STUDY OF THE INFLUENCE OF HORIZONTAL PRESSURE GRADIENT ON THE FORMATION OF CONCENTRATIONS OF DISSOLVED GASES IN INLAND WATER BODIES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A study was carried out of the influence of the horizontal pressure gradient in inland water bodies (lakes and reservoirs) on the processes of formation of concentrations of dissolved gases. A three-dimensional hydrostatic model and a one-dimensional model based on averaging of three-dimensional equations over a horizontal section of a reservoir and complemented by parametrization of the pressure gradient to take into account gravitational oscillations (seiches) were used as tools for carrying out calculations. Based on the results of the numerical experiments, it can be concluded that the use of parameterization is of fundamental importance for describing the formation of concentrations of dissolved gases: turning off the pressure gradient in the model gives results corresponding to the Cato–Phillips formulation and does not allow one to correctly reproduce the distribution of gases in reservoirs of finite size. Parameterization of the influence of pressure gradient and horizontal diffusion in the one-dimensional LAKE model allows one to reproduce biogeochemical processes with sufficient accuracy, in accordance with the reference results obtained using the full three-dimensional model.

Sobre autores

D. Gladskikh

Institute of Applied Physics, Russian Academy of Sciences; Research Computing Center, Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Email: darta.gladskikh@gmail.com
Nizhny Novgorod, Russia; Moscow, Russia; Moscow, Russia

E. Mortikov

Research Computing Center, Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics; G.I. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia; Moscow, Russia

V. Stepanenko

Research Computing Center, Lomonosov Moscow State University

Moscow, Russia

V. Lomov

Research Computing Center, Lomonosov Moscow State University

Moscow, Russia

Bibliografia

  1. Адаменко В.Н. Климат и озера (к оценке настоящего, прошлого и будущего). Л.: Гидрометеоиздат, 1985. С. 264.
  2. Астраханиев Г.П., Мениуткин В.В., Петрова Н.А., Руховец Л.А. Математическое моделирование крупных стратифицированных озер. СПб.: Наука, 2003. С. 320.
  3. Гладских Д.С., Степаненко В.М., Мортиков Е.М. О влиянии горизонтальных размеров внутренних водоемов на толщину верхнего перемешанного слоя // Вод. ресурсы. 2021. Т. 48. № 2. С. 155–163.
  4. Коропеев М.П., Ульбаев Т.С., Артамонова И.М. Роль метана в парниковом эффекте // Природообустройство. 2009. № 1. С. 44–49.
  5. Степаненко В.М. Математическое моделирование теплового режима и динамики парниковых газов в водоемах суши. М.: МГУ, 2018. 361 с.
  6. Степаненко В.М., Гречушникова М.Г., Репина И.А. Численное моделирование эмиссии метана из водохранилища // Фундаментал. приклад. климатология. 2020. № 2. С. 76–99.
  7. Степаненко В.М., Мачульская Е.Е., Глаголев М.В., Лыкосов В.Н. Моделирование эмиссии метана из озер зоны вечной мерзлоты // Изв. РАН. Физика атмосферы и океана. 2011. Т. 47. № 2. С. 275–288.
  8. Цветова Е.А. Моделирование пузырькового выхода газа в условиях стратифицированной среды водоема // Интерэкспо Гео-Сибирь. 2017. № 1. С. 146–150.
  9. Basiviken D., Ejlertsson J., Tranvik L. Measurement of Methane Oxidation in Lakes: A Comparison of Methods // Environ. Sci. Technol. 2002. V. 36. № 15. P. 3354–3361.
  10. Bazhin N.M. Gas transport in a residual layer of a water basin // Chemosphere – Global Change Sci. 2001. V. 3. № 1. P. 33–40.
  11. Bazhin N.M. Theoretical consideration of methane emission from sediments // Chemosphere. 2003. V. 50. № 2. P. 191–200.
  12. Dankwerts P.V. Significance of liquid-film coefficients in gas absorption // Industrial Engineering Chem. 1951. V. 43. № 6. P. 1460–1467.
  13. Forster P., Ramaswamy V., Artaxo P. et. al. Changes in atmospheric constituents and in Radiative Forcing // Asses. Report of the IPCC. Cambridge: Cambridge Univ. Press, 2007. P. 129–217.
  14. Gaudard A., Schwefel R., Vinnà L. R. et al. Optimizing the parameterization of deep mixing and internal seiches in one-dimensional hydrodynamic models: a case study with Simstrat v1.3 // Geosci. Model Dev. 2017. V. 10. № 9. P. 3411–3423.
  15. Gladskikh D., Ostrovsky L., Troitskaya Y., Soustova I., Mortikov E. Turbulent Transport in a Stratified Shear Flow // J. Mar. Sci. Eng. 2023. V. 11 (1). P. 136.
  16. Goudsmit G.-H., Burchard H., Peeters F. et al. Application of k-e turbulence models to enclosed basins: The role of internal seiches // J. Geophys. Res. 2002. V. 107. No C12. P. 3230.
  17. Guo M., Zhuang Q., Tan, Z. et al. Rising methane emissions from boreal lakes due to increasing ice-free days // Environ. Res. Lett. Institute of Physics Publishing, 2020. V. 15. No 6. P. 064008.
  18. Guseva S., Bieninger T., Johnk K., Polli B.A., Tan Z., Thierry W., Zhuang Q., Rusak J.A., Yao H., Lorke A., Stepanenko V. Multimodel simulation of vertical gas transfer in a temperate lake // Hydrol. Earth System Sci. 2020. V. 24. P. 697–715.
  19. Heiskanen J., Mammarella I., Haapanala S., Pumpanen J., Vesala T., MacIntyre S., Ojala A. Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake // Tellus B. 2014. V. 66. P. 22827.
  20. Holland W.R., Chow J.C., Bryan F.O. Application of a Third-Order Upwind Scheme in the NCAR Ocean Model // J. Climate. 1998. V. 11. No 6. P. 1487–1493.
  21. Iakunin M., Stepanenko V., Salgado R., Potes M., Penha A., Novais M.H., Rodrigues G. Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western Europe using the LAKE 2.0 model // Geosci. Model Development. 2020. V. 13. No 8. P. 3475–3488.
  22. IPCC (Intergovernmental Panel on Climate Change). IPCC, 2014: Climate Change 2014: Synthesis Report / Eds Writing Team, R.K. Pachauri, L.A. Meyer. Geneva, Switzerland: IPCC, 2014. 151 p.
  23. Jacobs J.D., Grondin L.D. The influence of an Arctic large-lakes system on mesoclimate in south-central Baffin Island, NWT, Canada // Arctic Alpine Res. 1988. No 20 (2). P. 212–219.
  24. Kadantsev E., Mortikov E., Zilitinkevich S. The resistance law for stably stratified atmospheric planetary boundary layers // Q.J.R. Met. Soc. 2021. V. 147. No 737. P. 2233–2243.
  25. Kato H., Phillips O.M. On the penetration of a turbulent layer into stratified fluid // J. Fluid Mechanics. 1969. V. 37. No 4. P. 643.
  26. Kessler M.A., Plug L.J., Walter Anthony K.M. Simulating the decadal-to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska // J. Geophys. Res.: Biogeosci. 2012. V. 117. No G2. P. G00M06.
  27. Kurganov A., Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations // J. Computational Phys. 2000. V. 160. No 1. C. 241–282.
  28. Leveque R.J. High-Resolution Conservative Algorithms for Advection in Incompressible Flow // SIAM J. Num. Analysis. 1996. V. 33. No 2. P. 627–655.
  29. Lomov V., Stepanenko V., Grechushnikova M., Repina I. Mechanistic modeling of the variability of methane emissions from an artificial reservoir // Water. 2023. V. 16. No 1. P. 76.
  30. MacIntyre S., Jonsson A., Jansson M. et al. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake // Geophys. Res.Lett. 2010. T. 37. No 24. P. L24604.
  31. Makhov G.A., Bazhin N.M. Methane emission from lakes // Chemosphere. 1999. V. 38. No 6. P. 1453–1459.
  32. Michaelis L., Menten M.L. Die kinetik der invertinwirkung // Biochem. z. 1913. T. 49. No 333–369. P. 352.
  33. Morinishi Y., Lund T.S., Vasilyev O.V., Moin P. Fully conservative higher order finite difference schemes for incompressible flow // J. Comp. Phys. 1998. V. 143. No 1. P. 90–124.
  34. Mortikov E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108–115.
  35. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure–strain correlations // Russian J. Numerical Analysis and Mathematical Modelling. 2019. V. 34. No 2. P. 119–132.
  36. Price J.F. On the scaling of stress-driven entrainment experiments // J. Fluid Mechanics. 1979. V. 90. No 4. P. 509.
  37. Rehder Z., Kleinen T., Kurbach L. et al. Simulated methane emissions from Arctic ponds are highly sensitive to warming // Biogeosci. 2023. V. 20. No 14. P. 2837–2855.
  38. Reichert P. AQUASIM – A tool for simulation and dataanalysis of aquatic systems // Water Sci. Technol. 1994. V. 30. P. 21–30.
  39. Rosenkreter J.A., Borges A.V., Deemer B.R. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources // Nat. Geosci. 2021. V. 14. No 4. P. 225–230.
  40. Sabrekov A.F., Runkle B.R., Glagolev M.V. et al. Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls // Biogeosci. 2017. V. 14. No 15. P. 3715–3742.
  41. Schmid M., Ostrovsky I., McGinnis D.F. Role of gas ebullition in the methane budget of a deep subtropical lake: What can we learn from process-based modeling? // Limnol. Oceanogr. 2017. V. 62. P. 2674–2698.
  42. Stepanenko V.M., Goyette S., Martynov A., Perroud M., Fang X., Mironov D. First steps of a lake model intercomparison project: LakeMIP // Boreal Environ. Res. 2010. V. 15. № 2. P. 191.
  43. Stepanenko V.M., Grechushnikova M.G., Repina I.A. Numerical simulation of methane emission from an artificial reservoir // Izvestiya – Atmospheric Oceanic Phys. 2022. V. 58. № 6. P. 649–659.
  44. Stepanenko V., Jöhnik K.D., Machulskaya E., Perroud M., Subin Z., Nordbo A. et al. Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models // Tellus A: Dynamic Meteorol. Oceanogr. 2014. V. 66. № 1. P. 21389.
  45. Stepanenko V.M., Machul’skaya E.E., Glagolev M.V. et al. Numerical modeling of methane emissions from lakes in the permafrost zone // Izv. Atmos. Ocean. Phys. 2011. V. 47. P. 252–264.
  46. Stepanenko V., Mammarella I., Ojala A., Mettinen H., Lykosov V., Vesala T. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geosci. Model Dev. 2016. V. 9. P. 1977–2006.
  47. Stepanenko V.M., Martynov A., Jöhnik K.D., Subin Z.M., Perroud M., Fang X., Beyrich F., Mironov D., Goyette S. A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake // Geosci. Model Dev. 2013. V. 6. P. 1337–1352.
  48. Stepanenko V.M., Valerio G., Pilotti M. Horizontal Pressure Gradient Parameterization for One-Dimensional Lake Models // J. Advances Modeling Earth Systems. 2020. V. 12. № 2. P. e2019MS001906.
  49. Tan Z., Zhuang Q., Walter Anthony K. Modeling methane emissions from arctic lakes: Model development and site-level study // J. Advances Modeling Earth Systems. 2015. V. 7. P. 459–483.
  50. Thierry W., Davin E.L., Panitz H., Demuzere M., Lhermitte S., van Lipzig N. The Impact of the African Great Lakes on the Regional Climate // J. Climate. 2015. V. 28. № 10. P. 4061–4085.
  51. Tranvik L.J., Downing J.A., Comer J.B., Loiselle S.A., Striegl R.G., Ballatore T.J., Dil-lon P., Knoll L.B., Kaiser T. et al. Lakes and reservoirs as regulators of carbon cycling and climate // Limnol. Oceanogr. 2009. V. 54. P. 2298–2314.
  52. Zhuang Q., Guo M., Melack J.M. et al. Current and Future Global Lake Methane Emissions: A Process-Based Modeling Analysis // J. Geophys. Res. Biogeosci. 2023. V. 128. № 3. P. e2022JG007137.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025