Новые гликозиды акацетина и другие фенольные соединения из Agastache foeniculum и их влияние на моноаминоксидазы А и В

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Ингибиторы моноаминоксидаз (МАО) являются эффективными терапевтическими средствами для лечения нейродегенеративных заболеваний. К их числу относятся флавоноиды, обнаруженные в видах Agastache. В ходе настоящего исследования из A. foeniculum было выделено и идентифицировано с применением УФ, ЯМР спектроскопии и масс-спектрометрии шесть новых ацилированных флавон-О-гликозидов – агастозидов A (акацетин 7-О-(2''-О-малонил)-β-D-глюкопиранозид), B (акацетин 7-О-(4''-О-малонил)-β-D-глюкопиранозид), C (акацетин 7-О-(2'',6''-ди-О-малонил)-β-D-глюкопиранозид), D (акацетин 7-О-(4'',6''-ди-О-малонил)-β-D-глюкопиранозид), E (акацетин 7-О-(2''-О-малонил-6''-О-ацетил)-β-D-глюкопиранозид) и F (акацетин 7-О-(4''-О-ацетил-6''-О-малонил)-β-D-глюкопиранозид). Использование флэш-хроматографии и жидкостной хроматографии-масс-спектрометрии позволило обнаружить еще 34 известных фенольных соединения. Исследование биологической активности показало, что гликозиды акацетина из A. foeniculum оказывали ингибиторное действиеие на МАО, причем наибольший эффект был отмечен для ацетильных и малонильных эфиров акацетин 7-О-глюкозида, которые могут быть перспективными соединениями для создания новых лекарственных средств.

Полный текст

Доступ закрыт

Об авторах

Д. Н. Оленников

Институт общей и экспериментальной биологии СО РАН

Автор, ответственный за переписку.
Email: olennikovdn@mail.ru
Россия, Улан-Удэ, 670047

Н. И. Кащенко

Институт общей и экспериментальной биологии СО РАН

Email: olennikovdn@mail.ru
Россия, Улан-Удэ, 670047

Список литературы

  1. Lamptey R.N.L., Chaulagain B., Trivedi R., Gothwal A., Layek B., Singh J. // Int. J. Mol. Sci. 2022. V. 23. № 1851. https://doi.org/10.3390/ijms23031851
  2. Youdim M.B.H., Edmondson D., Tipton K.F.// Nature Rev. Neurosci. 2006. V. 7. P. 295–309. https://doi.org/10.1038/nrn1883
  3. Dhiman P., Malik N., Sobarzo-Sánchez E., Uriarte E., Khatkar A. // Molecules. 2019. V. 24. № 418. https://doi.org/10.3390/molecules24030418
  4. Chaurasiya N.D., Midiwo J., Pandey P., Bwire R.N., Doerksen R.J., Muhammad I., Tekwani B.L. // Molecules. 2020. V. 25. № 5358. https://doi.org/10.3390/molecules25225358
  5. Lee H.W., Ryu H.W., Baek S.C., Kang M.-G., Park D., Han H.-Y., Kim H. // Int. J. Biol. Macromol. 2017. V. 104. P. 547–553. https://doi.org/10.1016/j.ijbiomac.2017.06.076
  6. Абрамчук А.В., Карпухин М.Ю. // Аграрный вестник Урала. 2017. № 2. С. 6–9.
  7. Nechita M.-A., Toiu A., Benedec D., Hanganu D., Ielciu I., Oniga O., Nechita V.-I., Oniga I. // Plants. 2023. V. 12. № 2937. https://doi.org/10.3390/plants12162937
  8. Vogelmann J.E. // Biochem. Syst. Ecol. 1984. V. 12. P. 363–366. https://doi.org/10.1016/0305-1978(84)90067-X
  9. Чумакова В.В., Попова О.И., Чумакова В.В. // Растит. ресурсы. 2011. Т. 47. С. 51–55.
  10. Olennikov D.N., Kashchenko N.I. // Agronomy. 2023. V. 13. № 2410. https://doi.org/10.3390/agronomy13092410
  11. Olennikov D.N. // Separations. 2023. V. 10. № 255. https://doi.org/10.3390/separations10040255
  12. Olennikov D.N., Kashchenko N.I. // Appl. Biochem. Microbiol. 2023. V. 59. P. 530–538. https://doi.org/10.1134/S0003683823040099
  13. Olennikov D.N., Chirikova N.K. // Chem. Nat. Compd. 2019. V. 55. P. 1032–1038. https://doi.org/10.1007/s10600-019-02887-1
  14. Olennikov D.N. // Chem. Nat. Compd. 2022. V. 58. P. 816–821. https://doi.org/10.1007/s10600-022-03805-8
  15. Seo Y.H., Kang S.-Y., Shin J.-S., Ryu S.M., Lee A.Y., Choi G., Lee J. // J. Nat. Prod. 2019. V. 82. P. 3379–3385. https://doi.org/10.1021/acs.jnatprod.9b00697
  16. Park S., Kim N., Yoo G., Kim Y., Lee T.H., Kim S.Y., Kim S.H. // Biochem. Syst. Ecol. 2016. V. 67. P. 17–21. https://doi.org/10.1016/j.bse.2016.05.019
  17. Mizuno T., Seto H., Nakane T., Murai Y., Tatsuzawa F., Iwashina T. // Bull. Natl. Mus. Nat. Sci. B. 2023. V. 49. P. 57–64. https://doi.org/10.50826/bnmnsbot.49.2_57
  18. Kachlicki P., Piasecka A., Stobiecki M., Marczak Ł. // Molecules. 2016. V. 21. № 1494. https://doi.org/10.3390/molecules21111494
  19. Itokawa H., Suto K., Takeya K. // Chem. Pharm. Bull. 1981. V. 29. P. 1777–1779. https://doi.org/10.1248/cpb.29.1777
  20. Olennikov D.N., Kashchenko N.I. // Chem. Nat. Comp. 2016. V. 52. P. 996–999. https://doi.org/10.1007/s10600-016-1845-7
  21. Norazhar A.I., Lee S.Y., Faudzi S.M.M., Shaari K. // Appl. Sci. 2021. V. 11. № 3526. https://doi.org/10.3390/app11083526
  22. Duda S.C., Marghitas L.A., Dezmirean D., Duda M., Margaoan R., Bobis O. // Ind. Crops Prod. 2015. V. 77. P. 499–507. https://doi.org/10.1016/j.indcrop.2015.09.045

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Строение известных флавоноидов i–xiv, выделенных из A. foenicilum: Ac – ацетил, Mal – малонил.

Скачать (216KB)
3. Рис. 2. Масс-спектры соединений I (а), II (б) и III (в): Ac – ацетил, Mal – малонил.

Скачать (154KB)
4. Рис. 3. Строение углеводных фрагментов новых гликозидов акацетина I–VI. Стрелками указаны ключевые корреляции в спектрах HMBC.

Скачать (198KB)
5. Рис. 4. Хроматограмма (ВЭЖХ-ДМД, λ = 330 нм) экстракта цветков A. foenicilum и спектр поглощения гликозидов акацетина (на врезке). Номера соединений указаны как в табл. 4.

Скачать (139KB)

© Российская академия наук, 2024