Evolution of the Luminescence Properties of Single CsPbBr3 Perovskite Nanocrystals During Photodegradation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The evolution of the luminescence blinking of single CsPbBr3 perovskite nanocrystals with a characteristic size of ~25 nm during photodegradation has been experimentally investigated. It has been demonstrated that the blue shift of the luminescence peak and a decrease in the average luminescence intensity are accompanied by the increasing role of nonradiative Auger processes underlying the charging mechanism of blinking. A method based on the analysis of photon antibunching g2(0) and exciton and biexciton recombination rates is used to determine the blinking mechanism. The data obtained have made it possible to reveal a transition from the trapping to charging blinking mechanism with a change in the sizes of a CsPbBr3 single nanocrystal.

Авторлар туралы

V. Baitova

HSE University

Email: eremchev@isan.troitsk.ru
105066, Moscow, Russia

M. Knyazeva

HSE University;Troitsk Separate Branch, Lebedev Physical Institute, Russian Academy of Sciences

Email: eremchev@isan.troitsk.ru
105066, Moscow, Russia;108840, Troitsk, Moscow, Russia

I. Mukanov

Institute of Spectroscopy, Russian Academy of Sciences;Moscow Institute of Physics and Technology (National Research University)

Email: eremchev@isan.troitsk.ru
108840, Moscow, Russia;141701, Dolgoprudnyi, Moscow region, Russia

A. Tarasevich

Troitsk Separate Branch, Lebedev Physical Institute, Russian Academy of Sciences

Email: eremchev@isan.troitsk.ru
108840, Troitsk, Moscow, Russia

A. Naumov

Troitsk Separate Branch, Lebedev Physical Institute, Russian Academy of Sciences;Institute of Spectroscopy, Russian Academy of Sciences;Moscow Pedagogical State University

Email: eremchev@isan.troitsk.ru
108840, Troitsk, Moscow, Russia;108840, Moscow, Russia;119435, Moscow, Russia

A. Son

Moscow Institute of Physics and Technology (National Research University);Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eremchev@isan.troitsk.ru
141701, Dolgoprudnyi, Moscow region, Russia;119991, Moscow, Russia

S. Kozyukhin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences;Faculty of Chemistry, Tomsk State University

Email: eremchev@isan.troitsk.ru
119991, Moscow, Russia;634050, Tomsk, Russia

I. Eremchev

Institute of Spectroscopy, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: eremchev@isan.troitsk.ru
108840, Moscow, Russia

Әдебиет тізімі

  1. J. Shamsi, A. S. Urban, M. Imran, L. De Trizio, and L. Manna, Chem. Rev. 119(5), 3296 (2019).
  2. A.K. Jena, A. Kulkarni, and T. Miyasaka, Chem. Rev. 119(5), 3036 (2019).
  3. J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, Adv. Mater. 27(44), 7162 (2015).
  4. О.И. Пацинко, А.А. Романенко, В. В. Крюков, Л.Л. Троцюк, О.С. Кулакович, С. В. Гапоненко, Журнал прикладной спектроскопии 90(1), 61 (2023).
  5. S. Ullah, J. Wang, P. Yang, L. Liu, Sh.-E. Yang, T. Xia, H. Guo, and Yo. Chen, Materials Advances 2(2), 646 (2021).
  6. J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, and H. Zeng, Adv. Mater. 28(24), 4861 (2016).
  7. К.С. Секербаев, Г.К. Мусабек, Н.С. Покрышкин, В. Г. Якунин, Е.Т. Таурбаев, Е. Шабдан, Ж.Н. Утегулов, В.С. Чирвоный, В.Ю. Тимошенко, Письма в ЖЭТФ 114(7-8), 515 (2021).
  8. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M.V. Kovalenko, Nat. Commun. 6(1), 8056 (2015).
  9. G. Yuan, C. Ritchie, M. Ritter, S. Murphy, D.E. G'omez, and P. Mulvaney, J. Phys. Chem. C 122(25), 13407 (2017).
  10. Z. Wang, Z. Zhang, L. Xie, S. Wang, Ch. Yang, Ch. Fang, and F. Hao, Adv. Opt. Mater. 10(3), 2101822 (2021).
  11. R.M. Dickson, A.B. Cubitt, R.Y. Tsien, and W.E. Moerner, Nature 388(6640), 355 (1997).
  12. D.A.V. Bout, W.-T. Yip, D.H. Hu, D.-K. Fu, T.M. Swager, and P. F. Barbara, Science 277, 1074 (1997).
  13. M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J. J. Macklin, J.K. Trautman, T.D. Harris, and L.E. Brus, Nature 383, 802 (1996).
  14. Y. Tian, A. Merdasa, M. Peter, M. Abdellah, K. Zheng, C. S. Ponseca, T. Pullerits, A. Yartsev, V. Sundstrom, and I.G. Scheblykin, Nano Lett. 15, 1603 (2015).
  15. A. Halder, N. Pathoor, A.G. Chowdhury, and S.K. Sarkar, J. Phys. Chem. C 122(27), 15133 (2018).
  16. A.L. Efros and M. Rosen, Phys. Rev. Lett. 78, 1110 (1997).
  17. PA. Frantsuzov and R.A. Marcus, Phys. Rev. B 72, 155321 (2005).
  18. P.A. Frantsuzov, S. Volkan-Kacso, and B. Janko, Phys. Rev. Lett. 103, 207402 (2009).
  19. I. Pelant and J. Valenta, Luminescence Spectroscopy of Semiconductors, Oxford University Press, Oxford (2012).
  20. Д.С. Гец, Е.Ю. Тигунцева, А.С. Берестенников, Т. Г. Ляшенко, А.П. Пушкарев, С.В. Макаров, А.А. Захидов, Письма в ЖЭТФ 107(12), 768 (2018).
  21. M. Gerhard, B. Louis, R. Camacho, A. Merdasa, J. Li, A. Kiligaridis, A. Dobrovolsky, J. Hofkens, I.G. Scheblykin, Nat. Commun. 10, 1698 (2019).
  22. R. Chen, J. Li, A. Dobrovolsky, S. Gonzalez-Carrero, M. Gerhard, M.E. Messing, V. Chirvony, J. P'erez-Prieto, and I.G. Scheblykin, Adv. Opt. Mater. 8(4), 1901642 (2020).
  23. A. Merdasa, Y. Tian, R. Camacho, A. Dobrovolsky, E. Debroye, E. L. Unger, J. Hofkens, V. Sundstr¨om, and I.G. Scheblykin, ACS Nano 11, 5391 (2017).
  24. E.A. Podshivaylov, M.A. Kniazeva, A.O. Tarasevich, I.Y. Eremchev, A.V. Naumov, and P.A. Frantsuzov, J. Mater. Chem. C 11(25), 8570 (2023).
  25. A. Merdasa, M. Bag, Yu. Tian, E. K¨allman, A. Dobrovolsky, and I. Scheblykin, J. Phys. Chem. C 120(19), 10711 (2016).
  26. Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, ACS Nano 9(10), 10386 (2015).
  27. B.-W. Hsu, Y.-T. Chuang, C.-Y. Cheng, C.-Y. Chen, Y.-J. Chen, A. Brumberg, L. Yang, Y.-Sh. Huang, R.D. Schaller, L.-J. Chen, Ch.-S. Chuu, and H.-W. Lin, ACS Nano 15(7), 11358 (2021).
  28. H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang, W.W. Yu, X. Wang, Y. Zhang, and M. Xiao, Nature Commun. 10(1), 1088 (2019).
  29. Y.A. Darmawan, M. Yamauchi, and S. Masuo, The Journal of Physical Chemistry C 124(34), 18770 (2020).
  30. D.A. Hines, M.A. Becker, and P.V. Kamat, J. Phys. Chem. 116, 13452 (2012).
  31. W.G. J.H.M. van Sark and P. L.T.M. Frederix, J. Phys. Chem. 105, 8281 (2001).
  32. M. Sykora, A.Y. Koposov, J.A. McGuire, R.K. Schulze, O. Tretiak, J.M. Pietryga, and V. I. Klimov, ACS Nano 4, 2021 (2010).
  33. E. J. Juarez-Perez, L.K. Ono, I. Uriarte, E. J. Cocinero, and Ya. Qi, ACS Appl. Mater Interfaces 11(13), 12586 (2019).
  34. P. Huang, S. Sun, H. Lei, Y. Zhang, H. Qin and H. Zhong, eLight 3(10), 3728 (2023).
  35. L. Protesescu, S. Yakunin, M. Bodnarchuk, F. Krieg, R. Caputo, Ch.H. Hendon, R. Yang, A. Walsh, and M. Kovalenko, Nano Lett. 15(6), 3692 (2015).
  36. И.Ю. Еремчев, Н.А. Лозинг, А.А. Баев, А.О. Тарасевич, М. Г. Гладуш, А.А. Роженцов, А.В. Наумов, Письма в ЖЭТФ 108(1), 26 (2018).
  37. I.Yu. Eremchev, D.V. Prokopova, N.N. Losevskii, I.T. Mynzhasarov, S.P. Kotova, and A.V. Naumov, Phys.-Uspekhi 65, 617 (2022).
  38. И.Ю. Еремчев, М.Ю. Еремчев, А.В. Наумов, Успехи физических наук 189, 312 (2019).
  39. I.Yu. Eremchev, A.O. Tarasevich, M.A. Kniazeva, J. Li, A.V. Naumov, and I.G. Scheblykin, Nano Lett. 23(6), 2087 (2023).
  40. Y. S. Park, J. Lim, N. S. Makarov, V. I. Klimov, Nano Lett. 17(9), 5607 (2017).
  41. I. S. Osad'ko, I.Yu. Eremchev, and A.V. Naumov, J. Phys. Chem. 119, 22646 (2015).
  42. G. Yuan, D.E. Gomez, N. Kirkwood, K. Boldt, and P. Mulvaney, ACS Nano 12, 3397 (2018).
  43. K.E. Shulenberger, S.C. C.'t Wallant, M.D. Klein, A.R. McIsaac, T. Goldzak, D.B. Berkinsky, H. Utzat, U. Barotov, T.V. Voorhis, and M.G. Bawendi, Nano Lett. 21(18), 7457 (2021).
  44. J. Zhao, O. Chen, D.B. Strasfeld, and M.G. Bawendi, Nano Lett. 12(9), 4477 (2012).
  45. N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, and V. I. Klimov, Nano Lett. 16(4), 2349 (2016).
  46. Y. Li, T. Ding, X. Luo, Z. Chen, X. Liu, X. Lu, and K. Wu, Nano Research 12(3), 619 (2019).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Российская академия наук, 2023