ГИДРОХИМИЯ, ГИДРОБИОЛОГИЯ, ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ

УЛК 546.36.02.137

ЗАГРЯЗНЕНИЕ И ОЧИЩЕНИЕ ВОД ОНЕЖСКОГО ОЗЕРА ОТ 137СЅ

© 2024 г. Н. А. Бакунов^а, Д. Ю. Большиянов^а, С. А. Правкин^{а, *}

^аАрктический и Антарктический научно-исследовательский институт Санкт-Петербург, 199397 Россия

*e-mail: s.pravkin@aari.ru

Поступила в редакцию 17.10.2022 г.

После доработки 31.07.2023 г.

Принята к публикации 27.1.2023 г.

Сорбционно-диффузионная модель поглощения 137 Сs грунтами дна использована в прогнозе содержания 137 Сs глобальных выпадений и аварийного выброса с ЧАЭС в водах глубоководного ($H_{\rm cp}=30$ м) Онежского озера. Природные условия и морфогидрологические характеристики озера обусловили быстрый, за 2—3 года, переход загрязненных по 137 Сs вод к псевдоравновесным концентрациям. В течение 56 лет (с 1964 по 2020 г.) содержание 137 Сs в воде удовлетворительно определялось по сорбционно-диффузионной модели поглощения 137 Сs грунтами дна с коэффициентами сорбции $K_d=4000\,\mathrm{n/kr}$ и диффузии $D=1.0\times10^{-7}\,\mathrm{cm}^2/\mathrm{c}$. Влияние смены вод в озере на миграцию 137 Сs учтено показателем условного обмена онежских вод $W=16.4\,\mathrm{net}$. Корректность прогноза загрязнения вод 137 Сs проверялась путем сравнения с данными опыта и состоянием загрязнения 137 Сs вод глубоких озер Северо-Запада России и финской Лапландии.

Ключевые слова: ¹³⁷Сs, вода, озеро, концентрация, сорбция, диффузия, обмен вод.

DOI: 10.31857/S0321059624030067 **EDN**: AUOODQ

ВВЕДЕНИЕ

Глубоководные озера северного полушария – важный ресурс пресных вод. Природное разнообразие этих водоемов априорно допускает неодинаковый отклик их экосистем на поступление радионуклидов глобальных выпадений (⁹⁰Sr, ¹³⁷Cs, ^{239,240}Pu) и ¹³⁷Cs от аварийного выброса с ЧАЭС. На загрязнение озер по 137Сѕ от аварийного выброса с ЧАЭС повлияла ситуация — в конце апреля 1986 г. водоемы в средних широтах и южной части Европы были открыты, тогда как на севере закрыты льдом [14, 17–19]. В водоемах средних широт происходило сезонное повышение температуры вод, тогда как в южных широтах установился летний тип стратификации водных масс. В стратифицированных водоемах выпадающий "чернобыльский" ¹³⁷Cs загрязнял слой эпилимниона, что способствовало временной задержке переноса ¹³⁷Cs в толщу вод и повышенному выносу его в водоемы, сопряженные по стоку. Отчетливо особенности реакции глубоководных ($H_{\rm cp} \geqslant 20~{\rm m}$) озер на поступление ¹³⁷Cs проявились в водоемах Альпийской горной системы [17, 19]. При близкой плотности выпадения (кБк/м²) "чернобыльского" ¹³⁷Cs на озера они различались скоростью очищения вод от 137 Cs и накоплением в донных отложениях (ДО) озер. В конце апреля 1986 г. в отдельных альпийских озерах температура вод была >4°C.

В озерно-речных системах Восточной Фенноскандии [1—3, 14] воды сменялись быстрее снижения в них содержания "чернобыльского" ¹³⁷Сs. В финляндском оз. Пяйянне ($H_{\rm cp}=16~{\rm M}$) в 1990—2000 гг. при показателе условного обмена вод W=2 года полупериод очищения вод T от "чернобыльского" ¹³⁷Сs составил 5 лет [18, 22]. За полупериод очищения вод T принят отрезок времени, за который концентрация ¹³⁷Сs в воде уменьшается в два раза. В глубоководном Ладожском озере с 1986 по 2009 г. воды очищались от ¹³⁷Сs с полупериодами $T_1=0.25~{\rm M}$ $T_2=11~{\rm M}$ дет [2]. В субарктическом оз. Инари ($T_{\rm cp}=7~{\rm M}$) в финской Лапландии при экспозиции 20 лет концентрации ¹³⁷Сs в воде снижались с $T=3.6~{\rm net}$ [2].

Задача исследования сводилась к проверке используемой ранее модели прогноза содержания глобального ¹³⁷Сs в воде Онежского озера [1] применительно к ситуации загрязнения озера "чернобыльским" ¹³⁷Сs и более длительной

(1986—2020 гг.) миграции радионуклида. Объектом изучения стали закономерности миграции ¹³⁷Сѕ в глубоких водоемах на основе данных загрязнения их вод, ДО [1–5, 11–14, 16–24] и результатов собственных единичных экспериментальных наблюдений за содержанием ¹³⁷Сѕ в воде Онежского озера.

МАТЕРИАЛ И МЕТОДИКА ИССЛЕДОВАНИЯ

В отличие от соседней Финляндии [20, 21] радиологический мониторинг в Карелии ограничился наблюдениями за Sr^{90} [12, 13]. Единичные наблюдения за глобальным 137 Cs в воде и рыбе Онежского озера были выполнены в 1968 г. [11]. Концентрация 137 Cs в воде составила 18.5 Бк/м³. Близкие значения 137 Cs 14.8 и 17.4 Бк/м³ наблюдались в озерах Ругозеро и Выгозеро, расположенных севернее Онежского озера. По данным регулярного мониторинга [21] 137 Cs, в 1964—1970 гг. в р. Иийоки, пересекающей среднюю часть Финляндии с востока на запад, концентрация 137 Cs была \leq 18 Бк/м³.

Единичные наблюдения авторами статьи за ¹³⁷Сѕ в воде и ДО Онежского озера относятся к 2012, 2021 и 2022 гг. Пробы воды и ДО отбирались из Свирской губы и Петрозаводского залива озера. В 2012 г. для определения ¹³⁷Cs отбирались пробы воды объемом 80–100 л, а в 2020–2021 гг. – 130-200 л. 137 Cs выделялся из проб воды с помощью сорбента АНФЕЖ [15] для последующего измерения радиоактивности сорбента по гамма-излучению при минимально детектируемой радиоактивности 0.5 Бк/проба. Относительная ошибка измерений была ≤30%. В Восточной Фенноскандии отсутствуют водоемы, близкие к Онежскому по глубине и объему вод, за исключением Ладожского озера. Результаты наблюдений за ¹³⁷Cs в воде р. Невы (1986–2008 гг.), вытекающей из Ладожского озера, можно лишь условно рассматривать в качестве данных для сравнения [16]. Ладога имеет три озера-донора (Сайма, Онежское, Ильмень), обладает более быстрым обменом вод (W = 12.3 лет) и характеризуется большим выпадением "чернобыльского" ¹³⁷Cs на водоем и его водосбор [5, 6, 16].

В 1986 г. выпадения 137 Cs на Карельский перешеек и приграничные с Финляндией районы составили 4—8 кБк/м² [5, 7, 18, 20]. В 1986 г. вес-

на в южной части Карельского перешейка была ранней, выпадения ¹³⁷Cs загрязняли открытую поверхность озер и рек. После 1986 г. загрязнение экосистемы Онежского озера стало определяться суммарным содержанием глобального и "чернобыльского" ¹³⁷Cs.

Конспективно остановимся на особенностях волного питания Онежского озера, влияющих на миграцию ¹³⁷Cs [9]. В приходной части водного баланса озера на поверхностный сток приходится 76% (17.1 км³) и на осадки 24%. С водосбора в Онежское озеро стекают воды от малых рек и ручьев. Сток из озера с водами р. Свири – 18.2 км³/год. В годовом цикле с весны до начала осени водный режим озера характеризуется пополнением запаса вод, а далее – их постепенным расходом до наступления весны. Предстояло выяснить, как за 1986-2020 гг. изменялось загрязнение онежских вод по ¹³⁷Cs и с какой скоростью протекало их очищение от этого радионуклида. Большой объем озера (297 км³) и продолжительный период смены вод (W = 16.4 лет) способствовали замедлению естественной дезактивации водоема от ¹³⁷Cs [1].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В 1986 г. при плотности выпадения "чернобыльского" ¹³⁷Сs, равной 3.7 кБк/м², в озеро поступило 36.7 ТБк этого радионуклида. При содержании в воде 3.2 Бк/м³ глобального ¹³⁷Cs суммарный запас радионуклида на 1986 г. составил 37.6 ТБк. По такому запасу концентрация 137 Cs U_0 на время t_0 равна 126 Бк/м³. В условиях низкой минерализации онежских вод (0.03‰) и высокой сорбции 137 Cs грунтом дна ($K_d = 4000$ л/кг) здесь ожидался более быстрый переход к псевдоравновесной концентрации ¹³⁷Cs, чем в более глубоком Ладожском озере. Такая концентрация ¹³⁷Cs установилась здесь к 1991 г. [5, 16]. Схема расчета ¹³⁷Cs в воде, принятая ранее [1], и численные значения коэффициентов сорбции K_{\perp} и диффузии D не менялись:

$$U_{t} = U_{0}H/K_{d}(\pi Dt)^{-1/2}, \tag{1}$$

 U_0 и U_t — концентрации ¹³⁷Cs в воде (исходная и на время t соответственно), H — средняя глубина водоема, K_d и D — коэффициенты распределения

4000 л/кг и диффузии ¹³⁷Cs 1.0×10^{-7} см²/с в ДО соответственно, t — время экспозиции. При расчете U_t вводилась поправка на распад U_0 .

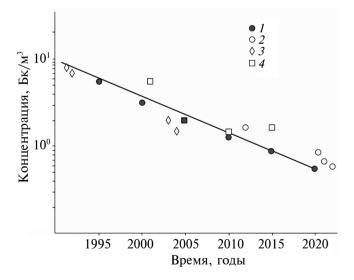
Выражение (1) отвечает условию большего времени сорбции радионуклида в ДО. Процедура его оценки [10] сводится к подстановке в выражение (2) разных отрезков времени t и определения безразмерного показателя $y^2 \ge 10.5$, отвечающего основному условию применения формулы (1):

$$y^2 = K_d^2 Dt / H^2. (2)$$

После 1—2-летней экспозиции ¹³⁷Сs в почвенном покрове водосбора его поступление в речную сеть снижается до сотых долей процента запаса на водосборе. В 1979—1985 гг. поступление глобального ¹³⁷Сs с водосбора в речную сеть было $\leq 0.02\%$ запаса на водосборе [3]. Замена во времени загрязненных по ¹³⁷Сs онежских вод на более "чистые" воды поверхностного стока приводит к очищению вод озера. Влияние этого фактора на оценку U_t по (1) учитывалось введением поправки M [1]:

$$M = U_t \exp(-0.693t) / W,$$
 (3)

M — поправка, учитывающая влияние обмена вод озера на концентрацию ¹³⁷Cs U_t за время t; W — время обмена вод озера — 16.4 лет [8].


В табл. 1 приведены результаты расчетной оценки содержания в воде глобального 137 Сs до 1985 г. и совместного с "чернобыльским" 137 Сs после 1986 г. Относительная величина запаса 137 Сs в воде характеризует его долю (%) в таковом на дату загрязнения в 1964 или 1986 гг. соответственно. На эти даты запасы 137 Сs в водной массе озера составили 45.8 и 37.6 ТБк. В 1985 г. концентрация глобального 137 Сs в воде составила 3.2 Бк/м³, а запас — 2.0% такового в 1964 г. В 1985 г. концентрация 137 Сs в воде озера, равная 3.2 Бк/м³, находилась в диапазоне значений, наблюдаемых в реках Финляндии и озерах Имандра и Ладожском [12—14, 16]. В 1965—1985 гг. полупериод T очищения онежских вод от 137 Сs составил 8 лет [1].

Верификация временного ряда концентраций ¹³⁷Cs (рис. 1) встречает затруднения — экс-

Таблица 1. ¹³⁷Cs в Онежском озере и запас в объеме вод

Годы	¹³⁷ Сs в воде и запас (данные расчета)			
	Бк/м³	Запас, ТБк	Запас, %, на даты 1964 г.* и 1986 г.**	
1968	15.6	4.62	10.1*	
1970	11.5	3.52	7.7*	
1975	7.0	2.05	4.6*	
1980	4.8	1.43	3.1*	
1985	3.2	0.95	2.0*	
1990	11.5	3.41	9.1**	
1995	5.5	1.65	4.4**	
2000	3.2	0.95	2.5**	
2005	2.0	0.59	1.6**	
2010	1.3	0.38	1.0**	
2015	0.9	0.25	0.7**	
2020	0.6	0.17	0.5**	

периментальные определения глобального ¹³⁷Сs в воде Онежского озера единичны [11]. Отдельные наблюдения за ¹³⁷Сs в воде оз. Имандра [4, 12, 13] и воде финских рек, вытекающих из глубоких озер [14, 23], рассматривались в качестве ориентира ожидаемого тренда концентрации ¹³⁷Сs в воде Онежского озера. Предстояло выяснить, насколько корректным будет прогноз загрязнения онежских вод по ¹³⁷Сs при длительной (1986—2020 гг.) экспозиции радионуклида в водоеме.

Рис. 1. Динамика 137 Сѕ в воде Онежского озера, Бк/м³: I — данные расчета по (1), (3); 2 — данные опыта авторов статьи; 3 и 4 — данные озер сравнения — Инари [18] и Имандра [12, 13].

В 1986 г. на Онежское озеро выпало $\leq 3.7 \text{ кБк/м}^2$ "чернобыльского" ¹³⁷Cs [5, 7, 18]. Есть единичные наблюдения за ¹³⁷Cs в 1986 и 1988 гг. в воде р. Свири на удалении ~150 км от истока — Онежского озера. В реке в 1986 и 1988 гг. ¹³⁷Cs содержалось 86 и 3.4 Бк/м³ соответственно [5]. На эти даты загрязнение по ¹³⁷Cs вод р. Невы характеризовалось его концентрацией 240 и 31 Бк/м³, а р. Волхов — 410 и 25 Бк/м³соответственно, что во всех случаях было выше, чем в р. Свири [5].

Сопоставление содержания ¹³⁷Cs в воде Невы, Волхова и Свири [5] косвенно указывает на меньшее загрязнение по ¹³⁷Cs вод Онежского озера, чем Ладожского. "Чернобыльский" след пришелся на районы западнее и южнее водосбора Онежского озера [7, 18]. По расчету (1), (3) в 1988 и 1990 гг. содержание ¹³⁷Сs в онежских водах равно 19.9 и 11.4 Бк/м³ соответственно. Эти величины близки к наблюдаемым (25—10 Бк/м³) в глубоком ($H_{\rm cp}=15$ м) финском оз. Инари, загрязненном "чернобыльским" ¹³⁷Cs [18]. Здесь выпадения 137 Cs составили 1.7 кБк/м 2 [24], тогда как на оз. Онежском -3.7 кБк/м^2 . Повышенное загрязнение вод оз. Онежского по ¹³⁷Cs не было продолжительным; относительно быстро загрязненный поверхностный слой вод был разбавлен "чистыми" по отношению к "чернобыльскому" ¹³⁷Сs водами глубин. В воде озер Инари и Онежского в 1988-1990 гг. наблюдались близкие уровни ¹³⁷Cs (рис. 1). В последующие годы ожидалось увеличение разницы загрязнения вод озер, так как воды Онежского озера сменяются за 16.5 лет, а оз. Инари — за 3.3года [18]. Поэтому на рис. 1 концентрации ¹³⁷Cs в оз. Инари в 2003 и 2004 гг. расположены ниже тренда ¹³⁷Cs в воде Онежского озера. В 1998 г. на Кольском п-ове в воде оз. Вялозеро [22] концентрация ¹³⁷Cs составила 4.5 Бк/м³, что близко к концентрации 5.5 Бк/м³ в оз. Онежском на 1995 г. (табл. 1). По экспериментальным данным, концентрация ¹³⁷Cs в воде Свирской губы Онежского озера в 2012 и 2021-2022 гг. составила 1.7 и 0.8-0.6 Бк/м³ соответственно. Низкое содержание ¹³⁷Cs в воде Онежского озера согласуется с трендом снижения концентрации ¹³⁷Cs в воде оз. Имандра. Здесь в 2011-2012 гг. концентрация 137 Cs составила 1.7—1.9 Бк/м³, но уже к 2018-2020 гг. загрязнение вод уменьшилось до 1.0 Бк/м³ [12, 13].

За 30 лет (1990—2020 гг.) концентрация 137 Сs в воде Онежского озера и его запас в объеме вод уменьшились в ~20 раз. Полупериод очищения вод T для этого промежутка времени составил 7.0 лет. Для глобального 137 Сs T=8 лет [1], так как его поступление на водоемы не было разовым, как в случае с выпадением "чернобыльского" 137 Сs.

Мониторинг ¹³⁷Сs в ДО Онежского озера не проводился. Поэтому результаты авторских единичных определений ¹³⁷Cs в колонке ДО Петрозаводского залива озера пришлось сравнивать с данными для Якимоварского залива Ладожского озера, полученными в 2018 г. Петрозаводский и Якимоварский заливы относятся к глубоким с $H_{\rm cn}$ 20 и 29 м и объемом вод 2.25 и 0.68 км³ соответственно. Онежское озеро находится в зоне с меньшим выпадением ¹³⁷Cs в 1986 г., чем Ладожское озеро. Поэтому небольшая разница плотности загрязнения ДО озер по ¹³⁷Сѕ была ожидаема (табл. 2). Концентрации ¹³⁷Cs в кернах снижаются от верхних слоев грунта к лежащим глубже. Следовые количества ¹³⁷Сѕ в профиле ДО прослеживались до глубины 20 см, но основной запас радионуклида приходился на слой 0-8 см. При комбинированном загрязнении ДО по ¹³⁷Cs разного генезиса в верхних слоях грунта преимущественно находится "чернобыльский" 137 Cs, а глубже - 137 Cs глобальных выпадений. ¹³⁷Cs "чернобыльской" аварии поступил в озера на ~22 года позднее. Данные послойного распределения ¹³⁷Cs в колонках ДО привлекались к расчету скорости седиментации.

Для Якимоварского залива принято, что большая часть "чернобыльского" $^{137}\mathrm{Cs}$ содержится

Таблица 2. Профиль ¹³⁷Cs в ДО Петрозаводского залива Онежского озера и Якимоварского залива Ладожского озера

	¹³⁷ Cs в ДО, Бк/кг		
Слой ДО, см	Петрозаводский	Якимоварский	
	залив	залив	
0-2	130.0	79.0	
2-5	180.0	98.0	
5-8	26.0	137.0	
8-11	9.6	110.0	
11-14	7.1	12.0	
14-17	9.0	< 2.0	
17-20	< 2.5	< 2.0	
0-20, запас, кБк/м ²	2.39	3.20	

на глубине 2-8 см керна, а глобального 137 Cs - в слое 5—11 см. При экспозиции радионуклидов 32 и 54 года скорость седиментации в заливе оценена в 1.6 и 1.5 мм/год соответственно. Для Петрозаводского залива скорость седиментации, равная 0.64 мм/год, определялась по содержанию глобального ¹³⁷Cs в слое керна на глубине 2-5 см при экспозиции радионуклида 55 лет. В Петрозаводском заливе ветровой тип течений определяет сгоны и нагоны вод. Гидрологический режим залива способствовал выносу взвеси в профундаль водоема. Поэтому в ДО Петрозаводского залива ¹³⁷Cs содержалось меньше, чем в алевритовом иле Якимоварского залива Ладожского озера. В прибрежном крупнозернистом песке Петрозаводского залива ¹³⁷Cs содержалось в ~50 раз меньше, чем в верхнем двухсантиметровом слое иловых отложений залива. В Якимоварском заливе Ладожского озера запас ¹³⁷Cs в ДО формировался при скорости седиментации ~1.5 мм/год. При таком показателе произошло захоронение грунта с глобальным ¹³⁷Cs на глубине 5-8 см. С учетом характера распределения ДО в Онежском озере [9] правомерно допустить, что районы озера с песчано-галечными отложениями будут характеризоваться низким содержанием ¹³⁷Cs (≤10 Бк/кг сухой массы), как и южные районы Ладожского озера.

ЗАКЛЮЧЕНИЕ

Динамика ¹³⁷Сs в воде Онежского озера в течение 56 лет (с 1964 по 2020 г.) удовлетворительно прогнозировалась с помощью сорбционно-диффузионной модели поглощения радионуклида грунтами дна с коэффициентами сорбции и диффузии, равными 4000 л/кг и $1.0 \times 10^{-7} \text{ cm}^2/\text{c}$ соответственно. Влияние замедленной смены вод в озере на концентрацию ¹³⁷Cs учитывалось с помощью показателя условного обмена вод W = 16.5 лет. Полупериод времени T очищения вод от ¹³⁷Cs оценен в 8 и 7 лет для глобального (1965-1985 гг.) и "чернобыльского" (1986-2020 гг.) радионуклидов соответственно. В 1968 и 1985 гг. запас глобального ¹³⁷Cs в объеме вод Онежского озера составил 10.1 и 2.0% исходного запаса в 1964 г. 20-летней экспозиции глобального ¹³⁷Cs на водосборе водоема и в его экосистеме оказалось достаточно для значительной естественной дезактивации вод глубоководного Онежского озера от ¹³⁷Сs. Аналогичная закономерность очищения вод наблюдалась при 34-летней (1986—2020 гг.) экспозиции "чернобыльского" ¹³⁷Сs в водоеме; к 2020 г. содержание ¹³⁷Сs в воде уменьшилось до 0.5% первоначального запаса радионуклида в 1986 г. В условиях динамичного гидрологического режима Петрозаводского залива Онежского озера захоронение грунта с ¹³⁷Сs произошло в ДО на меньшую глубину, чем в Якимоварском заливе Ладожского озера.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бакунов Н.А.* Реконструкция концентраций глобального ¹³⁷Cs в воде Онежского озера // Радиохимия. 2004. Т. 46. № 3. С. 280—282.
- 2. *Бакунов Н.А., Большиянов Д.Ю., Правкин С.А.* К реконструкции очищения вод озер Восточной Фенноскандии от "чернобыльского" ¹³⁷Сs // Вод. ресурсы. 2021. Т. 48. № 3. С. 290—296.
- 3. *Большиянов Д.Ю.*, *Бакунов Н.А.*, *Макаров А.С*. К вопросу миграции ¹³⁷Сs в водных системах Восточной Фенноскандии // Вод. ресурсы. 2016. Т. 43. № 3. С. 328—335.
- 4. *Буянов Н.И*. Концентрация 90 Sr и 137 Cs в районе сброса теплых вод Кольской АЭС // Экология. 1981. № 3. С. 66—70.
- Гаврилов В.М., Гритичнко З.Г., Иванова Л.М, Орлова Т.А., Тишков В.П., Тишкова Н.А. Стронций-90, цезий-134 и цезий-137 в водоемах прибалтийского региона Советского Союза (1986—1988 гг.) // Радиохимия. 1990. Т. 32. № 3. С. 171—179.
- 6. Голицын Г.С., Ефремова Л.К., Мохов И.И., Румянцев В.А., Сомова Н.Г., Хон В.Ч. Гидрологические режимы Ладожского и Онежского озер и их изменения // Вод. ресурсы. 2002. Т. 29. № 2. С. 168—173.
- Дубасов Ю.В., Евдокимов А.В., Каменцев А.А., Саульский А.В., Чаплыгина О.В. Загрязнение цезием-137 почвы в населенных пунктах Ленинградской области и оценка накопленных после аварии на ЧАЭС данных // Радиохимия. 2011. Т. 53. № 6. С. 559–564.
- 8. Методические основы оценки и регламентирования антропогенного влияния на качество поверхностных вод / Под ред. А.В. Караушева. Л.: Гидрометеоиздат, 1987. 288 с.
- 9. Озеро Онежское. Атлас // Под ред. *Н.Н. Филатова*. Петрозаводск: Кар НЦ РАН, 2010.
- 10. *Прохоров В.М.* Миграция радиоактивных загрязнений в почвах. Физико-химические механизмы и моделирование. М.: Энергоиздат, 1981. 96 с.

- 11. *Пакуло А.Г.* Содержание цезия-137 в пресноводной рыбе при различном солевом составе воды. Вопросы морской радиобиологии // Тр. АтлантНИРО. Вып. 45. Калининград, 1971. С. 38—41.
- 12. Радиационная обстановка на территории России и сопредельных государств. Ежегодник. Обнинск: Гидрометеоиздат, 2012. 344 с.
- 13. Радиационная обстановка на территории России и сопредельных государств. Ежегодник. Обгнинск: Гидрометеоиздат, 2020. 339 с.
- 14. *Рахола Т., Саксен К., Костиайнен Э., Пухакайнен М.* Техногенная радиоактивность в организме человека и окружающей среде // Радиохимия. 2006. Т. 48. № 6. С. 562—566.
- 15. Ремез В.П., Канивец В.В., Поляков В.В., Ремез Е.П. Использование композитных сорбентов для экологического мониторинга водных объектов // Тр. Международ. конф. "Радиоактивность при ядерных взрывах и авариях". Л.: Гидрометеоиздат, 2000. Т. 2. С. 673—678.
- 16. Степанов А.В., Тишков В.П., Пантелеев Ю.А., Гаврилов В.М. Радиоактивное загрязнение Балтийского моря после аварии на ЧАЭС // Тр. Радиевого ин-та. 2009. Т. XIV. С. 156—170.
- 17. Циболд Г., Драйсснер Ж., Камински С., Клемент Е., Миллер Р. Содержание ¹³⁷Сs в предальпийских лесах и озерах: изменения и моделирование уровней загрязнения в зависимости от времени с 1986

- года // Тр. Международ. конф. "Радиоактивность при ядерных взрывах и авариях". СПб.: Гидрометеоиздат, 2000. Т. 2. С. 356—360.
- 18. AMAP Assessment 2009: Radioactivity in the Arctic. Oslo, 2010.
- Dominik J., Span D. The Fate of Chernobyl Cs-137 in Lake Lugano // Aqvatic Sci. 1992. V. 54. № 3/4. P. 238–254.
- Ilus E., Saxen R. Accumulation of Chernobyl derived ¹³⁷Cs in bottom sediments of some Finnish lakes // J. Environ. Radioactivity. 2005. V. 82. P. 199–221.
- Koivulehto M., Saxen R., Tuomainen K. Radioactivity in Finland 1978. Helsinki. Annual Rep. STL-A-32. Helsinki, 1980.
- 22. Nikitin A.T., Tsaturov Yu.S., Chumichev V.B., Valetova N.K., Katrich I.Yu., Berezhnoy V.I., Kabanov A.I., Pegoev N.N. Artificial radionuclides in components of freshwater and forest ecosystems in the south of Kola peninsula: Results of field investigations in the year 1998 // The 4th Int. Conf. Environ. Radioactivity Arctic. Edinburg, 1999. P. 181–183.
- 23. *Saxen R.L.* ¹³⁷Cs in freshwater fish and lake water in Finland after the Chernobyl deposition // Boreal Environ. Res. 2007. V. 12. P. 17–22.
- 24. *Smit J.T., Clarke R.T., Saxen R.* Comparing the mobility weapons test and Chernobyl radiocaesium in Finland // The 4th Int. Conf. Environ. Radioactivity Arctic. Edinburg, 1999. P. 50–52.