УЛК 556.114.6

ОСОБЕННОСТИ КАЧЕСТВА ВОДЫ МАЛЫХ РЕК ХАБАРОВСКА ВО ВРЕМЯ ПОЛОВОДЬЯ. 1. ОСНОВНЫЕ ИОНЫ И БИОГЕННЫЕ ВЕШЕСТВА

© 2024 г. В. П. Шестеркин^а, *, И. С. Синькова^а, Н. М. Шестеркина^а

^aХФИЦ, Институт водных и экологических проблем ДВО РАН, Хабаровск, 680000 Россия *e-mail: shesterkin@ivep.as.khb.ru Поступила в редакцию 06.09.2022 г. После доработки 17.05.2023 г.

Представлены результаты изучения химического состава воды малых рек г. Хабаровска в период весеннего половодья в 2018—2022 гг. Показано значительное варьирование концентраций основных ионов и биогенных веществ в речных водах, обусловленное большими различиями химического состава талых снеговых, подземных, сточных вод, а также вод из изношенных систем водоснабжения и водоотведения. В начале периода снеготаяния максимальные минерализация, концентрация хлоридных ионов и ионов натрия в центре города, превышающие ПДК, и хлоридно-натриевый состав из-за использования противогололедных реагентов установлены в воде рек, дренирующих районы с интенсивным движением автотранспорта. Наибольшее загрязнение речных вод аммонийным и нитритным азотом, фосфатами отмечено в начале половодья вследствие выноса с поверхности водосборов. Показано, что в течение половодья в воде многих рек, кроме питающихся коммунальными сточными водами, концентрации растворенных веществ постепенно снижаются, состав воды становится гидрокарбонатно-кальциевым.

Принята к публикации 27.11.2023 г.

Ключевые слова: Хабаровск, малые реки, весеннее половодье, загрязнение, хлориды, аммонийный и нитритный азот, фосфаты.

DOI: 10.31857/S0321059624030104 EDN: ATZILS

ВВЕДЕНИЕ

Урбанизация — мощный фактор преобразования химического состава вод малых рек из-за сбросов промышленных и бытовых сточных вод, вод ливневого и талого стока [16]. В г. Хабаровске, основанном в 1858 г., проблема качества вод малых рек существует давно. В 1905 г. санитарный врач А.В. Чириков писал, что "...реки Плюснинка, Чердымовка и Лесопилка, впадающие в Амур, по-видимому, предназначены городской администрацией для роли естественной канализации", "...по ложу речки Плюснинки струится клоачная жидкость и несколько ниже казенного дебаркадера изливается в реку, к несчастью именно в том месте, где берут воду как водовозы, так и корейцы-водоносы" [18].

Дальнейшее расширение территории города, протянувшегося вдоль Амура, затронуло водо-

сборы малых рек Матренихи, Полежаевки, Березовой и др., начиная с 1958 г. — реки Плюснинка, Чердымовка, Лесопилка и Курча-Мурча были постепенно убраны в бетонные коллекторы.

Мониторинг за качеством вод рек Черной и Березовой с 1975 г. осуществляет "Росгидромет" в период открытого русла. Согласно материалам этих наблюдений, р. Черная — "очень грязная", а р. Березовая — "грязная". В настоящее время они — приемники сточных вод МУП "Водоканал". В 2021 г. в эти водотоки в составе сточных вод поступило 1.29 т фосфатов, 0.4 т нефтепродуктов [2].

Исследования ИВЭП ДВО РАН в 1997—1998 гг. дали возможность получить первые сведения о содержании основных ионов и биогенных веществ в период открытого русла в воде притоков рек Черной и Березовой [6]. Материа-

лы наблюдений в декабре 2017 г. — марте 2018 г. свидетельствовали о загрязнении рек центральной части г. Хабаровска аммонийным и нитритным азотом [17, 19].

В меньшей степени изучено качество вод малых рек в период весеннего половодья, когда в их питании доминируют талые снеговые воды. Снежный покров, как известно [8], хороший индикатор загрязнения атмосферы зимой из-за сорбции аэрозолей, частиц пыли, сажи и др. Немногочисленные сведения о химическом составе снежного покрова г. Хабаровска свидетельствуют о загрязнении его соединениями азота и фосфора [9, 17, 20]. Рост количества автотранспорта и использование для борьбы с гололедом химических средств не могли не повлиять на качество вод малых рек города. Так, 18 ноября 2018 г. после выпадения 7 мм снега на дорогах Хабаровска было использовано более 160 т песчано-соляной смеси, 19 т реагента и 3 т технической соли [15]. Аналогичная ситуация имела место и в последующие годы.

Исследования в г. Минске свидетельствуют, что во время снеготаяния больше всего загрязнены воды с дорог, в которых в результате использования противогололедных реагентов содержание Cl^- достигало 805-5660 мг/дм³, $\text{Na}^+-610-3580$ мг/дм³ [10]. В г. Москве в 2000-2001 гг. общее количество загрязняющих веществ, поступивших в реки с талыми водами, составляло $\sim 60\%$ валовых сбросов загрязняющих веществ в водоемы города. Иногда содержание хлоридов в сбрасываемом в реки снеге превышало Π ДК в 20-100 раз [13].

Отсутствие мониторинга качества вод малых рек г. Хабаровска в период весеннего половодья обусловило необходимость изучения пространственно-временной изменчивости качества вод в эту фазу водного режима.

ОБЪЕКТЫ И МЕТОДЫ

Наблюдения на малых реках г. Хабаровска проводили с 11 марта по 19 апреля в 2018—2022 гг. Мониторинг отсутствовал на р. Лесопилке в 2020—2022 гг. из-за работ на набережной, р. Чердымовке в апреле 2021—2022 гг. — из-за заполнения коллектора водами Амура. Пробы воды

отбирали с поверхности, анализировали в ЦКП при ИВЭП ДВО РАН. В образцах воды по [14] определяли содержание главных ионов (Na⁺, K⁺, Ca²⁺, Mg²⁺, HCO₃⁻, SO₄²⁻ и Cl⁻) и биогенных веществ (NH₄⁺, NO₂⁻, NO₃⁻ и HPO₄²⁻). Схема района исследований дана на рис. 1. При оценке загрязнения использовали значения ПДК вредных веществ для водных объектов рыбохозяйственного значения РФ [12].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Химический состав вод малых рек Хабаровска формируется на Среднеамурской низменности, ограниченной на севере Воронежскими высотами, на юге — предгорьями Большого и Малого Хехцира, в центральной части города — на холмисто-увалистой поверхности. Во время половодья в питании рек активное участие принимают талые снеговые воды, на отдельных водотоках — воды из изношенных систем водоснабжения и водоотведения, иногда — сточные воды жилищно-коммунального хозяйства.

В г. Хабаровске средняя дата образования устойчивого снежного покрова — 15 ноября, ранняя — 16 октября, разрушения — 28 марта и 1 февраля соответственно. Наибольшая высота снежного покрова достигает 35 см, наименьшая — 7 см [3]. Во время наблюдений сумма осадков за декабрь—февраль изменялась от 9 (2018-2019 гг.) до 47 мм (2021-2022 гг.) [11].

В начале марта водный сток на большинстве рек из-за промерзания и образования наледей отсутствует, сохраняется лишь на реках Безымянной, Плюснинке, Лесопилке, Чердымовке, редко на реках Матренихе и Полежаевке из-за питания сточными водами.

Малые реки на окраине города с преимущественно малоэтажной застройкой, садово-огородными участками

Малые реки в южной (Матрениха, Безымянная, Красная речка) и северо-восточной частях города (Черная, Гнилая падь, Полежаевка, Березовая) характеризуются большим различием химического состава вод из-за разной освоенности водосборов.

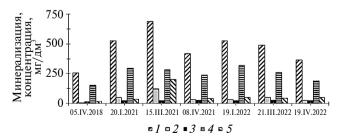


Рис. 1. Картосхема территории расположения водотоков: 1 — Матрениха; 2 — Безымянная; 3 — Красная речка; 4 — Черная; 5 — Гнилая падь; 6 — Плюснинка; 7 — Чердымовка; 8 — Лесопилка, 9 — Курча-Мурча; 10 — Полежаевка; 11 — Березовая.

В начале снеготаяния (II декада марта) максимальная минерализация вследствие выноса основной массы солей из снежного покрова отмечается в воде р. Красная речка, дренирующей в верхнем течении садовые участки и участок федеральной автомобильной дороги А370 "Уссури", а в нижнем течении – строения частного сектора (табл. 1, 2). Меньше содержание солей в воде р. Безымянной, питающейся неочищенными сточными водами. Минерализация воды этих рек по сравнению с зимой была выше соответственно в 2 и 1.3 раза [19]. В воде р. Полежаевки, водосбор которой освоен под садово-огородные участки, больших различий минерализации между зимой и весной нет. Воды остальных рек, в питании которых эпизодически участвуют сточные воды, содержат солей существенно меньше (в р. Матренихе в 1.6–2.2 раза), чем зимой [19].

Во время снеготаяния минерализация речных вод резко снижается, достигая наименьших за половодье значений (рис. 2).

Большие различия отмечаются в соотношениях концентраций основных ионов. В воде рек Красная речка, Матренихи, Черной и Гнилая падь из-за выноса противогололедных солей в начале таяния снега преобладает Na^+ (42—49% экв), в конце — Ca^{2+} (40—48% экв). В воде р. Безымянной в марте также доминирует Na^+ (до 51% экв), в апреле — аммонийный азот (до 32% экв). Иная ситуация характерна для рек Березовой и Полежаевки, в воде которых в марте содержится в среднем больше Ca^{2+} (до 39% экв).

Рис. 2. Содержание растворенных веществ в воде р. Безымянной в 2018, 2021, 2022 гг.: I — минерализация; 2 — Na $^+$; 3 — Ca $^{2+}$, 4 — HCO $_3$ $^-$; 5 — Cl $^-$.

Таблица 1. Химический состав вод малых рек южной части г. Хабаровска (здесь и в табл. 2, 3 числитель — минимальное
и максимальное, знаменатель — среднее значение)

	Река							
Показатель	Мат	рениха	Безымянная		Красн	ная речка		
	Март	Апрель	Март	Апрель	Март	Апрель		
рН	6.8	6.8-7.4 7.2	7.2–7.3 7.2	7.2—7.4 7.3	7.9	<u>6.7–7.4</u> 7.1		
Na^+ , мг/дм 3	51	<u>4.4–13</u> 8	<u>49–124</u> 87	$\frac{4-33}{22}$	160	<u>6–9</u> 7		
K^+ , мг/дм 3	11.2	$\frac{3.3-5.0}{4.0}$	11.2–14.8 13	5.5-8.8 7.6	16.7	2.0-3.0 2.5		
Ca ²⁺ , мг/дм ³	25	<u>8–14</u> 11	24-30 27	$\frac{18-23}{20}$	87	<u>11–16</u> 13		
Mg^{2+} , мг/дм 3	7.0	2.5-3.5 3.0	7.5–9.7 8.6	<u>5.1–7.2</u> 6.1	32	<u>2.5–4.0</u> 3.2		
HCO ₃ ⁻, мг/дм³	187	<u>54–74</u> 67	<u>269–284</u> 272	<u>153–239</u> 194	556	<u>42–62</u> 55		
Cl⁻, мг/дм³	29	<u>6–10</u> 8	44—203 124	<u>20–50</u> 38	183	<u>6-12</u> 9		
$\mathrm{SO_4^{2-}}$, мг/дм 3	22	<u>7–20</u> 12	<u>24–27</u> 25	<u>20–27</u> 25	63	<u>2.0–16</u> 8		
$\mathrm{NH_4}^+$, мг $\mathrm{N}/\mathrm{д}\mathrm{m}^3$	3.3	1.3-2.2 1.8	3.0-30.3 16.7	<u>14.9–24.9</u> 17.9	20.4	<u>0.5–3.5</u> 1.7		
NO_{2}^{-} , мг $\mathrm{N}/\mathrm{д}\mathrm{M}^{3}$	0.10	<0.03	<u><0.01-0.38</u> 0.19	<0.01-0.03 0.02	0.15	<u>0.02-0.07</u> 0.05		
$\mathrm{NO_3}^-$, мг $\mathrm{N/д}\mathrm{m}^3$	1.78	0.42-1.09 0.69	0.01-0.70 0.35	<u><0.01−0.38</u> 0.17	2.28	<u>0.84–1.45</u> 1.17		
${\rm HPO_4^{2-}}, {\rm M}\Gamma/{\rm Д}{\rm M}^3$	0.86	0.09-0.18 0.14	1.03-3.12 1.78	<u>0.69–2.15</u> 1.33	0.77	<u>0.04-0.10</u> 0.07		
Минерализация, мг/дм ³	347	111-127 120	482-687 585	356–416 336	1137	101-114 108		

В воде большинства рек в половодье среди анионов доминирует HCO_3^- (48–70% экв), на втором месте хлориды (14–33% экв). Лишь в воде р. Безымянной в начале половодья преобладает Cl^- (51% экв.), в конце — HCO_3^- (67% экв.). Поэтому по химическому составу воды в основном относятся к гидрокарбонатному классу, группе натрия (март) или кальция (апрель), первому или второму классу [1].

Характерная черта вод рек города из-за выноса с поверхности водосборов и сброса сточных вод — повышенное содержание биогенных веществ [16].

Аммонийная — основная форма соединений азота в воде исследуемых рек. Повышению его содержания способствуют процессы денитрификации, протекающие в условиях дефицита растворенного в воде кислорода и больших количеств органических веществ. Максимальное содержание, значительно превышающее ПДК

(0.39 мг N/дм³), в начале снеготаяния отмечено в воде рек, в питании которых постоянно (Безымянная) или эпизодически участвуют сточные воды (Черная, Гнилая падь), выносятся органические удобрения с садово-огородных участков (Красная речка, Полежаевка, Матрениха). В воде рек Березовой, Матренихи, Безымянной и Гнилая падь в начале половодья содержание иона аммония в среднем ниже, чем зимой, соответственно в 9.7, 8.7, 2.9 и 1.6 раза из-за разбавления талыми снеговыми водами [19].

В период половодья содержание аммонийного азота в воде большинства рек, за исключением водотоков, питающихся сточными водами (Безымянная, Гнилая падь и Черная), снижается и достигает наименьших за половодье значений (рис. 3).

Присутствие нитритного азота в речных водах обусловлено в основном процессами разложения

	Река							
Показатель	Черная		Гнилая падь		Полежаевка		Березовая	
	Март	Апрель	Март	Апрель	Март	Апрель	Март	Апрель
рН	7.3-7.4 7.3	7.0—7.4 7.2	7.2–7.4 7.3	7.2–7.6 7.4	<u>6.5–7.8</u> 7.3	7.0-7.5 7.3	7.7	6.8-7.8 7.4
Na^+ , мг/дм 3	<u>25–88</u> 57	<u>14–26</u> 19	27-54 40	$\frac{20-31}{27}$	<u>10–38</u> 19	<u>9–23</u> 15	30.3	$\frac{18-38}{25}$
K^+ , мг/дм 3	<u>10.8–15.3</u> 13.1	$\frac{8.8 - 9.5}{9.2}$	10.8-11.0 10.9	6.0-7.1 6.7	3.0–16.0 9.8	<u>5-8</u>	10.5	<u>4.6–6.6</u> 5.4
Ca^{2+} , мг/дм 3	25-34 30	<u>26–40</u> 32	33-53 43	38-54 45	20-34 26	23-40 30	31	<u>18–29</u> 16
Mg^{2+} , мг/дм 3	8.9—18.9 13.9	6.5-7.7 7.2	<u>9.3–12.8</u> 11.1	8.8-10.7 10.0	<u>4.7–10.4</u> 7.1	5.4-9.7 7.0	9.2	<u>4.4–8.2</u> 6.1
HCO₃⁻, мг/дм³	185-272 229	100—148 128	175–209 192	<u>194–203</u> 198	81-127 101	76-142 103	128	<u>94–163</u> 119
Cl ⁻ , мг/дм ³	<u>42–75</u> 59	<u>19–30</u> 24	<u>52–73</u> 63	27 <u>-41</u> 36	<u>17–53</u> 26	17—23 19	22	<u>17–23</u> 21
SO_4^{2-} , мг/дм 3	<u>22–37</u> 30	$\frac{21-43}{30}$	23	<u>24–51</u> 34	12-40 22	22–60 35	75	15-33 22
NH_4^{+} , мг $N/дм^3$	11.3-19.2 15.3	3.7-5.7 4.9	6,1-6,9 6.5	<u>4.2–9.8</u> 6.2	<u>0.29–28.8</u> 6.3	<u>0.95–2.02</u> 1.33	1.4	1.46-2.49 1.94
NO_2^- , мг $N/дм^3$	0.01-0.03 0.02	$\frac{0.04 - 0.08}{0.06}$	0.04-0.13 0.09	0.04	0.02-0.08 0.04	0.02-0.06 0.03	0.04	$\frac{0.02 - 0.04}{0.03}$
NO_3^- , мг $N/дм^3$	0.02-0.14 0.08	<u>0.82–1.81</u> 1.29	0.52-0.86 0.69	$\frac{0.41-1.26}{0.85}$	<u>0.14–1.90</u> 1.16	<u>0.65–1.67</u> 1.10	1.31	$\frac{0.47 - 1.22}{0.87}$
${\rm HPO_4^{\ 2^-}}, {\rm Mf}\ {\rm P}/{\rm дM}^3$	1.06-1.43 1.25	0.05-0.50 0.23	0.06-0.09 0.08	$\frac{0.03 - 0.37}{0.15}$	<u>0.02-4.99</u> 1.07	0.03-0.06 0.04	0.20	<u>0.09-0.22</u> 0.11

391-404

398

351-368

370

173-343

229

Таблица 2. Химический состав вод малых рек северо-восточной части г. Хабаровска

органических веществ и нитрификацией. Содержание этого вещества меняется в очень широких пределах (табл. 1, 2). Максимальное загрязнение (> 21 ПДК) отмечается в начале половодья в воде рек Красная речка и Гнилая падь. Менее загрязнены остальные реки. В период снеготаяния его содержание в воде рек снижается, причем в реках Матренихе и Безымянной — из-за

219-546

383

Минерализация, мг/дм3

211-373

301

анаэробных условий до предела обнаружения. Повышение концентрации нитритного азота наблюдается лишь в воде р. Черной (табл. 2) из-за влияния сточных вод.

166-319

224

315

186-314

229

Максимальная концентрация нитратного азота в начале снеготаяния отмечается в воде Красной речки и Березовой, в конце снеготая-

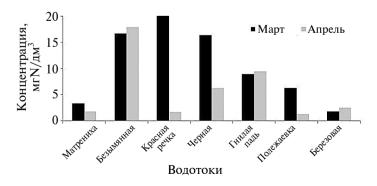


Рис. 3. Среднее содержание иона аммония в воде рек окраин г. Хабаровска в период половодья в 2018—2022 гг.

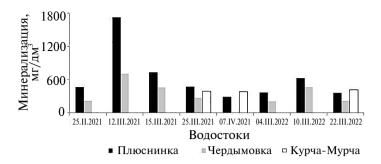


Рис. 4. Изменение минерализации воды рек центральной части г. Хабаровска в феврале—апреле 2021—2022 гг.

ния — Черной (табл. 1, 2). Наименьшее его содержание, часто ниже предела обнаружения, отмечено в Безымянной за счет денитрификации. Аналогичные значения в воде этой реки, а также Матренихи, Гнилой пади и Березовой наблюдались и зимой [19].

В больших диапазонах меняется содержание фосфатов, максимальные величины из-за выноса удобрений с дачных участков отмечаются в начале снеготаяния в воде Красной речки, Полежаевки и Черной. Менее загрязнены фосфатами в это время воды Матренихи, Безымянной, Березовой и Гнилой Пади, в питании которых принимают участие и сточные воды. Повышенные концентрации фосфатов в воде Черной, Матренихи и Березовой наблюдались и ранее [6], что свидетельствует о хроническом загрязнении этих водотоков фосфатами. В конце снеготаяния содержание этого вещества в воде большинства рек значительно снижается. Исключение — р. Безымянная, в которую в течение года сбрасываются сточные воды.

Малые реки центральной части города (Плюснинка, Чердымовка, Лесопилка, Курча-Мурча)

Малые реки центральной части города, питающиеся подземными водами, водами изношенных систем водоснабжения и водоотведения, как и зимой, характеризуются слабощелочными величинами рН. По сравнению с реками окрачин города, они характеризуются более высоким содержанием в воде основных ионов, соответственно — минерализацией, значительной амплитудой их колебаний (табл. 3).

Максимальная минерализация отмечена в воде р. Плюснинки во второй декаде марта

2021 г. (табл. 3) после малоснежной зимы (в декабре—феврале выпало 24 мм осадков). В воде р. Чердымовки, часть водосбора которой занята малоэтажными бараками, минерализация воды была ниже в 2.4 раза. По сравнению с зимой [19] из-за выноса противогололедных реагентов с первыми порциями талых вод ее значения в воде этих рек были выше в 3.6 и 3.4 раза соответственно. В 2018—2020 и 2022 гг. содержание солей в воде этих рек было ниже (рис. 4). Такие большие различия могут быть вызваны как разными сроками наступления снеготаяния, так и количеством используемых на дорогах реагентов.

Существенные различия были в солевом составе. В начале снеготаяния в марте 2018 г. в воде Чердымовки и Плюснинки относительное содержание Cl⁻ достигало 74% экв, превышало значение ПДК в 1.2 и 1.1 раза соответственно, в то время как в воде Лесопилки эти значения составляли 13% экв и 0.05 ПДК. Более высокое содержание Cl⁻ отмечалось в воде Плюснинки в марте 2021 г. (78% экв и 2.4 ПДК). Доля Na+ cpeди катионов в воде Плюснинки и Чердымовки в марте 2018 г. составила 62 и 66% экв (1.4-1.5 Π ДК), на втором месте был Ca^{2+} (23 и 20% экв соответственно). Иная ситуация была характерна для Лесопилки, дренирующей территорию частных домов, в ее воде содержание Ca²⁺ достигало 43% экв, $Na^+ - 32\%$ экв. Наибольшее содержание Na⁺ было характерно для вод Плюснинки и Чердымовки в марте 2021 г. (71–78% экв), причем в первой оно составляло 3.6 ПДК.

Поэтому, по классификации О.А. Алекина [1], в начале снеготаяния воды Плюснинки и Чердымовки относились к хлоридному классу,

	Река								
Показатель	Плюсн	Плюснинка		Чердымовка		Лесопилка		Курча-Мурча	
	Март	Апрель	Март	Апрель	Март	Апрель	Март	Апрель	
рН	7.1-8.1 7.6	7.6–7.8 7.7	7.0-7.8 7.5	7.2	6.8-7.3 7.1	7.5	7.6-7.8 7.7	7.8	
Na ⁺ , мг/дм ³	22–435 104	<u>17–24</u> 20	13–180 67	16.9	<u>24–38</u> 31	23	25-32 28	29	
K^+ , мг/дм 3	<u>5.7–10.5</u> 8.0	3.6-6.5 5.0	3.0-12.5 5.7	5.5	10.0—14.0 12.0	6.5	<u>5.0–11.0</u> 8	6.4	
Ca ²⁺ , мг/дм ³	31-59 47	<u>39–64</u> 52	<u>17–47</u> 31	43	33 <u>–44</u> 39	42	31-50 43	53	
Mg^{2+} , мг/дм 3	<u>5.5–31.0</u> 15.2	9.3-14.2 11.8	4.5–10.9 7.6	10.6	6.5-7.4 7.0	9.1	<u>12–13</u> 13	12	
HCO₃⁻, мг/дм³	102-266 196	164-259 212	<u>91–182</u> 130	185	129—188 159	234	<u>193–229</u> 210	209	
Cl⁻, мг/дм³	39 <u>-720</u> 186	31–63 47	<u>14–331</u> 111	56	$\frac{14-54}{34}$	39	<u>40–59</u> 42	40	
SO ₄ ²⁻ , мг/дм ³	12-30 20	16-20 18	<u>9–19</u> 15	15	<u>18–26</u> 22	9.0	<u>17–26</u> 21	29	
$\mathrm{NH_4}^+$, мг $\mathrm{N/дm^3}$	<u>0.9–6.0</u> 3.5	1.9-2.3 2.1	<u>0.7-8.1</u> 3.0	4.3	$\frac{6.7-15.3}{10.0}$	5.76	<u>0.4–11.1</u> 4.3	2.6	
NO_2^- , мг N /дм 3	0.05-0.40 0.15	0.14-0.26 0.12	0.04-0.20 0.10	0.12	<u>0.10-0.16</u> 0.13	<0.03	0.01-0.04 0.03	0.06	
NO_3^- , мг $N/дм^3$	1.11-2.39 1.71	0.10-0.11 0.10	0.99-1.58 1.19	1.48	0.90-2.15 1.52	0.01	0.8-2.1 1.2	1.20	
HPO_4^{2-} , мг $P/дм^3$	0.01-0.33 0.06	0.03-0.06 0.04	0.01-0.49 0.14	0.09	$\frac{0.25 - 0.64}{0.47}$	0.09	0.07-0.32 0.08	0.02	

172 - 795

Таблица 3. Химический состав вод малых рек центральной части г. Хабаровска

группе натрия, Лесопилки — к хлоридному классу, группе кальция-натрия, третьему типу.

Минерализация, мг/дм³

260-1720

649

291-458

375

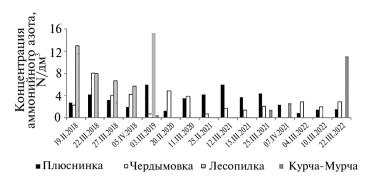
Во время половодья минерализация воды постепенно снижается (рис. 4), изменяется и ее химический состав (табл. 3). Более резкое снижение содержания Na^+ по сравнению с остальными катионами приводит к появлению вод гидрокарбонатного класса, группы кальция, второго типа. Наряду со снижением содержания Ca^{2+} , Na^+ и Mg^{2+} в конце марта 2018 г. в воде отмечается повышение содержания K^+ .

На спаде половодья, в I декаде апреля, минерализация речных вод достигает наименьших значений. В р. Плюснинке основной вклад в минерализацию внесли HCO_3^- и Ca^{2+} (34 и 27% экв соответственно). Содержание Na^+ и Cl^- было < 11% экв.

В малоснежные зимы 2018—2019 и 2019— 2020 гг. содержание основных ионов в воде рек в начале снеготаяния было значительно ниже, вероятно, из-за использования меньшего количества реагентов. По составу воды рек были гидрокарбонатно-кальциевыми или гидрокарбонатными натриево-кальциевыми.

370

307-461


345

387

326 - 412

Среди минеральных форм азота в начале половодья доминирует ион аммония, причем по сравнению с реками окраин, в которых его содержание менялось от 0.3 до 28.8 мг N/дм³, в водотоках центральной части города оно варьировало в более узких пределах. Максимальная концентрация (до 40 ПДК), как и зимой, отмечена в воде р. Лесопилки (табл. 3). Несколько меньшей (до 28 ПДК) она была зафиксирована в воде р. Курча-Мурча, дренирующей территорию нефтеперегонного завода (рис. 5). В воде остальных рек в это время концентрации аммонийного азота были < 21 ПДК и превышали зимние значения.

В начале половодья воды рек центральной части города более загрязнены нитритным азо-

Рис. 5. Изменение содержания аммонийного азота в воде малых рек центральной части г. Хабаровска в феврале—апреле 2018—2022 гг.

том (до 20 ПДК, за исключением р. Курча-Мурча), чем реки окраин (кроме р. Безымянной, питающейся неочищенными сточными водами). Наименьшие его значения отмечены в воде р. Курча-Мурча, наибольшие — р. Плюснинки (табл. 3).

В более широких пределах (0.3—1.6 мг N/дм³), чем зимой, варьирует содержание нитратного азота. Максимальными значениями (как и нитритного азота) характеризуются воды р. Плюснинки (табл. 3).

Поведение минерального фосфора не отличалось от поведения остальных биогенных веществ. Наибольшие концентрации также отмечены в начале половодья, они были значительно ниже, чем в воде рек окраин города (табл. 1—3). По сравнению с зимней меженью [19] концентрации фосфатов в воде Плюснинки и Чердымовки во время половодья были выше, а р. Лесопилки — незначительно выше. В конце половодья содержание этого вещества в воде центральной части города снижалось до 0.02—0.09 мг Р/дм³, т. е. также было ниже, чем на окраине Хабаровска.

выводы

Малые реки г. Хабаровска во время весеннего половодья значительно различаются по химическому составу воды, содержанию основных ионов и биогенных веществ, что обусловлено большой разницей химического состава талых снеговых, подземных и сточных вод, вод изношенных систем водоснабжения и водоотведения.

В районах интенсивного движения автотранспорта использование противогололедных реагентов в зимний период обусловливает максимальные минерализацию и концентрации Na^+ и Cl^- (в центре города они $>\Pi JK$) и хлоридно-натриевый состав речных вод в начале снеготаяния.

Воды большинства малых рек загрязнены аммонийным и нитритным азотом и фосфатами за счет их поступления с поверхностным стоком, наибольшие концентрации отмечены в начале половолья.

В течение половодья содержание растворенных веществ в воде рек, за исключением питающихся сточными водами, постепенно снижается, состав воды становится гидрокарбонатно-кальшиевым.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Алекин О.А.* Основы гидрохимии. Л.: Гидрометеоиздат, 1970. 442 с.
- 2. Государственный доклад о состоянии и об охране окружающей среды Хабаровского края в 2021 году. Хабаровск: МПР Хабаровского края, 2022. 256 с.
- 3. Лобченко Е.Е., Минина Л.И., Гончаров А.В., Ничипорова И.П., Сорокина Е.Ф. Тенденции изменения качества поверхностных вод в районе г. Екатеринбург // Современные проблемы гидрохимии и формирования качества вод. Матер. науч. конф. с международ. участием. Ростов-на-Дону: ГХИ, 2010. С. 130—133.
- 4. Лобченко Е.Е., Минина Л.И., Лямперт Н.А., Ничипорова И.П., Листопадова Н.Н. Динамика уровня загрязненности поверхностных вод бассейна р. Москва // Современные проблемы гидрохимии и мониторинга

- качества поверхностных вод. Материалы науч. конф. с международ. участием. Ростов-на Дону: ГХИ, 2015. Ч. І. С. 84—88.
- 5. Морина О.М., Шестеркин В.П., Шестеркина Н.М., Иванова Е.Г. Проблемы качества малых рек г. Хабаровск и его окрестностей // Города Дальнего Востока: экология и жизнь человека. Материалы науч. конф. Владивосток; Хабаровск: ДВО РАН, 2003. С. 104—106.
- 6. *Нефедова Е.Г.* Внутригодовая изменчивость содержания основных поллютантов в малых водотоках городского округа г. Воронеж // Современные проблемы водохранилищ и их водосборов. Тр. VI международ. науч.-практ. конф. Пермь: ПГУ, 2017. Т. 2. С. 73–76.
- 7. *Никаноров А.М.* Гидрохимия. Ростов-на-Дону: НОК, 2008. 461 с.
- Новороцкая А.Г. О результатах химического мониторинга снежного покрова Хабаровска // Успехи современного естествознания. 2018. № 12-2. С. 374—379.
- 9. Овчарова Е.П., Хомич В.С., Чудук В.Н. Влияние поверхностного стока с городской территории на химический состав и качество речных вод // Экологическое состояние водных объектов. Качество вод и научные основы их охраны. Докл. VI Всерос. гидрол. съезда. М.: Метеоагенство Росгидромета, 2006. С. 154—158.
- Петров Е.С., Новороцкий П.В., Леншин В.Т. Климат Хабаровского края и Еврейской автономной области. Владивосток; Хабаровск: Дальнаука, 2000. 174 с.
- 11. Погода и Климат. http://www.pogodaiklimat.ru/history/31735 2.htm
- 12. Приказ Минсельхоза России от 13.2016 № 552 "Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения". М.: Минюст России, 2017. № 45203.
- 13. *Примин О.Г., Тен А.Э.* Экологическая оценка использования противоголедных реагентов в зимний пери-

- од в г. Москве // Экология и пром-сть России. 2018. Т. 22. № 4. С. 11—15.
- 14. РД 52.18.595-96 Руководящий документ Федеральный перечень методик выполнения измерений, допущенных к применению при выполнении работ в области мониторинга загрязнения окружающей природной среды. https://docs.cntd.ru/document/1200036098 (дата обращения: 19.08.2021)
- 15. Свыше 160 тонн песчано-соляной смеси высыпали хабаровские дорожники на городские улицы. https://www.dvnovosti.ru/khab/2018/11/16/91091/
- 16. Скакальский Б.Г. Формирование гидрохимического режима поверхностных вод в условиях антропогенного воздействия // Экологическое состояние водных объектов. Качество вод и научные основы их охраны. Докл. VI Всерос. гидрол. съезда. М.: Метеоагенство Росгидромета, 2006. С. 99–109.
- 17. Фишер Н.К., Гаретова Л.А., Имранова Е.Л., Кириенко О.А., Афанасьева М.И. Оценка экологического состояния малых рек центральной части Хабаровска в период снеготаяния // Региональные проблемы. 2018. Т. 21. № 3. С. 35—44.
- 18. *Чириков А.В.* Реки Амурского бассейна (Шилка, Амур и Сунгари) в санитарном отношении. 1905. СПб.: МПС, 133 с.
- 19. *Шестеркин В.П., Афанасьева М.И.* Гидрохимия малых рек центральной части Хабаровска в период половодья // Материалы II международ. науч.-практ. конф. Чита: ЗабГУ, 2018. С. 59–64.
- 20. Шестеркин В.П., Афанасьева М.И., Шестеркина Н.М. Особенности качества воды малых рек Хабаровска в зимний период // Геоэкология, инженерная геология, геокриология. 2019. № 3. С. 78—87.
- 21. Шестеркин В.П., Шестеркина Н.М., Форина Ю.А. Химический состав снежного покрова г. Хабаровск и его пригородной зоны // Города Дальнего Востока: экология и жизнь человека. Материалы конф. Дружининские чтения. Вып. 1. Владивосток; Хабаровск: ДВО РАН, 2003. С. 177—179.