EFFECT OF AMINOGUANIDINE ON CATARACTOGENESIS IN EXPERIMENTAL DIABETES MELLITUS

Abstract


Nonenzymatic glycosylation of lens proteins in diabetes mellitus is one of the pathogenetic mechanisms of cataract formation. According to the results of this study, aminoguanidine, which has anti-glycation activity, inhibits cataractogenesis in experimental diabetes. Laboratory animals with streptozotocin-induced diabetes mellitus treated with aminoguanidine showed less clouding in the lenses, and the content of advanced glycation end products, in particular, carboxymethyllysine, in the lenses was found to be reduced compared to the same parameters in animals from the control diabetic group.

Full Text

Restricted Access

About the authors

A. A Spasov

Volgograd State Medical University

400131, Volgograd, Russian Federation

Yulia A. Govorova

Volgograd State Medical University

Email: j.govorova@yandex.ru
400131, Volgograd, Russian Federation
applicant for the Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 400131, Volgograd, Russian Federation

L. V Naumehko

Volgograd State Medical University

400131, Volgograd, Russian Federation

D. A Babkov

Volgograd State Medical University

400131, Volgograd, Russian Federation

A. S Taran

Volgograd State Medical University

400131, Volgograd, Russian Federation

A. B Smirnov

Volgograd State Medical University

400131, Volgograd, Russian Federation

Yu. I Velikorodnaya

Volgograd State Medical University

400131, Volgograd, Russian Federation

References

  1. Harding J.J., Egerton M., van Heyningen R., Harding R.S. Diabetes, glaucoma, sex, and cataract: analysis of combined data from two case control studies. Br. J. Ophthalmol. 1993; 77(1): 2-6.
  2. Rowe N. G., Mitchell P. G., Cumming R. G., Wans J. J. Diabetes, fasting blood glucose and age-related cataract: the Blue Mountains eye study. Ophthalmic. Epidemiol. 2000; 7(2): 103-14.
  3. Hennis A., Wu S. Y., Nemesure B., Leske M. C. Barbados eye studies group. Risk factors for incident cortical and posterior subcapsular lens opacities in the Barbados eye studies. Arch. Ophthalmol. 2004; 122(4): 525-30.
  4. Bahmani F., Bathaie S.Z., Aldavood S.J., Ghahghaei A. Glycine therapy inhibits the progression of cataract in streptozotocin-induced diabetic rats. Mol Vis. 2012; 18: 439-48. Epub 2012 Feb 11.
  5. Pollreisz A., Schmidt-Erfurth U. Diabetic Cataract - Pathogenesis, Epidemiology and Treatment. J. Ophthalmol. 2010; 2010: 608751. doi: 10.1155/2010/608751. Epub 2010 Jun 17.
  6. Ramana B.V., Raju T.N., Kumar V.V., Reddy P.U. Defensive role of quercetin against imbalances of calcium, sodium, and potassium in galactosemic cataract. Biol. Trace Elem. Res. 2007;119(1): 35-41.
  7. Spector A. Review: oxidative stress and disease. J. Ocul. Pharmacol. Ther. 2000; 16(2): 193-201.
  8. Chung S.S., Ho E.C., Lam K.S., Chung S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol. 2003; 14(8 Suppl 3): S233-6.
  9. Yousefi R., Javadi S., Amirghofran S., Oryan A., Moosavi-Movahedi A.A. Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients. Int. J. Biol. Macromol. 2016; 82: 328-38. doi: 10.1016/j.ijbiomac.2015.10.036. Epub 2015 Oct 23.
  10. Nagaraj R.H., Linetsky M., Stitt A.W. The pathogenic role of Maillard reaction in the aging eye. Amino Acids. 2012; 42(4): 1205-20. doi: 10.1007/s00726-010-0778-x. Epub 2010 Oct 21.
  11. Fan X., Monnier V.M. Inhibition of crystallin ascorbylation by nucleophilic compounds in the hSVCT2 mouse model of lenticular aging. Invest. Ophthalmol. Vis. Sci. 2008; 49(11): 4945-52. doi: 10.1167/iovs.08-1813. Epub 2008 Apr 17.
  12. Ahmed N., Thornalley P.J., Dawczynski J. et al. Methylglyoxal-derived hydroimidazolone advanced glycation end products of human lens proteins. Invest. Ophthalmol. Vis. Sci. 2003; 44(12): 5287-92.
  13. Luthra M., Balasubramanian D. Nonenzymatic glycation alters protein structure and stability. A study of two eye lens crystallins. J. Biol. Chem. 1993; 268(24): 18119-27.
  14. Sisková A., Wilhelm J. Role of nonenzymatic glycation and oxidative stress on the development of complicated diabetic cataracts. Cesk. Fysiol. 2000; 49(1):16-21.
  15. Karumanchi D.K., Karunaratne N., Lurio L., Dillon J.P., Gaillard E.R. Non-enzymatic glycation of α-crystallin as an in vitro model for aging, diabetes and degenerative diseases. Amino Acids. 2015; 47(12): 2601-8. doi: 10.1007/s00726-015-2052-8. Epub 2015 Jul 28.
  16. Perry R.E., Swamy M.S., Abraham E.C. Progressive changes in lens crystalline glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Exp. Eye Res. 1987; 44(2): 269-82.
  17. Fan X., Zhang J., Theves M., Strauch C., Nemet I., Liu X., Qian J., Giblin F.J., Monnier V.M. Mechanism of lysine oxidation in human lens crystallins during aging and in diabetes. J Biol. Chem. 2009; 284(50): 34618-27. doi: 10.1074/jbc.M109.032094. Epub 2009 Oct 23.
  18. Linetsky M., Raghavan C.T., Johar K., Fan X., Monnier V.M., Vasavada A.R., Nagaraj R.H. UVA light-excited kynurenines oxidize ascorbate and modify lens proteins through the formation of advanced glycation end products: implications for human lens aging and cataract formation. J. Biol. Chem. 2014;289(24):17111-23. doi: 10.1074/jbc.M114.554410. Epub 2014 May 5.
  19. Holm T., Raghavan C.T., Nahomi R., Nagaraj R.H., Kessel L. Effects of photobleaching on selected advanced glycation end products in the human lens. BMC Res Notes. 2015; 8: 5. doi: 10.1186/s13104-015-0977-3.
  20. Liang J.J., Fu L. Conformational study of N(epsilon)-(carboxymethyl)lysine adducts of recombinant gamma C-crystallin. J. Protein Chem. 2001; 20(8): 641-5.
  21. Saraswat M., Suryanarayana P., Reddy P.Y., Patil M.A., Balakrishna N., Reddy G.B. Antiglycating potential of Zingiber officinalis and delay of diabetic cataract in rats. Mol Vis. 2010; 16: 1525-37.
  22. Franke S., Dawczynski J., Strobel J., Niwa T., Stahl P., Stein G. Increased levels of advanced glycation end products in human cataractous lenses. J. Cataract Refract Surg. 2003; 29(5): 998-1004.
  23. Ghanem AA1, Elewa A, Arafa LF. Pentosidine and N-carboxymethyl-lysine: biomarkers for type 2 diabetic retinopathy. Eur. J. Ophthalmol. 2011; 21(1) :48-54.
  24. Monnier V.M., Sell D.R., Genuth S. Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci. 2005; 1043: 567-81.
  25. Semba R.D., Najjar S.S., Sun K., et al. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with increased aortic pulse wave velocity in adults. Am J Hypertens. 2009; 22(1): 74-9. doi: 10.1038/ajh.2008.320. Epub 2008 Nov 20.
  26. Thornalley P.J., Battah S., Ahmed N., Karachalias N., Agalou S., Babaei-Jadidi R., Dawnay A. Quantitative screening of advanced glycation end products in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 2003; 375(Pt 3): 581-92.
  27. Ahmed M.U., Thorpe S.R., Baynes J.W. Identification of N-epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem.1986; 261(11):4889-94.
  28. Kumar P.A., Kumar M.S., Reddy G.B. Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J. 2007; 408(2): 251-8.
  29. Stitt A.W. The Maillard reaction in eye diseases. Ann N Y Acad Sci. 2005; 1043:582-97.
  30. Frye E.B., Degenhardt T.P., Thorpe S.R., Baynes J.W. Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J. Biol. Chem. 1998; 273 (30): 18714-9.
  31. Shamsi F.A., Sharkey E., Creighton D., Nagaraj R.H. Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Exp. Eye Res. 2000;70 (3): 369-80.
  32. Saraswat M., Suryanarayana P., Reddy P.Y., Patil M.A., Balakrishna N., Reddy G.B. Antiglycating potential of Zingiber officinalis and delay of diabetic cataract in rats. Mol. Vis. 2010; 16: 1525-37.
  33. Jairajpuri D.S., Fatima S., Jairajpuri Z.S. Glycation induced physicochemical changes in low-density lipoprotein and its role in promoting cholesterol accumulation in macrophages along with antiglycation effect of aminoguanidine. Advances in Biological Chemistry. 2015; 5: 203-214. doi: 10.4236/abc.2015.55017.
  34. Lin Y.T., Tseng Y.Z., Chang K.C. Aminoguanidine prevents fructose-induced arterial stiffening in Wistar rats: aortic impedance analysis. Exp Biol Med (Maywood). 2004; 229(10): 1038-45.
  35. Osicka T.M, Yu Y., Panagiotopoulos S., Clavant S.P., Kiriazis Z., Pike R.N., Pratt L.M., Russo L.M., Kemp B.E., Comper W.D., Jerums G. Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes. 2000; 49(1): 87-93.
  36. Yan H., Guo Y., Zhang J., Ding Z., Ha W., Harding J.J. Effect of carnosine, aminoguanidine, and aspirin drops on the prevention of cataracts in diabetic rats. Mol. Vis. 2008; 14: 2282-91.
  37. Stevens A. The effectiveness of putative anti-cataract agents in the prevention of protein glycation. J. Am. Optom. Assoc. 1995; 66(12): 744-9.
  38. Harding J.J. Pharmacological treatment strategies in age-related cataracts. Drugs Aging. 1992; 2(4): 287-300.
  39. Chen A.S., Taguchi T., Sugiura M., Wakasugi Y., Kamei A., Wang M.W., Miwa I. Pyridoxal-aminoguanidine adduct is more effective than aminoguanidine in preventing neuropathy and cataract in diabetic rats. Horm Metab Res. 2004; 36(3):183-7.
  40. Song Y., Zhang F., Ying C., Kumar K.A., Zhou X. Inhibition of NF-κB activity by aminoguanidine alleviates neuroinflammation induced by hyperglycemia. Metab. Brain Dis. 2017; 32(5): 1627-37.
  41. Spasov A., Brel A., Litvinov R., Lisina S., Kucheryavenko A., Budaeva Yu., Salaznikova O., Rashchenko A., Shamshina D., Batrakov V, Ivanov A.V. Evaluation of n-hydroxy-, n-metoxy-, and n-acetoxybenzoyl- substituted derivatives of thymine and uracil as new substances for prevention and treatment of long-term complications of diabetes mellitus. Russian Journal of Bioorganic Chemistry. 2018; 44(6): 769-77.
  42. Savateev K., Fedotov V., Butorin I., Eltsov O., Slepukhin P., Ulomsky E., Rusinov V., Litvinov R., Babkov D., Khokhlacheva E., Radaev P., Vassiliev P., Spasov A. Nitrothiadiazolo[3,2-a]pyrimidines as promising antiglycating agents. Eur. J. Med.Chem. 2020;185: 111808.
  43. Sell D.R., Nelson J.F., Monnier V.M. Effect of chronic aminoguanidine treatment on age-related glycation, glycoxidation, and collagen cross-linking in the Fischer 344 rat. J. Gerontol. A Biol. Sci. Med. Sci. 2001; 56(9): B405-11.
  44. Suryanarayana P., Saraswat M., Mrudula T., Krishna T.P., Krishnaswamy K., Reddy G.B. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci. 2005; 46(6):2092-9.
  45. Abdul Nasir N.A., Agarwal R., Sheikh Abdul Kadir S.H., Vasudevan S., Tripathy M., Iezhitsa I., Mohammad Daher A., Ibrahim M.I., Mohd Ismail N. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats. PLoS One. 2017;12(3): e0174542.
  46. Taniguchi T., Kawakami H., Sawada A, Iwaki M., Tsuji A., Sugiyama K., Kitazawa Y. Effects of nitric oxide synthase inhibitor on intraocular pressure and ocular inflammation following laser irradiation in rabbits. Curr Eye Res. 1998; 17(3): 308-15.
  47. Carr B.C., Emigh C.E., Bennett L.D., Pansick A.D., Birch D.G., Nguyen C. Towards a treatment for diabetic retinopathy: Intravitreal Toxicity and Preclinical Safety Evaluation of Inducible Nitric Oxide Synthase Inhibitors. Retina. 2017; 37(1): 22-31.
  48. Neufeld A.H., Sawada A., Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc. Natl. Acad. Sci. USA. 1999; 96(17): 9944-8.
  49. Latendresse J.R. Fixation of Testes and Eyes Using a Modified Davidson’s Fluid: Comparison with Bouin’s Fluid and Conventional Davidson’s Fluid. Latendresse J.R., Warbrittion A.R., Jonassen H., Creasy D.M. Toxicologic pathology. 2002; 30(4): 524-33.
  50. Саркисов Д.С., Перов Ю.Л., ред. Микроскопическая техника: Руководство. М.: Медицина,; 1996
  51. Nakayama H., Mitsuhashi T., Kuwajima S., Aoki S., Kuroda Y., Itoh T., Nakagawa S.Immunochemical detection of advanced glycation end products in lens crystallins from streptozocin-induced diabetic rat. Diabetes. 1993; 42(2): 345-50.
  52. Agardh E., Hultberg B., Agardh C. Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats. Curr. Eye Res. 2000; 21(1): 543-9.
  53. Kumari K., Umar S., Bansal V., Sahib M.K. Inhibition of diabetes-associated complications by nucleophilic compounds. Diabetes. 1991;40(8): 1079-84.
  54. Балашевич Л.И., Измайлов А. С., ред. Диабетическая офтальмопатия. СПб.: Человек; 2012

Statistics

Views

Abstract - 35

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies