Oxidative stress and inflammation in COVID-19 pathogenesis

Cover Page


This study discusses the role of oxidative stress and inflammation in the development of severe acute respiratory syndrome (SARS) associated with COVID-19 caused by the novel SARS-CoV-2 coronavirus. An analysis of the literature revealed that the development of respiratory viral infections, including COVID-19, is usually accompanied by the accumulation of acidic metabolic products in the blood and tissues and, accordingly, oxidative stress and increased levels of cytokines. In this regard, it seems appropriate to use the second-generation low-toxic antioxidant Ethoxidol, manufactured in Russia, which reduces the intensity of inflammation, and also improves blood oxygen saturation.

Full Text

Restricted Access

About the authors

Vladimir G. Kukes

Scientific Centre for Expert Evaluation of Medicinal Products; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: elmed@yandex.ru
ORCID iD: 0000-0002-5112-6928

Russian Federation, Moscow

doctor of medical sciences, Professor, Academician, Chief Science Officer “Scientific Centre for Expert Evaluation of Medicinal Products”; Professor, Department of Clinical Pharmacology “I.M. First Moscow State Medical University (Sechenov University)”

Olga K. Parfenova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: oparfenova22@gmail.com
ORCID iD: 0000-0002-0079-2832

Russian Federation, Moscow

Nikita G. Sidorov

I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I. Mechnikov Research Institute of vaccines and serums

Email: deel@yandex.ru
ORCID iD: 0000-0003-1257-8718

Russian Federation, Moscow

Yuri V. Olefir

Scientific Centre for Expert Evaluation of Medicinal Products

Email: olefir@expmed.ru
ORCID iD: 0000-0001-7652-4642

Russian Federation, Moscow

MD, PhD, DSc

Albina А. Gazdanova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: gaa71@bk.ru
ORCID iD: 0000-0001-7099-4547

Russian Federation, Moscow



  1. Delgado-Roche L., Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384-387. doi: 10.1016/j.arcmed.2020.04.019.
  2. Kolesnikova L.I., Darenskaya M.A., Kolesnikov S.I. Free radical oxidation: a pathophysiologist’s view. Byulleten’ sibirskoy meditsiny. 2017;16(4):16-29. (in Russian) doi: 10.20538/1682-0363-2017-4-16-29.
  3. Woyke S., Rauch S., Strohle M., Gattere H. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients. Clin Nutr. 2020; S0261-5614(20)30210-7. doi: 10.1016/j.clnu.2020.04.036.
  4. Muronets V.I., Fokina K.V., Yazykova M.Yu. Participation of glyceraldehyde-3-phosphate dehydrogenase in the regulation of 2,3-diphosphoglycerate level in erythrocytes. Biokhimiya. 2000;65(4): 547-52. (in Russian)
  5. Zhao M., Wang M., Zhang J., Ye J., Xu Y., Wang Z. et al. Advances in the relationship between coronavirus infection and cardiovascular diseases. Biomed Pharmacother. 2020;127:110230. doi: 10.1016/j.biopha.2020.110230.
  6. Divani A.A., Andalib S., Di Napoli M., Lattanzi S., Hussain M.S., Biller J. et al. Coronavirus disease 2019 and stroke: clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis. 2020;29(8):104941. doi: 10.1016/j.jstrokecerebrovasdis.2020.104941.
  7. Sousa T., Oliveira S., Afonso J., Morato M., Patinha D., Fraga S. et al. Role of H2O2 in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br J Pharmacol. 2012;166(8):2386-401. Doi: 10.1111/j. 1476-5381.2012.01957.x.
  8. Bloise E., Ciarmela P., Dela Cruz C., Luisi S., Petraglia F., Reis F.M. Activin A in mammalian physiology. Physiol Rev. 2019;99(1):739-80. doi: 10.1152/physrev.00002.2018.
  9. Hardy C.L., King S.J., Mifsud N.A., Hedger M.P., Phillips D.J., Mackay F. et al. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology. Immunol Cell Biol. 2015;93(6):567-74. doi: 10.1038/icb.2015.7.
  10. Hansen J.S., Plomgaard P. Circulating follistatin in relation to energy metabolism. Mol Cell Endocrinol. 2016;433:87-93. doi: 10.1016/j.mce.2016.06.002.
  11. Kukes V.G., Olefir Y.V., Romanov B.K., Prokofiev A.B., Parfenova E.V., Boldyreva M.A. et al. The mechanism of action of follistatin-like protein-1 (FSTL-1). Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. 2019;9(4):256-60. (in Russian) doi: 10.30895/1991-2919-2019-9-4-256-260.
  12. Romanov B.K. Coronavirus disease COVID-2019. Bezopasnost’ i risk farmakoterapii. 2020;8(1):3-8. (in Russian) doi: 10.30895/2312-7821-2020-8-1-3-8.
  13. Kukes V.G. The results of a study of a domestic drug, an antioxidant of the second generation of ethoxidol. [Itogi issledovaniya otechestvennogo preparata, antioksidanta II pokoleniya etoksidola]. Moscow: MAKFiF; 2017. (in Russian)
  14. Kukes V.G., Parfenova O.K., Romanov B.K., Prokof’ev A.B., Parfenova E.V., Sidorov N.G. et al. The mechanism of action of ethoxidol on oxidative stress indices in heart failure and hypotension. Sovremennye tekhnologii v meditsine. 2020;12(2):67-73. (in Russian) doi: 10.17691/stm2020.12.2.08.



Abstract - 157

PDF (Russian) - 0


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2020 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies