Artificial Intelligence Technologies in Social Sciences

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

One of the results of the global digital transformation of modern society is Big Data (BD), which is digital traces left by Internet users in digital services, as well as data collected from various sources. BD is an important socio-economic resource that can be studied using Artificial Intelligence (AI) technologies capable of effectively analyzing a large volume of diverse digital content. An approach to studying socially significant digital traces using BD and AI technologies in social sciences is explored, based on the general scientific dialectical method and theoretical analysis; the findings contained in the specialized and scientific literature, as well as regulatory documents on the topic of the article are summarized. The potential of AI technologies for identifying patterns in BD and predicting trends in modern society is analyzed. The directions of effective implementation of AI in social sciences are identified; the ethical and legal aspects of using AI when working with BD are considered. A classification of directions for analyzing socially significant digital traces in social sciences is proposed. Using natural language processing technology such as topic modeling using BigARTM, the content of professional (hardskills) and personal (softskills) skills presented in the form of semi-structured data is considered to identify significant characteristics of the healthcare professionals.

作者简介

N. Moiseeva

Omsk State Technical University

编辑信件的主要联系方式.
Email: nat_lion@mail.ru
Omsk, Russia

参考

  1. Aletdinova A. (2023) Applying Machine Learning Methods to Analyze Agricultural Job Vacancies. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Novosibirsk: Izdatel’skii tsentr Novosibirskogo gosudarstvennogo agrarnogo universiteta “Zolotoi kolos”. Pp. 3–6. (In Russ.)
  2. Aseeva I. (2022) Artificial Intelligence and Big Data: Ethical Issues of Practical Use (Analytical Review). Sotsial’nye i gumanitarnye nauki. Otechestvennaya i zarubezhnaya literatura. Seriya 8: Naukovedenie. Referativnyi zhurnal, no. 2, pp. 89–98. https://doi.org/10.31249/naukoved/2022.02.02 (In Russ.)
  3. Andreas V. (2021) BIG DATA. Vsya tekhnologiya v odnoi knige [BIG DATA. All technology is in one book]. Moscow: Eksmo. 384 p. (In Russ.)
  4. Bengfort B., Bilbro R., Oheda T. (2019) Prikladnoi analiz tekstovykh dannykh na Python. Mashinnoe obuchenie i sozdanie prilozhenii obrabotki estestvennogo yazyka [Applied Text Analysis in Python: Machine Learning and Building Natural Language Processing Applications]. SPb.: Piter. 368 p. (In Russ.)
  5. Berman Sh. (2020) Big Data and Historical Social Science. Sociological Studies, no. 2, pp. 144–149. (In Russ.)
  6. Bessokirnaya G.P. (2003) Discriminant analysis for selection of informative variables. Sociologiya: Metodologiya, metody, matematicheskie modeli, no. 16, pp. 25–35. (In Russ.)
  7. Bogdanov M., Smirnov I. (2021) Opportunities and Limitations of Digital Traces and Machine Learning Methods in Sociology. Monitoring of Public Opinion: Economic and Social Changes, no. 1, pp. 304–328. https://doi.org/10.14515/monitoring.2021.1.1760 (In Russ.)
  8. Boncanini M. (2018) Analiz sotsial’nykh media na Python [Social Media Analysis in Python]. Moscow: DMK. Press. 288 p. (In Russ.)
  9. Guba K. (2021) Big Data in Studies of Science: A New Research Field. Sotsiologicheskie issledovaniya, no. 6, pp. 24–33. https://doi.org/10.31857/S013216250013878-8 (In Russ.)
  10. Guba K. (2018) Big Data in Sociology: New Data, New Sociology? The Russian Sociological Review, vol. 17, no. 1, pp. 213–236. https://doi.org/10.17323/1728-192X-2018-1-213-236 (In Russ.)
  11. Koltsova O., Maslinskij K. (2013) Identifying the thematic structure of the Russian blogosphere: automatic methods of text analysis. Sotsiologiya: 4M, no. 36, pp. 113–139. (In Russ.)
  12. Korytnikova N. (2015) Online Big Data as a source of analytical information in online research. Sociologicheskie issledovaniya, no. 8, pp. 14–24. (In Russ.)
  13. Kun M., Johnson K. (2019) Prediktivnoe modelirovanie na praktike [Predictive Modeling in Practice]. Spb.: Piter. 640 p. (In Russ.)
  14. Morozova Yu.A. (2022) Data mining of vacancy data to identify the current labor market needs. Informatics and education, vol. 37, no. 5, pp. 26–37. https://doi.org/10.32517/0234-0453-2022-37-5-26-37 (In Russ.)
  15. Odintsov A. (2017) Sociology of Public Opinion and the Big Data Challenge. Monitoring of Public Opinion: Economic and Social Changes, no. 3, pp. 30–43. https://doi.org/10.14515/monitoring.2017.3.04 (In Russ.)
  16. Olejnik A. (2019) Content analysis of big qualitative data. International Journal of Open Information Technologies, no. 7(10), pp. 36–49. (In Russ.)
  17. Assessment of compliance of strategic development priorities of regions with their industry specialization based on Text Mining / E.V. Kozonogova, Yu.V. Dubrovskaya, M.R. Rusinova, P.V. Ivanov. (2022) Public Administration Issues, no. 2, pp. 106–133. https://doi.org/10.17323/1999-5431-2022-0-2-106-133 (In Russ.)
  18. Pinchuk A., Karepova S., Tikhomirov D. (2024) Text Mining Technologies in Sociological Analysis (using the example of studying students`ideas about the mission of a modern university). Sociological Science and Social Practice, vol. 12, no. 1, pp. 62–79. https://doi.org/10.19181/snsp. 2024.12.1.3 (In Russ.)
  19. Pisareva A. (2021) Social networks in modern political communications: a content analysis of foreign periodicals. Vestnik Kemerovskogo gosudarstvennogo universiteta. Seriya: Politicheskie, sociologicheskie i ekonomicheskie nauki, vol. 6, no. 3, pp. 289–303. (In Russ.)
  20. Platonova S. (2022) Big Data and the Organization of Social Control in the Digital Society. Bulletin of the Moscow Region State University. Series: Philosophy, no. 4, pp. 81–91. https://doi.org/10.18384/2310-7227-2022-4-81-91 (In Russ.)
  21. Rafikova K. (2024) Application of Machine Learning Algorithms for Reducing Information Asymmetry and Forcasting Social Changes in the Labor Market: Challenges and Opportunities. Theory and Practice of Social Development, no. 5(193), pp. 72–77. https://doi.org/10.24158/tipor.2024.5.8 (In Russ.)
  22. Silen D., Mejsman A., Ali M. (2020) Osnovy Data Science i Big Data Python i nauka o dannyh [Basics of Data Science and Big Data Python and Data Science]. Spb.: Piter. 336 p. (In Russ.)
  23. Smirnov A. (2022) Digital traces of the population as a source of data on migration flows in the Russian Arctic. Demographic Review, no. 9(2), pp. 42–64. https://doi.org/10.17323/demreview.v9i2.16205 (In Russ.)
  24. Tolstova Yu.N. (2000) Analiz sotsiologicheskikh dannykh. Metodologiya, deskriptivnaya statistika, izuchenie svyazei mezhdu nominal'nymi priznakami [Analysis of sociological data. Methodology, descriptive statistics, study of connections between nominal features]. Moscow: Nauchnyj mir. 352 p. (In Russ.)
  25. Fenner M. (2024) Mashinnoe obuchenie s pomoshch’yu Python dlya vsekh. Rukovodstvo po sozdaniyu sistem mashinnogo obucheniya: ot osnov do moshchnyh instrumentov [Machine Learning with Python for Everyone: A Guide to Building Machine Learning Systems: From Basics to Powerful Tools]. Moscow: Eksmo. 672 p. (In Russ.)
  26. Tsyba V. (1981) Matematiko-statisticheskie osnovy sotsiologicheskikh issledovanii [Mathematical and statistical foundations of sociological research]. Moscow: Finansy i statistika. 255 p. (In Russ.)
  27. Chzhen E., Kazari A. (2022) Mashinnoe obuchenie: Konstruirovanie priznakov. Principy i tekhniki dlya analitikov [Machine Learning: Feature Engineering: Principles and Techniques for Analysts]. Moscow: Eksmo. 240 p. (In Russ.)
  28. Sholle F. (2022) Glubokoe obucheniye na Python [Deep Learning in Python]. Moscow: Piter. 400 p. (In Russ.)
  29. Additive regularization for topic modeling in sociological studies of user-generated texts / S. Koltcov, O. Koltsova, S. Nikolenko [et al.]. Lecture Notes in Computer Science. 2017, is. 10061 LNAI, pp. 169–184. https://doi.org/10.1007/978-3-319-62434-1_14
  30. Eubanks V. (2018) Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York: Picador, St. Martin’s Press. 272 p.
  31. Feher K. (2019) Digital identity and the online self: Footprint strategies – An exploratory and comparative research study. Journal of Information Science, vol. 47, is. 2, pp. 192–205. https://doi.org/10.1177/0165551519879702
  32. Ledford H. (2020) Computing humanity: How data from Facebook, Twitter and other sources are revolutionizing social science. Nature, is. 582, pp. 328–330.
  33. Macanovic A. (2022) Text mining for social science – The state and the future of computational text analysis in sociology. Social Science Research, is. 108, pp. 1–16. https://doi.org/10.1016/j.ssresearch.2022.102784
  34. O’Neil C. (2016) Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crown. 259 p.
  35. Sarkar D. (2019) Text Analytics with Python. A Practitioner’s Guide to Natural Language Processing. 2nd ed. India. 674 p. https://doi.org/10.1007/978-1-4842-4354-1
  36. Stephany F. (2021) One size does not fit all: Constructing complementary digital reskilling strategies using online labour market data. Big Data & Society, is. 8(1). https://doi.org/10.1177/20539517211003120

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025