ПОСТРОЕНИЕ ДИАГОНАЛЬНЫХ ФУНКЦИОНАЛОВ ЛЯПУНОВА–КРАСОВСКОГО ДЛЯ ОДНОГО КЛАССА ПОЗИТИВНЫХ ДИФФЕРЕНЦИАЛЬНО-АЛГЕБРАИЧЕСКИХ СИСТЕМ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассматривается связанная система, описывающая взаимодействие нелинейной дифференциальной подсистемы с нелинейностями секторного типа и линейной разностной подсистемы. Предполагается, что система является позитивной. Строится диагональный функционал Ляпунова–Красовского и определяются условия, при выполнении которых с помощью такого функционала можно доказать абсолютную устойчивость изучаемой системы. В случае нелинейностей степенного вида выводятся оценки скорости стремления решений к началу координат. Проводится анализ устойчивости соответствующей системы с переключениями параметров. Находятся достаточные условия, гарантирующие асимптотическую устойчивость нулевого решения при любом допустимом законе переключения.

Об авторах

А. Ю. Александров

Санкт-Петербургский государственный университет

Email: a.u.aleksandrov@spbu.ru
Russia

Список литературы

  1. Niculescu, S.-I. Delay Effects on Stability. A Robust Control Approach / S.-I. Niculescu. — Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milano ; Paris ; Singapur ; Tokyo : Springer, 2001. — 388 p.
  2. Fridman, E. Introduction to Time-Delay Systems: Analysis and Control / E. Fridman. — Basel : Birkh¨auser, 2014. — 362 p.
  3. Pepe, P. A new Lyapunov–Krasovskii methodology for coupled delay differential and difference equations / P. Pepe, Z.-P. Jiang, E. Fridman // Int. J. Control. — 2007. — V. 81, № 1. — P. 107–115.
  4. Rasvan, V. Oscillations in lossless propagation models: a Liapunov–Krasovskii approach / V. Rasvan, S.-I. Niculescu // IMA J. Math. Control Inform. — 2002. — V. 19. — P. 157–172.
  5. Gu, K. Lyapunov–Krasovskii functional for uniform stability of coupled differential-functional equations / K. Gu, Y. Liu // Automatica. — 2009. — V. 45. — P. 798–804.
  6. Метельский, А.В. Синтез регуляторов успокоения решения вполне регулярных дифференциально-алгебраических систем с запаздыванием / А.В. Метельский, В.Е. Хартовский // Дифференц. уравнения. — 2017. — Т. 53, № 4. — С. 547–558.
  7. Щеглова, А.А. Робастная устойчивость дифференциально-алгебраических уравнений произвольного индекса неразрешенности / А.А. Щеглова, А.Д. Кононов // Автоматика и телемеханика. — 2017. — № 5. — С. 36–55.
  8. Щеглова, А.А. К вопросу о сверхустойчивости интервального семейства дифференциальноалгебраических уравнений / А.А. Щеглова // Автоматика и телемеханика. — 2021. — № 2. — С. 55–70.
  9. Pepe, P. On the stability of coupled delay differential and continuous time difference equations / P. Pepe, E.I. Verriest // IEEE Trans. on Automatic Control. — 2003. — V. 48, № 8. — P. 1422–1427.
  10. Ngoc, P.H.A. Stability of coupled functional differential-difference equations / P.H.A. Ngoc // Int. J. Control. — 2020. — V. 93, № 8. — P. 1920–1930.
  11. Shen, J. Positivity and stability of coupled differential-difference equations with time-varying delays / J. Shen, W.X. Zheng // Automatica. — 2015. — V. 57. — P. 123–127.
  12. Briat, C. Stability and performance analysis of linear positive systems with delays using input–output methods / C. Briat // Int. J. Control. — 2017. — V. 91, № 7. — P. 1669–1692.
  13. Aleksandrov, A.Y. Absolute stability and Lyapunov–Krasovskii functionals for switched nonlinear systems with time-delay / A.Y. Aleksandrov, O. Mason // J. Franklin Institute. — 2014. — V. 351, № 8. — P. 4381–4394.
  14. Kazkurewicz, E. Matrix Diagonal Stability in Systems and Computation / E. Kazkurewicz, A. Bhaya. — Boston : Birkh¨auser, 1999. — 267 p.
  15. Mason, O. Diagonal Riccati stability and positive time-delay systems / O. Mason // Systems and Control Letters. — 2012. — V. 61. — P. 6–10.
  16. Aleksandrov A. Diagonal Riccati stability and applications / A. Aleksandrov, O. Mason // Linear Algebra and its Appl. — 2016. — V. 492. — P. 38–51.
  17. Александров, А.Ю. О диагональной устойчивости позитивных систем с переключениями и запаздыванием / А.Ю. Александров, О. Мейсон // Автоматика и телемеханика. — 2018. — № 12. — С. 16–33.
  18. Liberzon, D. Basic problems in stability and design of switched systems / D. Liberzon, A.S. Morse // IEEE Control Systems Magazine. — 1999. — V. 19, № 5. — P. 59–70.
  19. Pastravanu, O.C. Max-type copositive Lyapunov functions for switching positive linear systems / O.C. Pastravanu, M.-H. Matcovschi // Automatica. — 2014. — V. 50. — P. 3323–3327.
  20. Aleksandrov, A.Y. On the existence of a common Lyapunov function for a family of nonlinear positive systems / A.Y. Aleksandrov // Systems and Control Letters. — 2021. — V. 147. — Art. 1048324.
  21. Aleksandrov, A.Y. On the existence of diagonal Lyapunov–Krasovskii functionals for a class of nonlinear positive time-delay systems / A.Y. Aleksandrov // Automatica. — 2024. — V. 160. — Art. 111449.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024