1002/pd.1970151115.
  16. Yancey M.K., Hardin E.L., Pacheco C., Kuslich C.D., Donlon T.A. Nonmosaic trisomy 16 in a third-trimester fetus. Obstet. Gynecol. 1996; 87(5, Pt 2): 856-60.
  17. Eggenhuizen G.M., Go A., Koster M.P.H., Baart E.B., Galjaard R.J. Confined placental mosaicism and the association with pregnancy outcome and fetal growth: a review of the literature. Hum. Reprod. Update. 2021; 27(5): 885-903. https://dx.doi.org/10.1093/humupd/dmab009.
  18. Springer A., van den Heijkant M., Baumann S. Worldwide prevalence of hypospadias. J. Pediatr. Urol. 2016; 12(3): 152.e1-7. https://dx.doi.org/10.1016/j.jpurol.2015.12.002.
  19. Sparks T.N., Thao K., Norton M.E. Mosaic trisomy 16: what are the obstetric and long-term childhood outcomes? Genet. Med. 2017; 19(10): 1164-70. https://dx.doi.org/10.1038/gim.2017.23.
  20. Ananth C.V. Ischemic placental disease: a unifying concept for preeclampsia, intrauterine growth restriction, and placental abruption. Semin. Perinatol. 2014; 38(3): 131-2. https://dx.doi.org/10.1053/j.semperi.2014.03.001.
  21. Wilkins-Haug L., Quade B., Morton C.C. Confined placental mosaicism as a risk factor among newborns with fetal growth restriction. Prenat. Diagn. 2006; 26(5): 428-32. https://dx.doi.org/10.1002/pd.1430.
  22. Burton G.J., Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 2018; 218(2, Suppl.): S745-61. https://dx.doi.org/10.1016/j.ajog.2017.11.577.
  23. Горюнова А.Г., Симонова М.С., Мурашко А.В. Синдром задержки роста плода и адаптация плаценты. Архив акушерства и гинекологии им. В.Ф. Снегирева. 2016; 3(2): 76-80. https://dx.doi.org/10.18821/2313-8726-2016-3-2-76-80.
  24. Schoots M.H., Gordijn S.J., Scherjon S.A., van Goor H., Hillebrands J.L. Oxidative stress in placental pathology. Placenta. 2018; 69: 153-61. https://dx.doi.org/10.1016/j.placenta.2018.03.003.
  25. Pawoo N., Heller D.S. Placental mesenchymal dysplasia. Arch. Pathol. Lab. Med. 2014; 138(9): 1247-9. https://dx.doi.org/10.5858/arpa.2013-0399-RS.
  26. Neiswanger K., Hohler P.M., Hively-Thomas L.B., McPherson E.W., Hogge W.A., Surti U. Variable outcomes in mosaic trisomy 16: five case reports and literature analysis. Prenat. Diagn. 2006; 26(5): 454-61. https://dx.doi.org/10.1002/pd.1437.
  27. Chareonsirisuthigul T., Worawichawong S., Parinayok R., Promsonthi P., Rerkamnuaychoke B.Intrauterine growth retardation fetus with trisomy 16 mosaicism. Case Rep. Genet. 2014; 2014: 739513. https://dx.doi.org/10.1155/2014/739513.
  28. Chen C.P., Chen M., Wang L.K., Chern S.R., Wu P.S., Ma G.C. et al. Low-level mosaicism for trisomy 16 at amniocentesis in a pregnancy associated with intrauterine growth restriction and a favorable outcome. Taiwan. J. Obstet. Gynecol. 2021; 60(2): 345-9. https://dx.doi.org/10.1016/j.tjog.2021.01.014.
  29. Van Opstal D., Eggenhuizen G.M., Joosten M., Diderich K., Govaerts L., Galjaard R.J. et al. Noninvasive prenatal testing as compared to chorionic villus sampling is more sensitive for the detection of confined placental mosaicism involving the cytotrophoblast. Prenat. Diagn. 2020; 40(10): 1338-42. https://dx.doi.org/10.1002/pd.5766.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2022
##common.cookie##