Оригинальное исследование

DOI: https://doi.org/10.17816/0321-4443-634161

EDN: RAMYUQ

Расчёт нормальной жёсткости шин для тракторов и сельскохозяйственных машин на основе радиуса качения колеса

Е.В. Балакина, И.В. Сергиенко, В.А. Коньшин

Волгоградский государственный технический университет, Волгоград, Россия

RNJATOHHA

Обоснование. Для сохранения физических свойств почв производители сельскохозяйственных машин используют средства уменьшения давления опорных элементов шасси на грунт. Одно из них — снижение жесткости шин. Нормальная (радиальная) жёсткость шины определяет её способность к деформированию и геометрические параметры пятна контакта, определяющие давление на почву. Значения величины нормальной жесткости шины при проектном моделировании движения тракторов и сельскохозяйственных машин рассчитывают по известным универсальным экспериментальным зависимостям, не являющимся специализированными для тракторов и сельскохозяйственных машин.

Цель работы — разработка методики расчёта нормальной жесткости шин для тракторов и сельскохозяйственных машин на основе радиуса качения в ведомом режиме колеса.

Материалы и методы. Для тракторов и сельскохозяйственных машин расчёты нормальной жесткости шин заданного свободного радиуса при нормируемом давлении в шине и вертикальной нагрузке производились по новой предложенной методике через радиус качения в ведомом режиме колеса. Использовались программные продукты: Excel, MatLab, Curve Expert Professional.

Результаты. Разработана методика расчёта нормальной (радиальной) жёсткости сельскохозяйственной шины заданного свободного радиуса при заданной нагрузке и внутреннем давлении, основанная на использовании радиуса качения в ведомом режиме колеса. По полученной методике рассчитаны жесткости 93 шин для тракторов и сельско-хозяйственных машин. Максимальная погрешность расчёта жёсткости сельскохозяйственных шин по предложенной методике составила для радиальных и диагональных шин 20%, а средняя погрешность составила: для радиальных шин — 6%, а для диагональных шин — 10%.

Заключение. Разработана и реализована методика расчёта нормальной жесткости сельскохозяйственных шин через радиус качения в ведомом режиме колеса. Методика может быть использована при проектном моделировании движения трактора или сельскохозяйственной машины.

Ключевые слова: шина трактора; шина сельскохозяйственной машины; нормальная жёсткость; методика расчёта; радиус качения.

Как цитировать:

Балакина Е.В., Сергиенко И.В., Коньшин В.А. Расчёт нормальной жесткости шин для тракторов и сельскохозяйственных машин на основе радиуса качения колеса // Тракторы и сельхозмашины. 2025. Т. 92, № 2. С. 157–167. DOI: 10.17816/0321-4443-634161 EDN: RAMYUQ

Рукопись получена: 09.07.2024 Рукопись одобрена: 20.05.2025 Опубликована online: 20.05.2025

Original Study Article

158

Calculation of Normal Tire Stiffness for Tractors and Agricultural Machinery Based on the Loaded Wheel Radius

Ekaterina V. Balakina, Ivan V. Sergienko, Vladimir A. Konshin

Volgograd state technical university, Volgograd, Russia

ABSTRACT

BACKGROUND: To preserve the physical properties of soils, manufacturers of agricultural machinery use tools to reduce the pressure of the chassis supporting elements on the ground. One of them is reducing tire stiffness. The normal (radial) stiffness of a tire determines its ability to deform and the geometric parameters of the contact patch, which determine the pressure on the soil. The values of the normal tire stiffness during design modeling of the motion of tractors or agricultural machinery are calculated using existing universal experimental dependencies that are not specialized for tractors and agricultural machinery. **AIM:** Development of a method for calculating the normal tire stiffness for tractors and agricultural machinery based on the loaded wheel radius.

METHODS: Calculations of the normal stiffness of the tires with a given free radius at normalized tire pressure and vertical load for tractors and agricultural machinery were carried out according to the new proposed method using the loaded radius. The used software products are Excel, MatLab, Curve Expert Professional.

RESULTS: A method has been developed for calculating the normal (radial) stiffness of an agricultural tire of a given free radius at a given load and internal pressure, based on the use of the loaded wheel radius. Using the obtained method, the stiffness of 93 tires for tractors and agricultural machinery was calculated. The maximum error in calculating the stiffness of agricultural tires using the proposed method was 20% for radial and diagonal tires and the average error was 6% for radial tires and 10% for bias tires.

CONCLUSION: A method for calculating the normal stiffness for agricultural tires using the loaded wheel radius has been developed and implemented. The method can be used in design modeling of the motion of a tractor or an agricultural machine.

Keywords: tractor tire; agricultural machine tire; normal stiffness; calculation method; loaded radius.

To cite this article:

Balakina EV, Sergienko IV, Konshin VA. Calculation of Normal Tire Stiffness for Tractors and Agricultural Machinery Based on the Loaded Wheel Radius. *Tractors and Agricultural Machinery*. 2025;92(2):157–167. DOI: 10.17816/0321-4443-634161 EDN: RAMYUQ

Submitted: 09.07.2024 Accepted: 20.05.2025 Published online: 20.05.2025

ОБОСНОВАНИЕ

Механика колеса трактора и сельскохозяйственной машины такая же. как и для любой мобильной машины [1]. Отличие условий работы колёс тракторов и сельскохозяйственных машин — в возможности деформирования опорной поверхности. Для сохранения физических свойств почв производители сельскохозяйственных машин используют средства уменьшения давления опорных элементов шасси на грунт [2-5]. Одно из них — снижение жёсткости шин. Нормальная (радиальная) жёсткость шины является важным параметром при проектном моделировании движения машины [6-10]. Эта характеристика определяет способность шины к деформированию и геометрические параметры пятна контакта, определяющие давление шины на почву. Значения величины нормальной жёсткости шины рассчитывают при математическом моделировании по существующим экспериментальным зависимостям [11]. Однако они являются универсальными для всех типов шин, а не специализированными для тракторов и сельскохозяйственных машин.

ЦЕЛЬ РАБОТЫ

Целью исследования является разработка методики расчёта нормальной жесткости шин для тракторов и сельскохозяйственных машин на основе радиуса качения в ведомом режиме колеса.

МЕТОДИКА ИССЛЕДОВАНИЯ

Колесо трактора или сельскохозяйственной машины является деформируемым твёрдым телом. Нормальная (радиальная) жёсткость его шины определяет нормальную деформацию под нагрузкой и связанную с ней длину пятна контакта [12]:

$$Z_t = \frac{P_z}{C_{tz}},\tag{1}$$

где C_{tz} — нормальная жесткость шины; P_z — нормальная нагрузка колеса; Z_t — нормальная деформация шины;

$$l_c = 2k_h \sqrt{Z_t \cdot (2r_0 - Z_t)}$$
, (2)

где l_c — длина пятна контакта; r_0 — свободный радиус шины; k_h — коэффициент учета уменьшения длины пятна контакта ($k_h=0.7$ для шин тракторов и сельскохозяйственных машин).

Схема деформированного колеса под нормальной нагрузкой P_z приведена на рис. 1. Длина пятна контакта шины с заданной шириной профиля образуют область пятна контакта, на которую приходится нормальная нагрузка колеса. Чем больше контурная площадь пятна

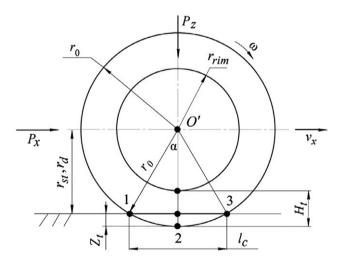
контакта, тем меньше давление опорного колеса на грунт, что важно для сохранения его свойств.

Кроме того, нормальная деформация шины и длина пятна контакта влияют на величину бокового увода оси трактора при движении по недеформируемой опорной поверхности.

В соответствии с деформационной теорией, в общем случае имеем

$$\operatorname{tg} \delta \sim Y; \ \frac{1}{l_c}, \tag{3}$$

где δ — угол бокового увода колеса; Y_t — боковая деформация шины; l_c — длина пятна контакта.


Так как длина пятна контакта обратно пропорциональная нормальной жёсткости шины, то взаимосвязь нормальной жёсткости и бокового увода прямо пропорциональная

$$\delta \sim C_{tz}$$
 (4)

При этом преобладающее влияние на увод оказывает не нормальная (радиальная) жесткость шины, а боковая жёсткость шины, через боковую деформацию

$$Y_t = \frac{P_y}{C_{ty}}, (5)$$

где C_{ty} — боковая жёсткость шины; P_y — боковая сила колеса; Y_t — боковая деформация шины.

Рис. 1. Схема колеса: P_z — нормальная нагрузка колеса; P_x — толкающая сила колеса; v_x — скорость поступательного движения колеса; ω — угловая скорость колеса; l_c — длина пятна контакта; Z_t — нормальная (радиальная) деформация шины; H_t — высота профиля шины; r_0 — свободный (конструктивный) радиус шины; r_{rim} — посадочный радиус шины; r_{st} — статический радиус колеса; r_d — динамический радиус колеса.

Fig. 1. Diagram of a wheel: P_z : normal wheel load; P_x : wheel pushing force; v_x : velocity of translational wheel motion; ω : rotation velocity of a wheel; l_c : contact patch length; Z_t : normal (radial) tire deformation; H_t : tire profile height; r_0 : wheel free radius; r_{rim} : wheel rim radius; r_{st} : wheel static radius; r_d : wheel dynamic radius.

Таким образом взаимосвязь боковой жёсткости шины и бокового увода обратно пропорциональная

$$\delta \sim \frac{1}{C_{n_i}} \,. \tag{6}$$

Жёсткости шин входят в состав основных параметров, значения которых требуются для проектного расчета движения колесной машины. Их можно определять разными способами: экспериментально; расчётом по известным универсальным зависимостям: расчетом по новой предлагаемой методике через радиус качения в ведомом режиме. Измерять жёсткость шин экспериментально на этапе проектного моделирования машины трудоёмко и дорого. Существуют разные универсальные зависимости для приближенного расчета жёсткостей шин. Некоторые из них приведены в табл. 1 и 2. Предлагаемая методика расчёта нормальной жёсткости шины базируется на использовании радиуса качения в ведомом режиме. Колесо имеет и другие расчётные радиусы, как показано на рис. 1. Однако, показателем взаимосвязи линейных и угловых силовых и кинематических параметров колеса является именно радиус качения [14-17].

Радиус качения шины в ведомом режиме можно определить экспериментально по пройденному пути

$$r_r = \frac{L_t}{2\pi} \,, \tag{7}$$

где L_t — путь, пройденный колесом за 1 оборот.

Также радиус качения в ведомом режиме можно рассчитать по полученной ранее приближенной зависимости [17]:

$$r_r \approx r_0 \left(1 + \frac{k_h \sqrt{n(2-n)} - \arcsin\left(k_h \sqrt{n(2-n)}\right)}{\pi} \right), (8)$$

где *п* — относительная радиальная деформация шины (

$$n = \frac{Z_t}{r_0}$$
) [18].

Установлено, что округление коэффициента k_h до 1 практически не влияет на результаты расчета радиуса качения в ведомом режиме по формуле (8). Поэтому допустимо считать, что

$$r_r \approx r_0 \left(1 + \frac{\sqrt{n(2-n)} - \arcsin\left(\sqrt{n(2-n)}\right)}{\pi} \right). \tag{9}$$

С использованием среды Matlab эту функцию удалось упростить до выражения (10):

$$\frac{r_r}{r_0} \approx 1 - 0.075 \cdot n \implies n = \frac{1 - (r_r/r_0)}{0.075}$$
 (10)

Некоторые производители измеряют радиус качения шин в ведомом режиме и вносят их в каталоги. Это даёт возможность также определения экспериментальных значений относительной радиальной деформации шины n по формуле (10).

По определению $n=rac{Z_t}{r_0}$. Приравняв эти зависимости,

после математических преобразований получим

$$Z_t \approx \frac{r_0 - r_r}{0.075} \,. \tag{11}$$

В силу того, что нормальная жёсткость шины равна:

$$C_{tz} = \frac{P_z}{Z_t},$$

Таблица 1. Зависимости для расчёта нормальной жёсткости грузовых шин [11]

Table 1. Calculation dependencies for the normal stiffness of truck tires [11]

Шины	Формула для расчёта жёсткости	Средняя относительная погрешность, %
Грузовые радиальные	$C_{tz} = 0.324 \cdot P_z^{0.773}$	6,4
Грузовые диагональные	$C_{tz} = 6,151 \cdot P_z^{0,473}$	6,3

 $C_{tz}\,$ — в Н/мм; $P_z\,$ — в Н.

Таблица 2. Зависимости для расчёта боковой жёсткости всех шин [13]

Table 2. Calculation dependencies for the lateral stiffness of all tires [13]

Pier	Dovovouskovas dopvass	Значение п	остоянных коэф	официентов	Chorusa ethecutes usa serbennicati M	
Вид	Рекомендуемая формула	а	b	С	Средняя относительная погрешность, 9	
Степенная	$C_{ty} = a \cdot P_z^b$	1,12	0,73	_	12	
Харриса	$C_{ty} = \frac{1}{a + b \cdot P_z^c}$	0,08755	-0,06	0,045	15	

 P_z — в кГс (или в 10⁻¹ H); $C_{\scriptscriptstyle Iy}$ — в Н/мм; a,b,c — постоянные безразмерные коэффициенты.

тогда

$$C_{tz} \approx \frac{0.075 P_z}{r_0 - r_r}$$
 (12)

С учётом выражения (10) получим:

$$C_{tz} \approx \frac{0.075P_z}{r_0 - (r_0 - 0.075r_0 \cdot n)} = \frac{P_z}{r_0 \cdot n};$$
 (13)

$$C_{tz} \approx \frac{P_z}{r_0 \cdot n} \,. \tag{14}$$

Таким образом, нормальная жёсткость C_{tz} шины свободного радиуса r_0 при нормируемом давлении и при вертикальной нагрузке P_z может быть определена через радиус качения в ведомом режиме r_r по формуле (12), а также через относительную деформацию n по формуле (14) параметры r_r и n связаны между собой зависимостями (10).

Значение r_r можно определить делением на 2π экспериментальной величины длины окружности обкатки шины по данным завода-изготовителя с погрешностью до 2,5%. В случае отсутствия такого значения, эту величину можно рассчитать по теоретической зависимости (8). Однако для использования этой зависимости также необходимо знать относительную деформацию n. Максимальные значения n современных радиальных шин, соответствующие максимальным нормальным деформациям Z_t , рассчитаны в источнике [18] и приведены в табл. 3. Формула (8) позволяет вычислять значения n, соответствующие не только максимальным, но и текущим нормальным деформациям Z_t шины.

Таблица 3. Параметры всех современных шин обычного профиля **Table 3.** Parameters of all modern regular profile tires

Отношение высоты профиля к ширине $\frac{H_t}{B_t}$	Нормальная нагрузка колеса P_z , Н	Наружный диаметр шины в свободном состоянии d_0 , мм	$n = \frac{Z_t}{r_0}$	$n' = \frac{Z_t}{H_t}$
0,651	290014000	514864	≈0,11	≈0,26

Для оценки возможности использования разработанной методики для расчёта нормальной жесткости шин тракторов и сельскохозяйственных машин через радиус качения в ведомом режиме $C_{tz}=f(P_z;r_0;r_r)$, результаты расчёта по ней сравнивались с результатами расчёта по универсальным расчетно-экспериментальным зависимостям $C_{tz}=f(P_z)$ в виде показательных функций.

Всего было рассмотрено 55 радиальных и 38 диагональных шин для тракторов и сельскохозяйственных машин [19]. Исходные данные для расчетов сведены в табл. 4 и 5.

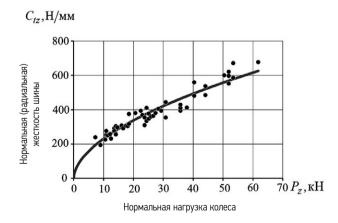
Таблица 4. Характеристики диагональных шин для тракторов и сельскохозяйственных машин по ГОСТ 7463-2003

Table 4. Properties of bias tires for tractors and agricultural machinery according to GOST 7463-2003

Типоразмер	P_z , ${\sf H}$	d_0 , мм	r_{st} , mm
4.00-10	1814	475	224
6L-12	1569	570	267
9.5-32	10444	1240	590
	12602	1240	590
9.5-42	12258	1512	725
11.2-20	11572	985	460
11.2-28	10983	1210	567
	12945	1210	567
13.6-20	14220	1060	490
14.9-30	16671	1402	650
	19123	1402	650
15.5-38	17652	1570	738
	20202	1570	738
	23144	1570	738
18.4-24	21967	1400	623
18.4/78-30	20790	1525	693
	23830	1525	693
	28439	1525	693
18.4-34	22555	1650	750
	25988	1650	750
18.4-38	23830	1750	800
	26723	1750	800
30.5L-32	46582	1870	840
6.00-16	5492	735	352
6.50-16	6031	760	362
7.50-16	7355	805	370
7.50-20	8581	910	427
	10101	910	427
9.00-20	10983	930	430
9.00-16	16181	865	380
10.0/75-15.3	13337	760	343
	15200	760	343
	16671	760	343
13.0/75-16	18633	900	400
15.5/65-18	22555	980	450
16.5/70-18	31872	1065	484
	35794	1065	484
22.0/70-20	39227	1300	562

Таблица 5. Характеристики радиальных шин для тракторов и сельскохозяйственных машин по ГОСТ 7463-2003

Table 5. Properties of radial tires for tractors and agricultural machinery according to GOST 7463-2003


Типоразмер	P_z , H	d_0 , мм	r_{st} , mm
9.5R32	10983	1245	579
9.5R42	12945	1500	720
11.2R20	10689	995	450
	13729	995	450
11.2R24**	11572	1095	501
11.2R28	12258	1200	552
11.2R32	12602	1300	595
	14220	1300	595
	20790	1300	595
11.2R42	16671	1555	740
360/70R24**	14710	1114	507
12.4R28	14220	1250	578
13.6R20	13729	1060	480
13.6R24**	14220	1190	539
380/70R24**	16181	1142	518
13.6R38	17652	1550	717
14.9R24**	16671	1245	565
	22555	1245	565
420/70R24	18633	1198	540
14.9R30	18142	1400	640
31x15.5R16	9071	790	348
15.5R38	20790	1570	730
480/70R24	23144	1316	595
16.9R30	22555	1475	680
480/70R30	25252	1478	666
16.9R34	23830	1575	720
480/70R34	26723	1580	716
16.9R38	25252	1675	770
480/70R38	28439	1681	770
18.4R24	23830	1395	620
18.4R26	24517	1440	646
18.4R30	25988	1545	700
18.4R34	27459	1645	750
	40452	1645	750
18.4R38	29420	1750	800
18.4R42	30891	1850	855
20.8R38**	35794	1835	826
20.8R42**	38001	1935	875
21.3R24	24517	1400	640
23.1R26	30891	1605	715
	35794	1605	715
	51975	1605	715

Типоразмер	P_z , H	d_0 , мм	r_{st} , mm
620/75R26	35794	1590	711
	51975	1590	711
620/70R42**	44130	1935	885
650/75R32**	44130	1789	803
	53446	1789	803
	61782	1789	803
710/70R38**	51975	1959	885
28LR26**	40452	1607	719
	50504	1607	719
30.5LR32	53446	1820	830
7.50R16	7355	792	365
9.00R20	10983	930	425
13.0/75R16	18633	900	400

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ

Для тракторов и сельскохозяйственных машин произведены расчёты нормальной жёсткости шин свободного радиуса при нормируемых давлении в шине и вертикальной нагрузке на неё по предложенной методике (через радиус качения в ведомом режиме) и по расчётно-экспериментальной зависимости (см. табл. 1). Всего было рассмотрено 55 радиальных и 38 диагональных таких шин. Результаты расчётов сведены в табл. 6, 7. В графическом виде они показаны на рис. 2 и 3.

Максимальная погрешность расчёта нормальной жёсткости радиальных шин для тракторов

Рис. 2. Результаты расчёта для радиальных шин тракторов и сельско-хозяйственных машин: линия — расчёт по универсальной зависимости $C_{lz}=f(P_z)$; точки — расчёт по полученной теоретической зависимости вида $C_{tz}=f(P_z;r_0;r_r)$.

Fig. 2. Calculation results for radial tires of tractors and agricultural machinery: line: calculation based on universal dependence $C_{tz} = f(P_z)$; points: calculation based on the obtained theoretical dependence $C_{tz} = f(P_z; r_0; r_r)$.

Таблица 6. Результаты расчёта для радиальных шин тракторов и сельскохозяйственных машин

Table 6. Calculation results for radial tires of tractors and agricultural machinery

Типоразмер	Pac	Расчёт по теоретической зависимости $\ C_{tz} = f(P_z; r_0; r_r)$					
	r_0 , mm	Z_t , mm	n	r_r , mm	C_{tz} , $ ext{H/mm}$	$C_{\it tz}$, Н/мм	
ρ.5R32	497,5	47,5	0,095	493,9	225	240,0	
9.5R42	497,5	47,5	0,095	493,9	289	275,1	
11.2R20	547,5	46,5	0,085	544,0	249	250,6	
	600	48	0,080	596,4	255	258,6	
11.2R24**	650	55	0,085	645,9	229	262,6	
11.2R28	650	55	0,085	645,9	259	280,5	
11.2R32	650	55	0,085	645,9	378	345,1	
	777,5	37,5	0,048	774,7	345	305,9	
	557	50	0,090	553,3	294	285,7	
11.2R42	625	47	0,075	621,5	303	280,5	
360/70R24**	530	50	0,094	526,3	275	275,1	
12.4R28	595	56	0,094	590,8	254	280,5	
13.6R20	571	53	0,093	567,0	305	301,0	
13.6R24**	775	58	0,075	770,7	304	315,6	
380/70R24**	622,5	57,5	0,092	618,2	290	305,9	
13.6R38	622,5	57,5	0,092	618,2	392	360,8	
14.9R24**	599	59	0,098	594,6	316	325,1	
	700	60	0,086	695,5	302	320,4	
420/70R24	395	47	0,119	391,5	193	219,4	
14.9R30	785	55	0,070	780,9	378	345,1	
31x15.5R16	658	63	0,096	653,3	367	365,9	
15.5R38	737,5	57,5	0,078	733,2	392	360,8	
480/70R24	739	73	0,099	733,5	346	383,7	
16.9R30	787,5	67,5	0,086	782,4	353	371,8	
480/70R30	790	74	0,094	784,5	361	395,8	
16.9R34	837,5	67,5	0,081	832,4	374	383,7	
480/70R34	840,5	70,5	0,084	835,2	403	409,5	
16.9R38	697,5	77,5	0,111	691,7	307	371,8	
480/70R38	720	74	0,103	714,5	331	377,6	
18.4R24	772,5	72,5	0,094	767,1	358	389,8	
18.4R26	822,5	72,5	0,088	817,1	379	401,7	
18.4R30	822,5	72,5	0,088	817,1	558	496,3	
18.4R34	875	75	0,086	869,4	392	417,1	
	925	70	0,076	919,8	441	428,4	
18.4R38	917,5	91,5	0,100	910,6	391	464,3	
18.4R42	967,5	92,5	0,096	960,6	411	479,7	
20.8R38**	700	60	0,086	695,5	409	377,6	
20.8R42**	802,5	87,5	0,109	795,9	353	428,4	
21.3R24	802,5	87,5	0,109	795,9	409	464,3	
23.1R26	802,5	87,5	0,109	795,9	594	569,1	
	795	84	0,106	788,7	426	464,3	
	795	84	0,106	788,7	619	569,1	

Таблица 6. Окончание **Table 6.** Ending

Типоразмер	Pac	Расчёт по теоретической зависимости $\ C_{tz} = f(P_z; r_0; r_r)$					
	<i>r</i> ₀ , мм	Z_t , ${\sf MM}$	n	r_r , mm	C_{tz} , ${\sf H/mm}$	C_{tz} , H/mm	
620/75R26	967,5	82,5	0,085	961,3	535	520,5	
	894,5	91,5	0,102	887,6	482	520,5	
620/70R42**	894,5	91,5	0,102	887,6	584	577,9	
650/75R32**	894,5	91,5	0,102	887,6	675	625,5	
	979,5	94,5	0,096	972,4	550	569,1	
	803,5	84,5	0,105	797,2	479	496,3	
710/70R38**	803,5	84,5	0,105	797,2	598	560,3	
28LR26**	910	80	0,088	904,0	668	577,9	
	396	31	0,078	393,7	237	195,7	
30.5LR32	465	40	0,086	462,0	275	243,6	
7.50R16	450	50	0,111	446,3	373	325,1	
9.00R20	465	40	0.086	462,0	275	243,6	
13.0/75R16	450	50	0.111	446,3	373	325,1	

Таблица 7. Результаты расчёта для диагональных шин тракторов и сельскохозяйственных машин

Table 7. Calculation results for bias tires of tractors and agricultural machinery

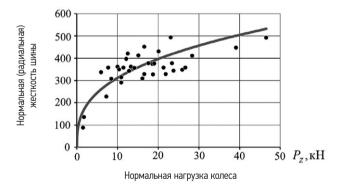

Типоразмер	Pac	нёт по теоретичес	кой зависимости	$C_{tz} = f(P_z; r_0;$	(r_r)	Расчёт по универсальной зависимости $C_{tz}=f(P_z)$
	r_0 , MM	Z_t , ${\sf MM}$	n	r_r , MM	C_{tz} , Н/мм	C_{tz} , Н/мм
4.00-10	237,5	13,5	0,057	236,5	134,4	172,4
6L-12	285	18	0,063	283,7	87,2	163,9
9.5-32	620	30	0,048	617,8	348,1	316,5
	620	30	0,048	617,8	420,1	337,8
9.5-42	756	31	0,041	753,7	395,4	334,6
11.2-20	492,5	32,5	0,066	490,1	356,1	327,9
11.2-28	605	38	0,063	602,2	289,0	322,0
	605	38	0,063	602,2	340,7	340,9
13.6-20	530	40	0,075	527,0	355,5	352,2
14.9-30	701	51	0,073	697,2	326,9	372,2
	701	51	0,073	697,2	375,0	390,4
15.5-38	785	47	0,060	781,5	375,6	379,7
	785	47	0,060	781,5	429,8	397,9
	785	47	0,060	781,5	492,4	417,1
18.4-24	700	77	0,110	694,2	285,3	409,6
18.4/78-30	762,5	69,5	0,091	757,3	299,1	401,9
	762,5	69,5	0,091	757,3	342,9	421,4
	762,5	69,5	0,091	757,3	409,2	448,0
18.4-34	825	75	0,091	819,4	300,7	413,4
	825	75	0,091	819,4	346,5	434,2
18.4-38	875	75	0,086	869,4	317,7	421,4
	875	75	0,086	869,4	356,3	438,4

Таблица 7. Окончание

Table 7. Ending

Типоразмер	Pac	Расчёт по универсальной зависимости $C_{tz}=f(P_z)$				
	<i>r</i> ₀ , мм	Z_t , ${\sf MM}$	n	r_r , mm	C_{tz} , Н/мм	$C_{\it tz}$, H/mm
30.5L-32	935	95	0,102	927,9	490,3	531,7
6.00-16	367,5	15,5	0,042	366,3	354,3	253,2
6.50-16	380	18	0,047	378,7	335,1	261,6
7.50-16	402,5	32,5	0,081	400,1	226,3	280,2
7.50-20	455	28	0,062	452,9	306,5	295,6
	455	28	0,062	452,9	360,7	312,8
9.00-20	465	35	0,075	462,4	313,8	322,0
9.00-16	432,5	52,5	0,121	428,6	308,2	368,4
10.0/75-15.3	380	37	0,097	377,2	360,5	344,5
	380	37	0,097	377,2	410,8	360,5
	380	37	0,097	377,2	450,6	372,2
13.0/75-16	450	50	0,111	446,3	372,7	386,9
15.5/65-18	490	40	0,082	487,0	563,9	413,4
16.5/70-18	532,5	48,5	0,091	528,9	657,1	466,1
	532,5	48,5	0,091	528,9	738,0	485,2
22.0/70-20	650	88	0,135	643,4	445,8	500,9

Рис. 3. Результаты расчёта для диагональных шин тракторов и сельскохозяйственных машин: линия — расчёт по универсальной зависимости $C_{tz} = f(P_z)$; точки — расчёт по полученной теоретической зависимости вида $C_{tz} = f(P_z; r_0; r_r)$.

Fig. 3. Calculation results for for bias tires of tractors and agricultural machinery: line: calculation based on universal dependence $C_{tz}=f(P_z)$; points: calculation based on the obtained theoretical dependence $C_{tz}=f(P_z;r_0;r_r)$.

и сельскохозяйственных машин по методике радиуса качения в ведомом режиме $C_{tz}=f(P_z;r_0;r_r)$ не превышает 20%, а средняя погрешность не превышает 6%.

Максимальная погрешность расчёта нормальной жёсткости диагональных шин для тракторов и сельско-хозяйственных машин по методике $C_{tz} = f(P_z; r_0; r_r)$

не превышает 20%, а средняя погрешность не превышает 10%.

ЗАКЛЮЧЕНИЕ

Разработана методика расчёта нормальной (радиальной) жёсткости шин для тракторов и сельскохозяйственных машин. Она основана на использовании радиуса качения в ведомом режиме колеса и учитывает также его свободный радиус и нормальную нагрузку на него. Методика реализована для 55 радиальных и 38 диагональных шин сельскохозяйственного назначения. Величины нормальной жёсткости определены при нормируемых давлении в шине и вертикальной нагрузке на неё. Результаты показали, что максимальная погрешность расчёта нормальной жёсткости рассматриваемых шин по предложенной методике составила 20%, а средняя погрешность — 6% для радиальных шин и 10% для диагональных шин. Методика может быть полезна при проектном моделировании движения колёсной сельскохозяйственной машины. Результаты исследования не распространяются на шины сверхнизкого давления.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Вклад авторов. Е.В. Балакина — разработка концепции, разработка теоретической методики, общее руководство теоретическими исследованиями, подготовка статьи; И.В. Сергиенко — обработка результатов

экспериментов, теоретические расчёты, библиографический поиск, подготовка статьи; В.А. Коньшин — обработка результатов экспериментов, теоретические расчёты, подготовка статьи. Все авторы одобрили рукопись (версию для публикации), а также согласились нести ответственность за все аспекты работы, гарантируя надлежащее рассмотрение и решение вопросов, связанных с точностью и добросовестностью любой её части.

Этическая экспертиза. Неприменимо.

Источники финансирования. Исследование выполнено за счёт средств программы развития ВолгГТУ «Приоритет 2030». в рамках научного проекта № 9/650-24.

Раскрытие интересов. Авторы заявляют об отсутствии отношений, деятельности и интересов за последние три года, связанных с третьими лицами (коммерческими и некоммерческими), интересы которых могут быть затронуты содержанием статьи.

Оригинальность. При создании настоящей работы авторы не использовали ранее опубликованные сведения (текст, иллюстрации, данные), кроме формул (2) и (8), при которых даны ссылки на собственные источники.

Доступ к данным. Редакционная политика в отношении совместного использования данных к настоящей работе не применима, новые данные не собирали и не создавали.

Генеративный искусственный интеллект. При создании настоящей статьи технологии генеративного искусственного интеллекта не использовали.

Рассмотрение и рецензирование. Настоящая работа подана в журнал в инициативном порядке и рассмотрена по обычной процедуре. В рецензировании участвовали два внешних рецензента, член редакционной коллегии и научный редактор издания

ADDITIONAL INFORMATION

Author contributions: E.V. Balakina: concept development, development of a theoretical methodology, general management of theoretical research, writing the text of the manuscript; I.V. Sergienko: processing of experimental results, theoretical calculations, bibliographic search, article development; V.A. Konshin: processing of experimental results, theoretical calculations, writing the text of the manuscript. Thereby, all authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Ethics approval: Not applicable.

Funding source: The research was carried out at the expense of the funds of the development program of VSTU "Priority 2030" within the framework of scientific project No. 9/650-24.

Disclosure of interests: The authors have no relationships, activities or interests for the last three years related with for-profit or non-profit third parties whose interests may be affected by the content of the article.

Statement of originality: In creating this work, the author did not use previously published information (text, illustrations, data), except for formulas (2) and (8), which contain references to their own sources.

Data availability statement: Editor's policy in terms of collective use of data is not applicable to this paper, any new data are neither collected nor created. **Generative AI:** Generative AI technologies were not used for this article creation.

Provenance and peer-review: The paper was submitted to the journal in a proactive way and was reviewed according to the standard procedure. Two external reviewers, a member of the editorial board and the scientific editor of the journal took part in the review.

СПИСОК ЛИТЕРАТУРЫ | REFERENCES

- 1. Balabin IV, Chabunin IS under general ed. IV Balabin. *Mechanics of the wheel of a mobile car.* Moscow: MGTU im N.E Baumana; 2022. (In Russ.)
- **2.** Godzhaev ZA, Pryadkin VI, Kolyadin PA, Artemov AV. Promising mobile vehicles with ultra-low pressure tires for agricultural production. *Tractors and Agricultural Machinery.* 2022;89(4):277–286. (In Russ.) doi: 10.17816/0321-4443-115016 EDN: EHPEDS
- **3.** Godzhaev ZA, Goncharenko SV, Artemov AV, et al. Computational and experimental assessment of the influence of ultra-low pressure tires of mobile power equipment on soil. *Tractors and Agricultural Machinery*. 2020;3:35–47 (In Russ.). doi: 10.31992/0321-4443-2020-3-35-47 EDN: CRBLBG
- **4.** Revenko VYu, Godzhaev ZA, Rusanov AV. Methods for assessing the contact area of wheel propellers with a support base. *Tractors and Agricultural Machinery.* 2019;86(5):48–54. (In Russ.) doi: 10.31992/0321-4443-2019-5-48-54
- **5.** Leiva-Villacorta F, Vargas-Nordcbeck A, Aguiar-Moya JP, et al. Influence of Tire Footprint Area and Pressure Distribution on Pavement Responses. In: *The Roles of Accelerated Pavement Testing in Pavement Sustainability.* Cham: Springer. 2016;685–700. doi: 10.1007/978-3-319-42797-3_45
- **6.** Kravec VN, Selifonov VV. *Automobile theory*. Moscow: Greenlight+; 2011. (In Russ.)
- 7. Larin VV. Theory of movement of all-wheel drive wheeled vehicles: Textbook for universities. Moscow: MGTU im N.E Baumana; 2010. (In Russ.)
- **8.** Polungyan AA. *Design of all-wheel drive wheeled vehicles.* V 3: Textbook for universities. under ed. Moscow: MGTU im N.E Baumana; 2008. (In Russ.)

- 9. Pacejka HB. Tire and Vehicle Dynamics. New York: Elsevier; 2012.
- **10.** Jazar RN. *Vehicle Dynamics: Theory and Application*. New York: Springer Science + Business Media; 2008.
- 11. Balakina EV, Zadvornov VN, Berezovsky MS, et al. Study of tire stiffness coefficients. Radial stiffness coefficient. *Automotive industry.* 2020;8:7–10. (In Russ.) EDN: RWCEVI
- **12.** Balakina EV, Zadvornov VN, Sarbaev DS, et al. The calculation method of the length of contact of car tires with the road surface. *IOP Conference Series: Materials Science and Engineering.* 2019;632:9. doi: 10.1088/1757-899X/632/1/012022 EDN: RNKLOD
- **13.** Balakina EV, Zadvornov VN, Berezovsky MS, et al. Research of tire stiffness coefficients. Lateral stiffness coefficient. *Automotive industry*. 2020;9:18–20. (In Russ.) EDN: SKHQGJ
- **14.** Balakina EV, Sergienko IV, Sanjapov RR. Analysis of Various Types of Elastic Wheel Radii and Establishing Necessity and Sufficiency of Their Application for Various Problems. In: *Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020) (Sochi. Russia. 18–22 May. 2020). Cham (Switzerland): Springer Nature Switzerland AG. 2021;1:9–16. URL: https://link.springer.com/chapter/10.1007/978-3-030-54814-8_2. doi: 10.1007/978-3-030-54814-8_2 EDN: FAEHBH*
- **15.** Dick AB. About the elastic wheel radius. *Automotive industry*. 2020;10:21–28 (In Russ.) EDN: ZMCAJL
- **16.** Viehweger M, Vaseur C, van Aalst S, et al. Vehicle state and tyre force estimation: demonstrations and guidelines. *Vehicle System Dynamics*. 2020. 1–28. doi: 10.1080/00423114.2020.1714672 EDN: GEBPXN

17. Balakina EV, Kislov AI, Malkov VA, Bruev DV. Calculation of the Wheel Rolling Rradius at Design Modeling of a Wheeled Vehicle. In: *Proceedings of the 8th International Conference on Industrial Engineering* (ICIE 2022) (Sochi. Russia. 16–20 May. 2022). Cham (Switzerland): Springer. 2023;32–39. doi: 10.1007/978-3-031-14125-6_4 EDN: GZNFQE

18. Balakina EV, Bruev DV, Malkov VA, Kislov AI. Study of limiting radial vehicle tire deformations. Gruzovik. 2022;8:31–34. (In Russ.) doi: 10.36652/1684-1298-2022-8-31-34 EDN: RJHUNA

19. GOST 7463-2003. THE INTERSTATE STANDARD. Pneumatic tires for tractors and agricultural machinery. Technical conditions (2004). Interstate Council for Standardization, Metrology and Certification. Moscow: Standardinform: 2004. (In Russ.)

ОБ АВТОРАХ

* Балакина Екатерина Викторовна,

д-р техн. наук,

профессор кафедры «Техническая эксплуатация

и ремонт автомобилей»;

адрес: Россия, 400005, Волгоград, пр-кт Ленина, д. 28;

ORCID: 0000-0001-5152-9340; eLibrary SPIN: 2595-2802; e-mail: fahrgestell@yandex.ru

Сергиенко Иван Васильевич,

канд. техн. наук,

ассистент кафедры «Техническая эксплуатация

и ремонт автомобилей»; ORCID: 0000-0001-7821-6395; eLibrary SPIN: 1256-3631; e-mail: sergienko-1993@mail.ru

Коньшин Владимир Александрович,

магистр кафедры «Техническая эксплуатация и ремонт автомобилей»; ORCID: 0009-0008-8149-4386; eLibrary SPIN: 7886-1510; e-mail: Vovan.v5202@gmail.com

AUTHORS' INFO

* Ekaterina V. Balakina,

Dr. Sci. (Engineering),

Professor of the Technical Operation and Repair

of Vehicles Department;

address: 28 Lenina ave, Volgograd, Russia, 400005;

ORCID: 0000-0001-5152-9340; eLibrary SPIN: 2595-2802; e-mail: fahrqestell@yandex.ru

Ivan V. Sergienko,

Cand. Sci. (Engineering),

Assistant of the Technical Operation and Repair

of Vehicles Department;

ORCID: 0000-0001-7821-6395;

eLibrary SPIN: 1256-3631;

e-mail: sergienko-1993@mail.ru

Vladimir A. Konshin,

Master of the Technical Operation and Repair

of Vehicles Department; ORCID: 0009-0008-8149-4386; eLibrary SPIN: 7886-1510; e-mail: Vovan.v5202@gmail.com

^{*} Автор, ответственный за переписку / Corresponding author