КАЧЕСТВО, НАДЁЖНОСТЬ

Оригинальное исследование

DOI: https://doi.org/10.17816/0321-4443-641780 EDN: SSNWCT

Моделирование напряжённо-деформированного состояния образцов с восьмиугольной структурой, изготовленных по технологии 3D-печати

И.С. Нефёлов^{1,2}, В.В. Филатов^{1,2}, Д.Ю. Малахов^{1,2}

RNJATOHHA

Обоснование. В современных условиях сельскохозяйственное оборудование сталкивается с проблемами повышенного износа и ограниченной доступности традиционных материалов. Для замены стандартных компонентов требуются инновационные решения, позволяющие улучшить механические свойства деталей при сохранении или снижении их массы. Применение метаматериалов, созданных с использованием технологий 3D-печати, открывает новые возможности для производства деталей с регулируемой внутренней структурой, что способствует повышению долговечности и эксплуатационных характеристик машин.

Целью исследования является анализ влияния восьмиугольной правильной и неправильной геометрической конфигурации метаматериалов на их механические свойства с целью разработки применения этих материалов для деталей сельскохозяйственной техники, обеспечивающих повышенную прочность и устойчивость к деформациям.

Методы. Исследование выполнено на основе численного моделирования с использованием системы автоматизированного проектирования и инженерного анализа. Объектами исследования выступали метаматериалы с различной конфигурацией восьмиугольных ячеек, отличающихся формой, размером, количеством и ориентацией. В рамках эксперимента проведен сравнительный анализ правильных и неправильных восьмиугольных структур.

Результаты. Проведенный анализ показал, что геометрическая структура метаматериалов оказывает значительное влияние на их механические характеристики. Правильные восьмиугольные структуры продемонстрировали повышенную жёсткость и устойчивость к деформациям, тогда как неправильные структуры отличались большей пластичностью. Оптимизация внутренней структуры материалов позволила улучшить механические свойства без значительного увеличения массы деталей.

Заключение. Исследование подтвердило целесообразность использования 3D-печати для создания метаматериалов с улучшенными механическими свойствами за счёт изменения геометрической структуры. Разработанные материалы могут заменить традиционные аналоги в сельскохозяйственных машинах, обеспечивая их долговечность и производительность.

Ключевые слова: структура материала; моделирование; аддитивные технологии; интеллектуальное проектирование материалов; механические свойства; метаматериалы.

КАК ЦИТИРОВАТЬ:

Нефёлов И.С., Филатов В.В., Малахов Д.Ю. Моделирование напряжённо-деформированного состояния образцов с восьмиугольной структурой, изготовленных по технологии 3D-печати // Тракторы и сельхозмашины. 2025. Т. 92, № 5. С. х-у. DOI: 10.17816/0321-4443-641780 EDN: SSNWCT

Рукопись получена: 30.11.2024 Рукопись одобрена: 27.11.2025 Опубликована online: 27.11.2025

¹ Государственный университет управления, Москва, Россия;

² Московский автомобильно-дорожный государственный технический университет (МАДИ), Москва, Россия

QUALITY, RELIABILITY

Original Study Article

DOI: https://doi.org/10.17816/0321-4443-641780 EDN: SSNWCT

Modelling of Stress-Strain State of Samples with Octagonal Structure Manufactured with the 3D-Printing Technology

Ilya S. Nefelov^{1,2}, Vladimir V. Filatov^{1,2}, Dmitry Yu. Malakhov^{1,2}

ABSTRACT

BACKGROUND: Currently, agricultural equipment faces the challenges of increased wear and tear and limited availability of conventional materials. To replace standard components, innovative solutions are required to improve the mechanical properties of parts while maintaining or reducing their mass. The use of metamaterials created using 3D printing technologies opens up new opportunities for the production of parts with adjustable internal structure, which helps to improve the durability and performance of machines.

AIM: Analysis of the influence of the octagonal correct and incorrect geometric configuration of metamaterials on their mechanical properties in order to develop the application of these materials for agricultural machinery parts that provide increased strength and resistance to deformation.

MATERIALS AND METHODS: The study was based on numerical modelling using computer-aided design and engineering system. The objects of the study were metamaterials with various configurations of octagonal cells differing in shape, size, number and orientation. A comparative analysis of regular and irregular octagonal structures was carried out as part of the experiment.

RESULTS: The analysis showed that the geometrical structure of metamaterials has a significant influence on their mechanical performance. Regular octagonal structures showed increased stiffness and resistance to deformation, whereas irregular structures were characterized by greater plasticity. Optimization of the internal structure of the materials improved the mechanical properties without significantly increasing the mass of the parts.

CONCLUSION: The study confirmed the feasibility of using 3D printing to create metamaterials with improved mechanical properties by changing the geometric structure. The developed materials can replace conventional counterparts in agricultural machines, ensuring their durability and performance.

Keywords: material structure; modelling; additive technologies; intelligent material design; mechanical properties; metamaterials.

TO CITE THIS ARTICLE:

Nefelov IS, Filatov VV, Malakhov DYu. Modelling of Stress-Strain State of Samples with Octagonal Structure Manufactured with the 3D-Printing Technology. *Tractors and Agricultural Machinery*. 2025;92(5):x-y. DOI: 10.17816/0321-4443-641780 EDN: SSNWCT

Submitted: 30.11.2024 Accepted: 27.11.2025 Published online: 27.11.2025

¹ State University of Management, Moscow, Russia;

² Moscow Automobile and Road Construction State Technical University (MADI), Moscow, Russia

ОБОСНОВАНИЕ

Исследования в области проектирования материалов с заданными свойствами для транспортных и технологических машин показали, что изменение геометрической конфигурации внутренней структуры существенно влияет на способность материала проявлять новые свойства, не свойственные его исходному состоянию [1–4]. Одним из показательных примеров в данной области является разработка метаматериалов — материалов, имеющих искусственно созданную структуру, определяющую совокупность их механических свойств. В последнее время достижения в области технологий 3D-печати облегчили разработку и изготовление новых типов материалов, сделав процессы их получения более доступными и экономичными для различных технологических применений, в том числе в области разработки и производства высокотехнологичных машин и оборудования, применяемых в сельском хозяйстве [5]. Перспективным направлением исследований также является разработка эластичных трёхмерных структур метаматериалов [6].

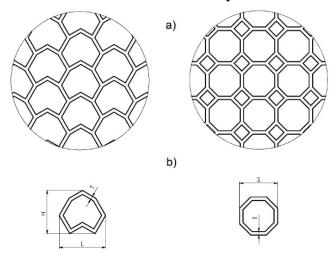
Технология 3D-печати методом наплавления (FDM) в настоящее время широко распространена и заключается в расплавлении пластиковой нити внутри сопла принтера, выдавливании её на платформу для сборки, создавая деталь слой за слоем [7]. Повышение доступности 3D-принтеров позволяет проводить обширные исследования в области материалов, направленные на создание деталей с улучшенными функциональными за счёт геометрических модификаций возможностями их конструкции интеллектуального проектирования Преимуществом геометрической структуры изделия также является способность обеспечения функциональными возможностями. Например, намеренно повышая пластичность материала, можно использовать его свойства для повышения упругости детали [9].

настоящем исследовании изучались напряжённо-деформированные состояния метаматериалов с различными геометрическими конфигурациями, которые могут быть изготовлены технологии 3D-печати и применяться для замены деталей сельскохозяйственных машин и оборудования, изготовленных из стандартных материалов Традиционные подходы проектированию составных К таких сельскохозяйственной техники, как несущие системы, интерьерные и экстерьерные кузовные панели, элементы ходовой части, в первую очередь, направлены на обеспечение функциональных требований и надёжности машин. Негативным эффектом является увеличение веса машин, что в свою очередь приводит к уплотнению почвы и снижению её плодородия в процессе эксплуатации такой техники. Применение метаматериалов с сотовыми и решётчатыми структурами позволяет обеспечивать снижение массы деталей машин при сохранении их прочности.

Была проведена серия численных экспериментов посредством системы автоматизированного проектирования и инженерного анализа.

ЦЕЛЬ

Основной целью исследования является анализ влияния восьмиугольной правильной и неправильной геометрической конфигурации метаматериалов на их механические свойства с целью применения этих материалов для деталей сельскохозяйственной техники, обеспечивающих повышенную прочность и устойчивость к деформациям.


МЕТОДЫ

В данной статье рассмотрены структуры материалов, состоящие из правильных и неправильных восьмиугольников (рис. 1). Данные структуры имеют определённое преимущество над другими геометрическими формами ячеек метаматериала благодаря структурной целостности. За счёт большего количества сторон ячейки и, как следствие, снижения концентрации напряжений в углах восьмиугольная структура лучше сопротивляется механическим нагрузкам, чем квадратная или шестиугольная структуры, что повышает долговечность и устойчивость материала к усталости. Шестиугольная (сотовая) структура также прочна и изотропна, но её деформационные возможности более ограничены. Такая структура обеспечивает сопротивление сжимающим нагрузкам, но менее пригодна для восприятия сложных напряжённо-деформированных состояний,

включающих одновременное сжатие и кручение.

Для формирования пространственной структуры метаматериала были использованы элементы различной толщины (0,25, 0,5, 0,75 и 1 мм). Толщина ячеек была подобрана таким образом, чтобы соответствовать размерам распространённых сопел для 3D-принтеров, основанных на технологии FDM (от 0,25 мм до 1 мм), для обеспечения возможности изготовления образцов метаматериалов с рассматриваемой структурой и дальнейшего проведения натурных экспериментов.

Размеры ячеек были подобраны таким образом, чтобы они занимали площадь 40х40 мм. Для создания сеток 4х4, 5х5, 8х8 и 10х10 на поверхности 40х40 мм были выбраны четыре базовых размера, применяемых к обоим типам исследуемых элементарных ячеек.

Рис. 1. Исследуемые метаматериалы: *а* — структура; *b* — форма ячейки.

Fig. 1. Metamaterials under study: a: structure; b: cell shape.

Задачами данного исследования является изучение влияния правильной и неправильной форм элементарных восьмиугольных ячеек метаматериала на его механические свойства при различных условиях нагружения.

Применение в структуре материала ячеек с формой правильных восьмиугольников не позволяет полностью покрыть заданную площадь и приводит к образованию малых квадратов. Напротив, преимуществом ячеек с формой неправильных восьмиугольников является полное покрытие заданной площади без образования малых геометрических элементов на стыках ячеек.

Имитационные модели были выполнены с использованием системы автоматизированного проектирования и инженерного анализа SolidWorks Simulation. Данная система была выбрана для проведения имитационного моделирования ввиду возможности оперативного варьирования параметрических моделей и производительности при решении задачи с умеренной нелинейностью (упругопластическое сжатие), что позволяет провести инженерный анализ различных по форме и размерам восьмиугольных структур без перестроения исходной топологии объектов исследования.

Во всех моделях были применены одинаковые граничные условия. К каждой модели была приложена равномерная нагрузка в 10 H, при этом были зафиксированы деформации. В качестве допущения при малых нагрузках и деформациях предполагалось линейное поведение материала. Расчёты напряжений были выполнены по условию пластичности фон Мизеса.

Данные допущения и условия обеспечили стандартизированный подход к моделированию и анализу поведения моделей структур материалов при заданных нагрузках.

Процесс моделирования состоял из следующих этапов:

1. Были разработаны 64 имитационных модели с различными параметрами их структуры (варьировались форма ячейки, размеры и толщина). В качестве исходного материала задан распространенный для 3D-печати материал акрилонитрилбутадиенстирол (ABS), механические свойства которого приведены в табл. 1. На микроуровне механические свойства метаматериала определяются свойствами исходного конструкционного

КАЧЕСТВО, НАДЁЖНОСТЬ

материала (монолитного ABS-пластика). В процессе исследования менялась только геометрическая структура метаматериала на макроуровне без изменения исходного материала.

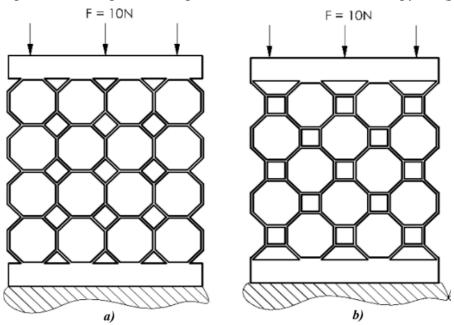

Таблица 1. Механические характеристики моделируемого материала

Table 1. Mechanical characteristics of the modelled material

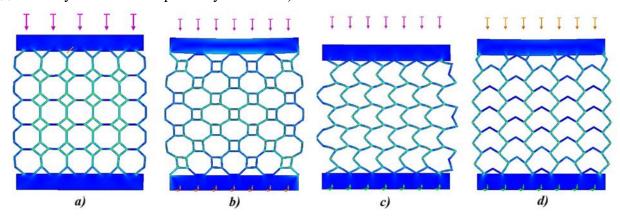
Характеристика	Значение
Материал	ABS-пластик
Предел текучести, Мпа	30
Прочность на разрыв, Мпа	40
Модуль упругости, Мпа	2000
Коэффициент Пуассона	0,3
Массовая плотность, кг/м ³	1020

- 2. Для каждой имитационной модели задавались параметры плоской двумерной стандартной сетки с размерами элементов от 0.02 до 0.7 мм.
- 3. Для каждой имитационной модели было проведено численное моделирование статического нагружения и получены результаты, которые были затем проанализированы.

Модель метаматериала представляет собой квадрат размером 40х40 мм, состоящий из базовых ячеек, имеющих форму правильных и неправильных восьмиугольников. Модель метаматериала расположена между двумя параллельными пластинами из абсолютно жёсткого материала, одна из которых является опорной («зафиксированная геометрия»), а ко второй в нормальном направлении прикладывается сжимающая нагрузка (рис. 2).

Рис. 2. Различные типы моделей для имитационного моделирования: *а* — структура с равномерной геометрией ячеек и *b* — структура с модифицированной геометрией ячеек.

Fig. 2. Different types of models for simulation: *a*, structure with uniform cell geometry and *b*, structure with modified cell geometry.


РЕЗУЛЬТАТЫ

В результате инженерного анализа получены численные данные в табличном виде о напряжениях (Па), перемещениях (мм) и деформациях (безразмерная относительная величина) под заданной нагрузкой для каждой модели были проанализированы. По результатам проведения исследований максимальные действительные напряжения, наблюдаемые в каждом случае, не превышали предел прочности заданного материала ABS, что позволяет сделать вывод об обеспечении прочности всех исследуемых образцов и сравнить их жесткость в зависимости от формы, размеров и расположения ячеек в структуре.

Визуальное представление результатов моделирования различных структур метаматериала приведено на рис. 3 (рис. 3, a — модель структуры, состоящая из ячеек с

QUALITY, RELIABILITY

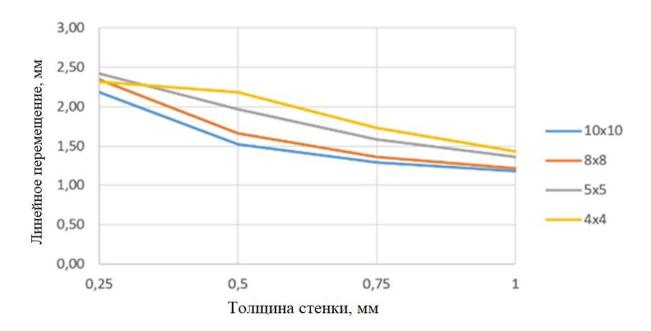
формой правильного восьмиугольника, сжимаемая в продольном направлении, рис. 3, b — модель структуры, состоящая из ячеек с формой правильного восьмиугольника, сжимаемая в поперечном направлении, рис. 3, c — модель структуры, состоящая из ячеек с формой неправильного восьмиугольника, сжимаемая в продольном направлении, рис. 3, d — модель структуры, состоящая из ячеек с формой неправильного восьмиугольника, сжимаемая в поперечном направлении). Характер распределения напряжений при приложении сжимающей нагрузки в 10 Н отображается за счёт разности цветовых оттенков (диапазон напряжений от наименьшего к наибольшему соответствует цветовому диапазону от синего к красному оттенкам).

Рис. 3. Моделирование статического нагружения исследуемых структур метаматериалов, сжимаемых в продольном и поперечном направлениях: *а* и *b* — с ячейками формы правильного восьмиугольника; *с* и *d* — с ячейками формы неправильного восьмиугольника.

Fig. 3. Modelling of static loading of the studied metamaterial structures compressed in longitudinal and transverse directions: *a* and *b*, with cells of the regular octagon shape; *c* and *d*, with cells of the irregular octagon shape.

ОБСУЖДЕНИЕ

Анализ перемещений исследуемых объектов под нагрузкой сжатия 10 H выявил наибольшие значения данного параметра при исследовании структуры с базовыми ячейками, имеющими наименьшую толщину стенки (0,25 мм), что подтверждает качественное влияние толщины тенок ячейки на механические свойства метаматериала.


Были получены графики зависимости перемещений от толщины стенки ячейки для различных размеров и форм исследуемых ячеек. На рис. 4 в качестве примера представлен такой график для модели структуры метаматериала, состоящей из ячеек с формой правильного восьмиугольника, сжимаемой в продольном направлении. По мере увеличения толщины и количества базовых ячеек величина перемещений приближались к 1 мм.

ЗАКЛЮЧЕНИЕ

На основании проведённого численного моделирования установлено, что геометрическая конфигурация ячеек метаматериала оказывает существенное влияние на его жёсткость и характер деформирования. Систематический анализ выявил, что правильные восьмиугольные структуры обеспечивают более равномерное распределение напряжений и повышенную устойчивость к сжатию, в то время как неправильные конфигурации способствуют росту пластичности и способности поглощать локальные деформации. Несмотря на прогресс в проектировании таких структур, ключевыми нерешёнными аспектами остаются оптимизация топологии для многокомпонентных нагрузок.

В данной работе в результате серии расчётов показано, что варьирование толщины стенок ячеек в диапазоне от 0,25 до 1,0 мм позволяет целенаправленно регулировать жёсткость метаматериала: максимальные напряжения сжатия изменялись от 12 до 28 МПа при нагрузке 10 Н. Установлено, что правильные восьмиугольники снижают линейные перемещения на 20% по сравнению с неправильными, что указывает на их более высокую жесткость. В то же время, неправильные ячейки демонстрируют увеличение упругих перемещений до 25%, повышая демпфирующие свойства материала. Важным результатом

является достижение улучшения механических характеристик без увеличения массы образцов, которая сохранялась на уровне 1,6–1,8 г при размерах модели 40×40 мм.

Рис. 4. График зависимости коэффициентов смещения от толщины стенки ячейки для различных размеров и форм исследуемых ячеек.

Fig. 4. A graph of the dependence of the displacement coefficients on the thickness of the cell wall for various sizes and shapes of the cells under study.

Полученные результаты имеют практическую значимость для сельхозмашиностроения, поскольку позволяют проектировать облегченные детали с заданным уровнем прочности и жёсткости, что способствует снижению массы техники и минимизации уплотнения почв. Научная ценность работы заключается в установлении количественных зависимостей между геометрическими параметрами ячеек и механическими свойствами метаматериалов, что создает основу для разработки новых структур с программируемыми свойствами.

Дальнейшие исследования будут направлены на моделирование свойств деталей машин, в конструкции которых применяются метаматериалы, и проведение натурных экспериментов, включающих сравнительные испытания свойств вышеупомянутых объектов и деталей машин, изготовленных из традиционных материалов.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Вклад авторов. И.С. Нефёлов — разработка концепции исследования, проведение численных экспериментов, анализ результатов моделирования, подготовка текста статьи. В.В. Филатов — руководство общей концепцией исследования, проектирование исследуемых структур. Д.Ю. Малахов — подготовка экспериментальных данных, проведение моделирования и расчетов с использованием систем автоматизированного проектирования, подготовка графиков и визуализации экспериментов. Все авторы одобрили рукопись (версию для публикации), а также согласились нести ответственность за все аспекты настоящей работы, гарантируя надлежащее рассмотрение и решение вопросов, связанных с точностью и добросовестностью любой её части.

Этическая экспертиза. Неприменимо.

Источники финансирования. Данная статья подготовлена в рамках выполнения 1-го этапа научно-исследовательской работы, реализуемой за счёт средств федерального бюджета (источник финансирования — Минобрнауки РФ) по теме: «Разработка научных, методологических и практических основ реверсивного инжиниринга для решения комплексных задач импортозамещения в агропромышленном комплексе Российской Федерации» (шифр научной темы FZNW-2024-0026).

Раскрытие интересов. Авторы заявляют об отсутствии отношений, деятельности и интересов за

QUALITY, RELIABILITY

последние три года, связанных с третьими лицами (коммерческими и некоммерческими организациями), интересы которых могут быть затронуты содержанием статьи.

Оригинальность. При проведении исследования и создании настоящей статьи авторы не использовали ранее полученные и опубликованные сведения (данные, текст).

Доступ к данным. Редакционная политика в отношении совместного использования данных к настоящей работе не применима: анализируемая статистическая информация находится в открытом доступе.

Генеративный искусственный интеллект. При создании настоящей статьи технологии генеративного искусственного интеллекта не использовали.

Рассмотрение и рецензирование. Настоящая работа подана в журнал в инициативном порядке и рассмотрена по обычной процедуре. В рецензировании участвовали два внешних рецензента, член редакционной коллегии и научный редактор издания.

ADDITIONAL INFORMATION

Author contributions: I.S. Nefelov: development of the research concept, conducting numerical experiments, analysis of modeling results, preparation of the text of the manuscript; V.V. Filatov: management of the general concept of research, design of the structures under study; D.Yu. Malakhov: preparation of experimental data, modeling and calculations using computer-aided design systems, preparation of graphs and visualization of experiments. All the authors approved the version of the manuscript to be published and agreed to be accountable for all aspects of the work, ensuring that issues related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval: Not applicable.

Funding sources: This paper is written within the 1st stage of the research and development project carried out at the expense of the federal budget (the source of funding is the Ministry of Education and Science of the Russian Federation) on the topic: "Development of scientific, methodological and practical foundations of reverse engineering for solving complex import substitution problems in the agricultural industry of the Russian Federation" (code of the scientific topic FZNW-2024-0026).

Disclosure of interests: The authors have no relationships, activities, or interests for the last three years related to for-profit or not-for-profit third parties whose interests may be affected by the content of the article.

Statement of originality: No previously obtained or published material (text or data) was used in this study or article.

Data availability statement: The editorial policy regarding data sharing does not apply to this work, as the statistical data analyzed are publicly available.

Generative AI: No generative artificial intelligence technologies were used to prepare this article.

Provenance and peer review: This paper was submitted unsolicited and reviewed following the standard procedure. The peer review involved two external reviewers, a member of the editorial board, and the inhouse scientific editor.

Funding source. This article was prepared as part of the 1st stage of research work carried out at the

СПИСОК ЛИТЕРАТУРЫ | REFERENCES

- 1. Filatov VV, Nefelov IS, Badakova V-AV, et al. Creation of digital twins of agricultural machine parts using engineering technology. In: 2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). Vyborg; 2024:1–4. doi: 10.1109/SYNCHROINFO61835.2024.10617784 EDN: AKLCEE
- 2. Russo AC, Andreassi G, Girolamo AD, et al. FDM 3D printing of high-performance composite materials. In: *II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)*. Naples; 2019:355–359. doi: 10.1109/METROI4.2019.8792862
- 3. Badakova V-AV, Nefelov IS, Filatov VV, et al. 3D scanners application for creation of agricultural machine parts digital twins. In: 2024 Wave Electronics and Its Application in Information and Telecommunication Systems (WECONF). Saint Petersburg; 2024:1–5. doi: 10.1109/WECONF61770.2024.10564656 EDN: MKIMLM
- 4. Nefelov IS, Badakova V-AV, Filatov VV, et al. Intelligent additive technologies for use in the life cycle of agricultural machinery. In: 2024 Wave Electronics and Its Application in Information and ISSN 0321-4443 «Тракторы и сельхозмашины». Том 92, № 5, 2025

Telecommunication Systems (WECONF). Saint Petersburg; 2024:1–4. doi: 10.1109/WECONF61770.2024.10564624 EDN: QIQXEM

- 5. Cherkaev AA. Application of additive technologies in the production of machine parts. In: Proceedings of the 2nd All-Russian Scientific and Technical Conference of Young Scientists, Graduate Students, Masters, and Bachelors: Modern Perspectives for the Development of Flexible Production Systems in Civil Engineering and Agriculture. Kursk: Universitetskaya kniga; 2024:81–85. (In Russ.) EDN: AQQAPB
- 6. Dairabayeva D, Perveen A, Talamona D. Tensile properties of mono-material and multi-material PLA and ABS sandwich structures. In: *15th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)*. Cape Town; 2024:168–172. doi: 10.1109/ICMIMT61937.2024.10585814
- 7. Shishkina KS. Investigation of 3D modeling data in the CAD system for the development of 2D plans for use in computer modeling. In: *Proceedings of the International Scientific Conference: Current Problems of Applied Mathematics, Informatics, and Mechanics*. Voronezh: Voronezh State University; 2021:476–479. (In Russ.) EDN: FQBKUO
- 8. Smyshlyaev AA, Vorokhobin AV, Voronin VV. Analysis of the potential of FDM additive technologies for practical use in agriculture. In: *Proceedings of the International Scientific and Practical Conference: Trends in the Development of Technical Means and Technologies in Agriculture*. Voronezh: Voronezh State Agrarian University named after Emperor Peter I; 2022:99-106. (In Russ.) EDN: NGPPNI
- 9. Guo N, Leu MC. Additive manufacturing: technology, applications, and research needs. *Front Mech Eng.* 2013;8:215–243. doi: 10.1007/s11465-013-0248-8 EDN: EQXATK
- 10. Mei Y, Jin Y, Wang X. Damping characteristic of composite material with periodic microtetrahedron structures. In: 2011 Second International Conference on Digital Manufacturing & Automation (ICDMA). Zhangjiajie; 2011:339–342. doi: 10.1109/ICDMA.2011.90

OF ABTOPAX / AUTHORS' INFO

* Владимир Викторович Филатов,

канд. техн. наук,

ведущий научный сотрудник Лаборатории реверсивного инжиниринга;

адрес: Россия, 109542, Москва, Рязанский пркт. д. 99:

ORCID: 0000-0002-9477-9013; eLibrary SPIN: 2897-2925; e-mail: 2vfilatov@gmail.com

Соавторы:

Илья Сергеевич Нефёлов,

канд. техн. наук,

научный сотрудник Лаборатории реверсивного инжиниринга; ORCID: 0000-0003-0904-8708; eLibrary SPIN: 6972-3967; e-mail: iljanefelov@yandex.ru

Дмитрий Юрьевич Малахов, канд. техн. наук,

научный сотрудник Лаборатории реверсивного инжиниринга; ORCID: 0009-0000-0077-4012:

eLibrary SPIN: 3578-5244; e-mail: malahow_dm@mail.ru

* Vladimir V. Filatov,

Cand. Sci. (Engineering),

Leading researcher of the Reverse Engineering Laboratory;

address: 99 Ryazansky ave, Moscow, Russia,

109542;

ORCID: 0000-0002-9477-9013; eLibrary SPIN: 2897-2925; e-mail: 2vfilatov@gmail.com

Co-Authors:

Ilya S. Nefelov,

Cand. Sci. (Engineering),

Researcher of the Reverse Engineering

Laboratory;

ORCID: 0000-0003-0904-8708; eLibrary SPIN: 6972-3967; e-mail: iljanefelov@yandex.ru

Dmitry Yu. Malakhov,

Cand. Sci. (Engineering),

Researcher of the Reverse Engineering

Laboratory;

ORCID: 0009-0000-0077-4012; eLibrary SPIN: 3578-5244; e-mail: malahow_dm@mail.ru

^{*} Автор, ответственный за переписку / Corresponding author