Electron-microscopic study of phase transformations in 316L austenitic steel manufactured by laser 3D printing
- Authors: Kazantseva N.V.1,2, Vinogradova N.I.1, Koemets Y.N.1, Ezhov I.V.1, Davidov D.I.1,2
-
Affiliations:
- Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences
- Ural State University of Railway Transport
- Issue: Vol 87, No 10 (2023)
- Pages: 1404-1409
- Section: Articles
- URL: https://journals.eco-vector.com/0367-6765/article/view/654579
- DOI: https://doi.org/10.31857/S0367676523702459
- EDN: https://elibrary.ru/ZAFHRO
- ID: 654579
Cite item
Abstract
We studied the structure and phases in porous samples of 316L austenitic steel manufactured by laser 3D printing. Transmission electron microscopy revealed the presence of residual δ-ferrite along with austenite in the sample. A high density of dislocations is also observed in the sample. EBSD analysis revealed a lack of texture.
About the authors
N. V. Kazantseva
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences; Ural State University of Railway Transport
Author for correspondence.
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg; Russia, 620034, Ekaterinburg
N. I. Vinogradova
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg
Yu. N. Koemets
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg
I. V. Ezhov
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg
D. I. Davidov
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences; Ural State University of Railway Transport
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg; Russia, 620034, Ekaterinburg
References
- Баранникова С.А., Никонова A.M., Колосов С.В. // Вест. ПНИПУ. Мех. 2021. № 1. С. 22.
- Shrinivas V., Varma S.K., Murr L.E. // Metall. Mater. Trans. A. 1995. V. 26A. P. 661.
- Tucho W.M., Lysne V.H., Austbø H. et al. // J. Alloys Compounds. 2018. V. 740. P. 910.
- Solomon N., Solomon I. // Rev. Metal. 2010. V. 46. No. 2. P. 121.
- Meszaros I., Prohaszka J. // J. Mater. Process. Technol. 2005. V. 161. P. 162.
- Nalepka K., Skocze B., Ciepielowska M. et al. // Materials. 2021. V. 14. P. 127.
- Gradzka-Dahlke M., Waliszewski J. // Defect Diffus. Forum. 2009. V. 283. P. 285.
- Vock S., Klöden B., Kirchner A. et al. // Progr. Add. Manufact. 2019. V. 4. P. 383.
- Bartolomeu F., Buciumeanu M., Pinto E. et al. // Add. Manufact. 2017. V. 16. P. 81.
- Bajaj P., Hariharan A., KiniA. et al. // Mater. Sci. Engin. A. 2020. V. 772. Art. No. 138633.
- Zhongji Sun, Xipeng Tan, Shu Beng Tor, Wai Yee Yeong // Mater. Design. 2016. V. 104. P. 197.
- Krakhmalev P., Fredriksson G., Svensson K. et al. // Metals. 2018. V. 8. Art. No. 643.
- Tucho W.M., Lysne V.H., Austbo H. et al. // J. Alloys Compounds. 2018. V. 740. P. 910.
- Lo K.H. // Mater. Sci. Engin. R. 2009. V. 65. P. 39.
- Saluja R., Moeed K. // Int. J. Engin. Sci. Technol. 2012. V. 4. № 5. P. 2206.
- Fofanov D., Riedner S. // Proc. 2011 SSW Conf. Exhib. (Maastricht, 2011). P. 1.
- Andreaua O., Koutiri I., Patrice Peyre P. et al. // J. Mater. Proc. Tech. 2019. V. 264. P. 21.
Supplementary files
