— ГЕОЛОГИЯ =

УДК 551.2/3

РАННЕОРДОВИКСКИЙ ЩЁЛОЧНО-УЛЬТРАОСНОВНОЙ ЖИЛАНДИНСКИЙ КОМПЛЕКС ЦЕНТРАЛЬНОГО КАЗАХСТАНА: СТРОЕНИЕ И ОБОСНОВАНИЕ ВОЗРАСТА

Р. М. Антонюк¹, А. А. Третьяков², член-корреспондент РАН К. Е. Дегтярев^{2,*}, А. Б. Котов³

Поступило 16.03.2018 г.

Впервые проведены геохронологические U–Pb-исследования амфиболовых кварцевых монцодиоритов щёлочно-ультраосновного Жиландинского плутона Центрального Казахстана и обоснован их раннеордовикский (479 ± 3 млн лет) возраст. Полученные данные позволяют уверенно выделять в западной части Центрально-Азиатского складчатого пояса три этапа внутриплитного магматизма: поздненеопротерозойский — внедрение щелочных сиенитов карсакпайского комплекса; раннекембрийский — становление ультрамафит-габбровых плутонов улутауского комплекса и позднекембрийско-раннеордовикский — формирование Жиландинского плутона и интрузивов красномайского комплекса.

Ключевые слова: внутриплитный магматизм, щёлочно-ультраосновной комплекс, ранний ордовик.

DOI: https://doi.org/10.31857/S0869-5652484161-65

Щёлочно-ультраосновные комплексы развиты в основном в пределах древних платформ, где их формирование обычно связывают с крупными изверженными провинциями, процессами распада суперконтинентов и заложением внутриконтинентальных рифтов [6]. В фанерозойских складчатых поясах комплексы такого типа встречаются крайне редко [6]. В западной части Центрально-Азиатского пояса щёлочно-ультраосновные комплексы с карбонатитами известны только в пределах Кокчетавского и Улутауского массивов с докембрийской континентальной корой [2, 7].

Щёлочно-ультраосновные породы Кокчетавского массива слагают небольшие линейные и изометричные тела, объединяемые в красномайский комплекс, сложенный пироксенитами, шонкинитами, нефелиновыми сиенитами, карбонатитами. Интрузивы красномайского комплекса не обнажены на поверхности и в настоящее время не доступны для изучения. Сведения об их строении и составе базируются на данных геофизических и буровых работ, выполненных в 60–80-х годах XX в. [4, 7].

1 ТОО "Центргеолсъемка",

Караганда, Республика Казахстан

² Геологический институт Российской Академии наук, Москва

³ Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург

* E-mail: degtkir@mail.ru

Полученные в те же годы К–Аг- и Sm–Nd-оценки возраста позволили считать, что внедрение этих интрузивов происходило в начале палеозоя (кембрий — начало раннего ордовика) [2, 3, 7].

Щёлочно-ультраосновной жиландинский комплекс, выделенный В.М. Шульгой [2], объединяет Жиландинский и Таскоринский интрузивы, расположенные в северо-восточной части Улутауского сиалического массива (рис. 1). Эти интрузивы — уникальные объекты, так как представляют собой единственные доступные для непосредственного изучения щёлочно-ультраосновные плутоны в западной части Центрально-Азиатского пояса. Поэтому обоснование их возраста имеет важное значение для понимания его геодинамической эволюции.

Изучение плутонов жиландинского комплекса проведено в процессе крупномасштабных геолого-съёмочных работ Х.А. Яковлевым, В.М. Шульгой, М.С. Гранкиным, В.Н. Завражновым, и это позволило выявить основные черты строения плутонов и особенности состава слагающих их пород.

Наиболее крупный и лучше изученный Жиландинский плутон площадью ~30 км². Он прорывает докембрийские метаморфические породы и, в свою очередь, прорван гранодиоритами позднего ордовика [1].

Жиландинский плутон имеет концентрически-зональное строение (рис. 2). Его ядро сложено аподунитовыми серпентинитами с полосчатой текстурой, в которых наряду с серпентином

Рис 1. I. Схема геологического строения щёлочно-ультраосновного Жиландинского массива. *1* — кайнозойские отложения; *2* — средне-верхнедевонские вулканогенно-осадочные толщи; *3* — докембрийские метаморфические образования; *4* — позднеордовикские гранитоиды; *5*—*8* — раннеордовикский жиландинский комплекс: *5* — аподунитовые серпентиниты, *6* — клинопироксениты, в том числе магнетитовые, монцогаббро, *7* — щелочные габброиды, монцониты и кварцевые монцодиориты, *8* — щелочные сиениты; *9* — разрывные нарушения; *10* — место отбора пробы для геохронологических U—Pb-исследований и её номер.

II. Схема геологического строения северо-восточной части Улутауского сиалического массива. 1— девонско-каменноугольные вулканогенно-осадочные толщи; 2— докембрийские метаморфические образования; 3— ранне-среднепалеозойские гранитоиды; 4— щёлочно-ультраосновные массивы раннеордовикского жиландинского комплекса (1— Жиландинский, 2— Таскоринский); 5— разрывные нарушения.

и хромшпинелидами (до 10%) всегда присутствуют флогопит, магнетит, пирротин, пентландит, реже пирит, рутил, апатит. Ядро массива обрамлено кольцевым телом апатит-биотит-флогопитовых клинопироксенитов, которые содержат линзовидные залежи рудных пироксенитов (косьвитов) с содержаниями магнетита 10-30% и полосчатых монцогаббро. Ширина кольцевого тела ~1,5 км. Периферическая часть плутона сложена щелочными габброидами, монцонитами, кварцевыми монцодиоритами, ширина выходов которых до 1 км. Эти породы имеют интрузивные контакты с вмещающими кварцитами, сланцами, пироксенитами и полосчатыми монцогаббро. Жильные тела массива представлены щелочными сиенитами, габбро-пегматитами, олигоклазовыми пегматитами. Породы Жиландинского

плутона обеднены Zr и другими высокозарядными элементами, г/т: Zr 22–75; Nb 0,19–7,7; Hf 0,9–2,3; Ta 0,04–0,4; Th 0,8–8; U 0,15–1,9; Σ REE 77–217, что в целом нетипично для щёлочно-ультраосновных пород [14].

Геохронологические данные для интрузивов жиландинского комплекса отсутствуют, а их возраст считается раннепалеозойским по аналогии с красномайским комплексом Кокчетавского массива [2].

Для геохронологических U–Th–Pb-исследований использована проба Ж-220 амфиболового кварцевого монцодиорита мас.% SiO₂ 58,9; TiO₂ 0,68; Al₂O₃ 17,06; Fe₂O₃ 3,55; FeO 2,91; MnO 0,16; MgO 2,42; CaO 6,05; Na₂O 3,6; K₂O 3,54; P₂O₅ 0,38), отобранная из периферической части Жиландинского плутона (49°44'35,0" с.ш.; 68°16'27,0" в.д.).

Рис. 2. Микрофотографии кристаллов циркона из амфиболовых кварцевых монцодиоритов Жиландинского массива (проба Ж-220), выполненные на электронном микроскопе VEGA3 TES SCAN: I–VI в режиме вторичных электронов; VII–XVIII — в режиме катодолюминесценции. Номера точек соответствуют номерам в табл. 1.

Выделение циркона из амфиболового кварцевого монцодиорита проводили по стандартной методике с использованием тяжёлых жидкостей. Зёрна циркона были имплантированы в эпоксидную смолу вместе с зёрнами стандартных цирконов TEMORA и 91500, а далее сошлифованы приблизительно наполовину их толщины и приполированы. Для выбора участков зёрен циркона для локальных геохронологических исследований использовали микрофотографии, выполненные на сканирующем электронном микроскопе Camscan MX 2500S в режимах вторичных электронов и катодолюминесценции. Геохронологические U–Th–Pb (SIMS)-исследования цирконов выполнены на вторично-ионном микрозонде SHRIMP-II в Центре изотопных исследований ВСЕГЕИ. Измерения U/Pb проводили по традиционной методике [15]. Интенсивность первичного пучка молекулярных отрицательно заряженных ионов кислорода составляла ~2,5–4 нА, диаметр пятна (кратера) ~15 × 10 мкм. Полученные

данные обрабатывали с помощью программ SQUID [13], ISOPLOT [12].

Акцессорный циркон из амфиболового кварцевого монцодиорита (проба Ж-220) представлен прозрачными и полупрозрачными идиоморфными жёлтыми кристаллами, которые имеют коротко-призматический и призматический облики. Их огранка определяется сочетанием призм {100}, {110} и дипирамид {101}, {111} (рис. 2, I-VI). Размер кристаллов циркона 50–200 мкм; К_{ул.} = 1,5–2,5. Как правило, кристаллы обладают тонкой осциляторной зональностью и повышенной интенсивностью люминесценции. В большинстве из них присутствуют унаследованные ядра различной сохранности (рис. 2, VII-XVIII). Некоторые из них занимают до 90% объёма кристалла (рис. 2, VII–XVIII). Кристаллы циркона без ядер встречаются очень редко, что, по-видимому, связано с особенностями состава расплава, родоначального для амфиболового кварцевого монцодиорита, обеднённого цирконием и другими высокозарядными элементами.

Геохронологические U–Th–Pb-исследования выполнены для 19 зёрен циркона. При этом оценки возраста получены для зёрен циркона или их участков, имеющих зональное строение, и для унаследованных ядер (табл. 1). Среднее значение возраста зонального циркона с наименьшей долей обыкновенного Pb, рассчитанное по 206 Pb/ 238 U (*n* = 6), составляет 479±3 млн лет (CKBO = 0,4) (рис. 3). Возраст (207 Pb/ 206 Pb) ядер 930–3730 млн лет (рис. 3; табл. 1).

Морфологические особенности зонального циркона из амфиболового кварцевого монцодиорита свидетельствуют о его кристаллизации из расплава. Таким образом, полученная для него оценка возраста 479 ± 3 млн лет отвечает возрасту становления Жиландинского щёлочно-ультраосновного плутона в тремадокском веке раннего ордовика [11]. Она близка к оценкам возраста позднекембрийско-раннеордовикского красномайского комплекса Кокчетавского массива. Это позволяет выделить в неопротерозойско-раннепалеозойской истории западной части Центрально-Азиатского складчатого пояса три этапа внутриплитного магматизма:

1) во второй половине криогения — внедрение Карсакпайского интрузива щелочных сиенитов (673 \pm 2 млн лет) [9];

2) раннекембрийский — становление Шайтантасского и других ультрамафит-габбровых плутонов улутауского комплекса (521 ± 2 млн лет) [8];

3) позднекембрийско-раннеордовикский — формирование интрузивов жиландинского (479±3 млн лет) и красномайского комплексов.

Источник финансирования. Исследования выполнены за счёт средств Российского научного фонда, проект № 14–27–00058.

Рис. 3. а — диаграмма с конкордией для цирконов из амфиболовых кварцевых монцодиоритов Жиландинского массива (проба Ж-220). б — диаграмма плотности вероятности распределения возрастов цирконов из амфиболовых кварцевых монцодиоритов Жиландинского массива. Для характеристики унаследованных ядер использованы величины возраста, рассчитанные по ²⁰⁷Pb/²⁰⁶Pb.

.№ анализа	²⁰⁶ Pb. %	Содержание, мкг/г			Изотопные отношения				Rho	Возраст, млн лет	
		²⁰⁶ Pb*	U	Th	²³² Th/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U		²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
8.1	0,86	12,9	194	173	0,92	0,059±3	0,077±0,9	0,632±3,2	0,3	480±4	578±66
II_19.3	0,25	12,9	195	115	0,61	0,056±3	0,077±0,9	0,592±3,0	0,3	480±4	434±63
16.2	0,02	57,8	870	1072	1,27	0,057±1	0,077±0,6	0,609±1,2	0,5	480±3	496±21
II_17.1	0,44	14.3	215	113	0,54	0,058±2	0,078±1,2	0,616±2,7	0,4	482±6	512±52
17.1		12,2	185	100	0,56	0,058±3	0,076±0,9	0,612±3,4	0,3	475±4	532±71
13.2	0,63	11,7	177	99	0,58	0,061±3	0,077±1,0	0,641±3,1	0,3	476±5	628±62
12.1	0,55	11,5	113	55	0,50	0,070±2	0,119±1,1	1,154±2,7	0,4	728±8	930±50
II_8.1	2,30	18,2	148	72	0,50	0,086±1	0,143±0,9	1,692±1,5	0,6	861±7	1334±23
7.1	0,96	123	934	705	0,78	0,075±1	0,153±0,6	1,586±1,0	0,6	919±5	1071±17
1.1		93,8	680	1154	1,75	0,071±1	0,161±0,7	1,582±1,1	0,6	960±6	970±17
17.2		16,4	99	51	0,53	0,074±2	0,193±1,2	1,974±2,4	0,5	1135±12	1051±43
15.1	0,18	155	738	287	0,40	0,091±1	0,244±0,6	3,050±0,8	0,8	1408±8	1439±8
13.1	0,10	65,3	262	149	0,59	0,102±0,7	0,290±0,8	4,062±1,0	0,8	1641±12	1654±12
19.1	3,45	43,2	143	107	0,77	0,146±4,1	0,353±1,1	7,094±4,2	0,3	1947±18	2298±70
9.1		154	374	429	1,18	0,162±0,4	0,480±0,9	10,737±1,0	0,9	2527±19	2480±6
14.1		102	237	114	0,50	0,171±0,4	0,504±0,9	11,883±1,0	0,9	2630±20	2568±7
10.1	1,74	107	161	37	0,24	0,354±0,3	0,779±0,9	38,077±1,0	0,9	3715±26	3726±5

Таблица 1. Результаты геохронологических U—Th—Pb-исследований циркона из амфиболового кварцевого монцодиорита (проба Ж-220)

Примечание. 206 Pb_s — обыкновенный Pb; 206 Pb* — радиогенный Pb; Rho — коэффициент корреляции ошибок 207 Pb/ 235 U — 206 Pb/ 238 U.

СПИСОК ЛИТЕРАТУРЫ

- Антонюк Р.М., Исмаилов Х.К., Клочков М.В., Маслова И.Г., Якименко Р.Д. Структурная позиция, особенности строения и металлогения раннепалеозойских концентрически зональных щелочных ультрабазит-пироксенит–габбро–сиенитовых интрузий Кирейского сиалического террейна (Центральный Казахстан). В сб.: Науки о Земле в Казахстане. Алматы: КазГЕО, 2016. С. 244–255.
- 2. Геологическая карта Казахской ССР. 1:500 000. Сер.Центрально-Казахстанская. Объясн. зап. Алма-Ата: Мингео СССР, 1981.
- 3. Лаврова Л.Д., Печников В.А., Плешаков А.М., Надеждина Е.Д., Шуколюков Ю.А. Новый генетический тип алмазных месторождений. М.: Науч. мир, 1999. 228 с.
- Летников Ф.А., Заячковский А.А. Дубравский массив пироксенитов, щелочных пород и карбонатитов // Геология руд. месторождений. 2007. Т. 49. С. 77–88.
- 5. Летников Ф.А., Костицын Ю.А., Владыкин Н.В., Заячковский А.А., Мишина Е.И. Изотопные характеристики красномайского комплекса ультраосновных щелочных пород (Северный Казахстан) // ДАН. 2004. Т. 399. № 6. С. 810—814.
- 6. Магматические породы. М.: Наука, 1988. Т. 5. 512 с.
- 7. Петрография Центрального Казахстана. М.: Недра, 1971. 360 с.

- 8. Третьяков А.А., Дегтярев К.Е., Котов А.Б., Сальникова Е.Б., Анисимова И.В., Плоткина Ю.В. Раннекембрийский возраст внутриплитных мафит-ультрамафитовых плутонов Улутауского сиалического массива (Центральный Казахстан) // ДАН. 2017. Т. 472. № 5. С. 562–565.
- 9. Третьяков А.А., Дегтярев К.Е., Сальникова Е.Б., Шатагин К.Н., Котов А.Б., Летникова Е.Ф., Яковлева С.З., Анисимова И.В. Позднерифейский возраст Карсакпайского массива щелочных сиенитов Южного Улутау (Центральный Казахстан) // ДАН. 2012. Т. 442. № 2. С. 219–222.
- Black L.P., Kamo S.L., Allen C.M., Heinikoff J.N., Davis D.W., Russel J., Korsch R.J., Foudonlis C. TEMORA 1: a New Zircon Standard for U-Pb Geochronology // Chem. Geol. 2003. V. 200. P. 155–170.
- 11. Cohen K.M., Finney S.C., Gibbard P.L., Fan J.X. The ICS International Chronostratigraphic Chart // Episodes. 2013. V. 36. № 3. P. 199–204.
- 12. Ludwig K.R. ISOPLOT 3.00. A User's Manual // Berkeley Geochronol. Center Spec. Publ. 2003. № 4. 70 p.
- 13. Ludwig K.R. SQUID 1.00, A User's Manual // Berkeley Geochronol. Center Spec. Publ. 2000. № 2. 17 p.
- Alkaline Rocks: Petrology and Mineralogy. R.H. Mitchell Eds. // Canad. Mineral. 1996. V. 34. Pt 2. P. 173–484.
- Whilliams I. S. U–Th–Pb Geochronology by Ion Microprobe // Rev. Econ. Geol. 1998. V. 7. P. 1–35.

EARLY ORDOVICIAN ALKALI-ULTRAMAFIC ZHILANDY COMPLEX (CENTRAL KAZAKHSTAN): STRUCTURE AND AGE OF FORMATION

R. M. Antonuk, A. A. Tretyakov, Corresponding Member of the RAS K. E. Degtyarev, A. B. Kotov

Received March 16, 2018

U–Pb geochronological study of amphibole-bearing quartz monzodiorites of the alkali-ultramafic Zhilandy complex in Central Kazakhstan, whose formation is deduced at the Early Ordovician era (479 \pm 3 Ma). The obtained data indicate three stages of intra-plate magmatism in the western part of the Central Asian Orogenic Belt: Late Neoproterozoic stage of alkali syenites of the Karsakpay complex intrusion, Early Cambrian stage of ultramafic-gabbroid plutons of the Ulutau complex formation, and Late Cambrian–Early Ordovician stage of formation of the Zhilandy complex and Krasnomay complex intrusions.

Keywords: intra-plate magmatism, alkali-ultramafic complex, Early Ordovician.