On the Issue of Fatigue Classification of Cement Composites


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The abstract generalization of the specifics of fatigue degradation of cement composites due to structural and physical heterogeneity, ambiguity of energy and mechanical effects of induced changes, interdependence of impacts and response, etc., is presented, which together do not make it possible to use the methodology and principles of the limit state method for its assessment. A phenomenological approach to the design accounting of fatigue is proposed by introducing a normative classification of the resistance of composites to non-stationary influences. In the experimental part of the work, prismatic samples of two series were tested: concrete and fiber concrete with polypropylene fibers. All tests were carried out in automatic mode according to a specially developed program at the Instron 5989 test complex, in compliance with the constancy of the deformation rate of the samples of 0.04 mm/s. External influences are modeled by 50 load-unloading cycles with an amplitude of η=0.8 and zero asymmetry (ρ=0). Cyclic loading was completed by monotonous compression until complete destruction of the samples. The acceptability of the laws of the kinetic concept of strength and its criterion (failure time) for assessing fatigue durability is experimentally and analytically substantiated. The practical identity of the kinetics of resistance time and significant indicators of operational suitability is confirmed.

全文:

受限制的访问

作者简介

B. Pinus

Irkutsk National Research Technical University

编辑信件的主要联系方式.
Email: pinus@istu.edu

Doctor of Sciences (Engineering) 

俄罗斯联邦, Irkutsk

I. Korneeva

Irkutsk National Research Technical University

Email: kornee-inna@yandex.ru

Candidate of Sciences (Engineering) 

俄罗斯联邦, Irkutsk

参考

  1. Заалишвили В.Б., Одишария А.В., Тимченко И.Э. и др. Инженерное макросейсмическое обследование эпицентральной зоны землетрясения 14 декабря 2000 г. // Геология и геофизика Юга России. 2014. № 1. С. 30–38. DOI: https://doi.org/10.23671/VNC.2014.1.55405
  2. Zaalishvili V.B., Odishariya A.V., Timchenko I.E. et al. Engineering macroseismic survey of epicentral area of the earthquake on 14 December 2000. Geologiya i geofizika Yuga Rossii. 2014. No. 1, pp. 30–38. (In Russian). DOI: https://doi.org/10.23671/VNC.2014.1.55405
  3. Басов А.Д., Черных Е.Н., Шагун А.Н., Капралов А.П. Микродеформации на Иркутской ГЭС при землетрясении 27 августа 2008 года на южном Байкале // Сейсмостойкое строительство. Безопасность сооружений. 2009. № 4. С. 52–54.
  4. Basov A.D., Cherny`x E.N., Shagun A.N., Kapralov A.P. Microdeformations at the Irkutsk hydro electric station during the south Baikal earthquake on August 27, 2008. Sejsmostojkoe stroitel`stvo. Bezopasnost` sooruzhenij. 2009. No. 4, pp. 52–54. (In Russian).
  5. Рабинович Ф.Н. Композиты на основе дисперсно-армированных бетонов. Вопросы теории и проектирования, технология, конструкции. М.: АСВ, 2011. 639 c.
  6. Rabinovich F.N. Kompozity na osnove dispersno-armirovannykh betonov. Voprosy teorii i proektirovaniya, tekhnologiya, konstruktsii [Composites based on dispersed reinforced concrete. Theory and design issues, technology, constructions] Moscow: ASV. 2011. 639 p.
  7. Liang J., Nie X., Masud M. et all. A study on the simulation method for fatigue damage behavior of reinforced concrete structures. Engineering Structures. 2017. No. 150, pp. 25–38. DOI: https://doi.org/10.1016/j.engstruct.2017.07.001
  8. Baktheer A., Chudoba R. Classification and evaluation of phenomenological numerical models for concrete fatigue behavior under compression. Construction and Building Materials. 2019. No. 221 (1), pp. 661–677. DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.022
  9. Chen Y., Chen X., Bu J. Nonlinear damage accumulation of concrete subjected to variable amplitude fatigue loading. Bulletin of the Polish Academy of Sciences Technical Sciences. 2018. Vol. 66. No. 2. DOI: https://doi.org/10.24425/119070
  10. Haar C., Marx S. Ein additives dehnungsmodell für ermüdungsbeanspruchten beton. Beton- und Stahlbetonbau. 2017. No. 112 (1), pp. 31–40. DOI: https://doi.org/10.1002/best.201600048
  11. Huang B.-T., Li Q.-H., Xu S.-L. Fatigue deformation model of plain and fiber-reinforced concrete based on weibull function. Journal of Structural Engineering. 2019. No. 145 (1). DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002237
  12. Poveda E., Ruiz G., Cifuentes H. et all. Influence of the fiber content on the compressive low-cycle fatigue behavior of self-compacting SFRC. International Journal of Fatigue. 2017. No. 101, pp. 9–17. DOI: https://doi.org/10.1016/j.ijfatigue.2017.04.005
  13. Isojeh B., El-Zeghayar M., Vecchio F.J. Concrete damage under fatigue loading in uniaxial compression. ACI Materials Journal. 2017. No. 114 (2), pp. 225–235. DOI: https://doi.org/10.14359/51689477
  14. Keerthana K., Kishen J.C. An experimental and analytical study on fatigue damage in concrete under variable amplitude loading. International Journal of Fatigue. 2018. No. 111, pp. 278–288. DOI: https://doi.org/10.1016/j.ijfatigue.2018.02.014
  15. Liang J., Ren X., Li J. A competitive mechanism driven damage plasticity model for fatigue behavior of concrete. International Journal of Damage Mechanics. 2016. No. 25 (3), pp. 377–399. DOI: https://doi.org/10.1177/1056789515586839
  16. Liu F., Zhou J. Fatigue strain and damage analysis of concrete in reinforced concrete beams under constant amplitude fatigue loading. Shock and Vibration. 2016. DOI: https://doi.org/10.1155/2016/3950140
  17. Liu F., Zhou J. Research on fatigue strain and fatigue modulus of concrete. Advances in Civil Engineering. 2017, pp. 1–7. DOI: https://doi.org/10.1155/2017/6272906
  18. Oneschkow N. Fatigue behaviour of high-strength concrete with respect to strain and stiffness. International Journal of Fatigue. 2016. No. 87, pp. 38–49. DOI: https://doi.org/10.1016/j.ijfatigue.2016.01.008
  19. Korneeva I.G., Pinus B.I. Energy aspects of low-cycle fatigue оf fibropolypropylene concrete. IOP Conf. Series: Materials Science and Engineering International Conference on Construction, Architecture and Technosphere Safety. Sochi, 6–12 September 2020. No. 962 DOI: 10.1088/1757-899X/962/2/022020' target='_blank'>https://doi: 10.1088/1757-899X/962/2/022020
  20. Korneyeva I. Extensibility of the fibre concrete. IOP Conference series: materials science and engineering “Investments, Construction, Real Estate: New Technologies and Special-Purpose Development Priorities”. Irkutsk, April 25, 2019. No. 667. DOI: https://doi.org/10.1088/1757-899X/667/1/012044

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Compression diagrams of experimental composites in monotonous tests. Series «B»

下载 (93KB)
3. Fig. 2. Compression diagrams of experimental composites in monotonous tests. Series «FB»

下载 (91KB)
4. Fig. 3. Changes in the dynamics of the strength of the composite over time. Series «B»: a – the kinetics of the increase in dressings; b – the diagram σ–τ

下载 (163KB)
5. Fig. 4. Changes in the dynamics of the strength of the composite over time. Series «FB»: a – the kinetics of the increase in dressings; b – the diagram σ–τ

下载 (163KB)

版权所有 © ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2024

##common.cookie##