— ГЕОФИЗИКА

УДК 550.34.05.013.4 + 550.344.094.5 (571.53/.55)

ГЛУБИННАЯ СКОРОСТНАЯ СТРУКТУРА ЮЖНОЙ ОКРАИНЫ СИБИРСКОГО КРАТОНА И БАЙКАЛЬСКИЙ РИФТОГЕНЕЗ

В. В. Мордвинова^{1,*}, М. М. Кобелев^{1,2}, М. А. Хритова^{1,2}, Е. Х. Турутанов¹, Е. А. Кобелева^{1,2}, Д. С. Трынкова¹, Л. Р. Цыдыпова³

Представлено академиком РАН Ф.А. Летниковым 17.06.2018 г.

Поступило 05.06.2018 г.

Модели скоростного строения южной окраины древнего Сибирского кратона построены до глубины 80 км по телесейсмическим записям методом продольной приёмной функции (*P*–*to*–*S*). Взаимосвязь между глубинной и поверхностной структурой, обнаруженная с помощью моделирования, свидетельствует о субмеридиональной конвергенции юго-западной окраины Сибирского кратона с Центрально-Азиатским подвижным поясом. Этой конвергенцией вызванное в зоне контакта субширотное растяжение земной коры могло инициировать Байкальский рифтогенез на юго-восточной окраине кратона.

Ключевые слова: юго-восточная окраина Сибирского кратона, *Р*-приемные функции; модели *S*-скоростной структуры, земная кора и самая верхняя мантия; Байкальский рифтогенез.

DOI: https://doi.org/10.31857/S0869-5652484193-97

Современная граница Сибирского кратона довольно условна, поскольку его первичные контуры неизвестны и не установлены истинные амплитуды горизонтальных перемещений по ограничивающим разрывным зонам [1]. Между тем более точное знание о границе кратона даёт основание судить о его взаимодействии со смежными тектоническими областями. Предварительные геофизические исследования по Юго-Западному Прибайкалью позволяют полагать, что фундамент кратона прослеживается далеко под горное сооружение Хамар-Дабан, т.е. под складчатую систему [2] (рис. 1). Подобное явление — далеко не единственный случай, но уточнение конфигурации Сибирского кратона затруднено недостаточностью сейсмологических данных, необходимых для совместного анализа земной коры и верхней мантии региона.

Наблюдения девятью широкополосными сейсмостанциями в ключевой (в тектоническом отношении)

³ Геологический институт

зоне сочленения докембрийского Сибирского кратона с Центрально-Азиатским подвижным поясом (ЦАПП) позволили дополнить исследования глубин с помощью более детального по сравнению с томографией метода продольных приёмных функций [3]. Из полученных телесейсмических записей выделены приёмные функции для всех возможных

Рис. 1. Карта исследуемого региона. Пунктир — южная граница Сибирской платформы. Треугольники с соответствующей кодировкой — сейсмические станции. Взаимно перпендикулярные линии — генеральное направление скоростных разрезов. *1*, *2* — поля протерозойских (*1*), палеозойских (*2*) гранитоидов.

¹ Институт земной коры

Сибирского отделения Российской Академии наук, Иркутск

² Байкальский филиал федерального исследовательского центра «Единая геофизическая служба» Российской Академии наук, Иркутск

Сибирского отделения Российской Академии наук, Улан-Удэ

^{*} E-mail: mordv@crust.irk.ru

направлений относительно каждого пункта наблюдения (рис. 1). По подобию функций определены азимутальные диапазоны с однородной скоростной структурой, для каждого из которых инверсией приёмных функций до глубины h = 80 км рассчитана скорость поперечных сейсмических волн, $V_{\rm s}(h)$. Среднеквадратичная погрешность определения скорости оценена величиной ±0,1 км/с. Азимутальные станционные модели $V_{S}(h)$ вместе с полученными ранее [4] включены в скоростные разрезы вдоль профилей различного направления (рис. 1). Вертикальное разрешение разрезов, согласно одномерным моделям $V_{\rm s}(h), 0, 5-2$ км в коре и 3-5 км в мантии. Разрешение по горизонтали определено расстоянием между сейсмостанциями. Станции в основном расположены на равнинных участках, но благодаря наклону ~25° используемых сейсмических лучей скоростные разрезы дают информацию и о глубинах под горными районами. Наиболее информативны меридиональный и широтный разрезы, пересекающие контрастные тектонические структуры (рис. 1).

На меридиональном разрезе в земной коре в пределах Сибирской платформы обнаружено довольно равномерное увеличение скорости с глубиной (рис. 2).

В переходной к горной области зоне, на территории Шарыжалгайского метаморфического комплекса [1] (расположение станций KAIT, OKTB, TLN), сохраняется нарастание скорости с глубиной, но очевидны деформирование и переработка вещества

коры, особенно верхней и нижней её частей, где появляются низкоскоростные и высокоскоростные включения. Под горной территорией сложная структура коры с чередованием слоёв, линз повышенной и пониженной скоростей. Пониженные скорости могут свидетельствовать о гранулитовых астенослоях, способствующих перемещению материала в тектонически активных зонах [5]. В горной области увеличивается толщина коры, пределом для которой принята изолиния 4,3 км/с, и полностью меняется характер коромантийного перехода. Наиболее контрастный раздел Мохо (глубина 38-39 км) в районе ст. 9206 на Сибирской платформе, где земная кора, по крайней мере, с позднего протерозоя без глубинных стрессов контактирует с высокоскоростной и, следовательно, прочной литосферой Сибирского кратона. Изолинией 4,5 км/с очерчена наиболее однородная мантийная часть кратона. Деформированная часть южнее ограничена пунктирной изолинией 4,4 км/с. В пространстве между изолиниями 4,3 и 4,4 км/с вероятно наличие ослабленной прослойки, создающейся при взаимодействии южного края Сибирского кратона со смежной структурой.

Хотя сейсмические станции расположены довольно редко, скоростной разрез удовлетворительно отражает глубинные условия, ведущие к образованию современного рельефа. Видна связь наклонной кровли прочной мантийной части кратона и начинающейся в окрестности станции КАІТ деформации

Рис. 2. Топография и V_S – разрез вдоль профиля ZAK–9206 (п. Закаменск—Братское водохранилище). Направление профиля на врезке. Треугольники – позиции сейсмостанций (рис. 1). Стрелка над рельефом – пересечение разреза с зоной Главного Саянского разлома. Изолинии скоростей проведены с шагом 0,1 км/с. Сейсмический снос учтён наклоном разреза.

подошвы коры с локальным понижением поверхности Сибирской платформы. Выгибанию нижней половины коры под станцией ОКТВ сопутствует зеркальная деформация верхней её половины, в результате создающая на поверхности предгорный прогиб и краевое поднятие. Визуализируемые с помощью сейсмических скоростей черты глубинного строения свидетельствуют не просто о соседстве разнородных областей, а о коллизии — взаимодействии прочного кратона с низкоскоростной (менее плотной, более плавучей и пластичной) южной областью. Её земная кора испытала сильную деформацию в результате сжатия между Сибирским кратоном и прочным литосферным блоком — реликтом древней зоны субдукции палеоокеана [6], в настоящее время удалённым на ~100 км к югу. Сократившись по горизонтали, земная кора деформированной области в своей центральной части стала почти вдвое мощнее коры кратона. Массив хребтов Хамар-Дабан свидетельствует об изостатической скомпенсированности земной коры [7] и, следовательно, о медленной и устойчивой динамике преобразований в основном в режиме транспрессии (сжатие со сдвигом) [8, 9].

Форма и западная вергентность структур земной коры, выявленных на широтном разрезе (рис. 3), подтверждают геологические выводы о палеозойской коллизии юго-восточной окраины Сибирского континента с системой террейнов и островных дуг [1, 2]. Глубинные неоднородности наводят на мысль, что при коллизионном наращивании кратона различными образованиями были заложены предпосылки для распада звеньев разнородных структур в случае смены режима сжатия на режим растяжения. Наиболее слабым звеном явилась древняя Байкальская впадина из-за её близости к юго-восточному краю Сибирского кратона [10] и расположения над раннепалеозойским Саяно-Байкальским надвигом [2]. Древней впадине на разрезе соответствует район над наиболее мощными осадками (окрестность точки LST). Надвиг с востока на запад трассируется изолиниями 3,7 км/с с глубины 20–24 км под Хамар-Дабаном до поверхности в районе TORI.

Механизмы очагов байкальских землетрясений свидетельствуют о современном режиме растяжения [8], хотя предположение о вызывающем его плюме не подтверждено [11]. О суммарном юго-восточном векторе удалённых сил, благоприятном для растяжения центральной и более мелких впадин Байкальской рифтовой системы (БРС), свидетельствуют сейсмическая анизотропия [12] и распределение векторов напряжений [9]. Растяжение в широтном и юго-восточном направлениях объясняется реакцией на выявленное на меридиональном разрезе сжатие (рис. 2) и унаследованными особенностями глубинного строения (рис. 3). Признаки растяжения на широтном разрезе — высокоскоростные аномалии в коре, восходящие к поверхности под каждой из рифтовых впадин, и линзовидная низкоскоростная аномалия в мантии под южным краем оз. Байкал. Высокоскоростные аномалии могут быть обусловлены

Рис. 3. Топография и V_S – разрез вдоль профиля MON–HRM (п. Монды – п. Хурамша). Обозначения как на рис. 2.

роями даек основного состава, которые осуществляют дополнительную изостатическую компенсацию, увеличивая плотность коры. Скоростной разрез подтверждает сделанный по данным гравиметрии вывод о базификации коры (значительном замешении её нижней части веществом мантии) [7]. Максимальный избыток плотности в коре предполагался как раз в узкой полосе (10-15 км) вдоль оси южной части Байкальской впадины (рис. 3). Базификация объясняет отсутствие утонения коры под Байкальской впадиной, обнаруженное также У. Бринком и М. Тейлором в 2002 г. и Г. Тибо с соавторами [13]. Толщина коры под южной Байкальской впадиной сохраняется равной 39-40 км, а сближение изолиний 4,0-4,3 км/с указывает на резкий, близкий к платформенному (рис. 2) коромантийный перехол.

Источник базификации коры — линзовидная область пониженной скорости непосредственно под разделом Мохо на юго-западе Байкальского рифта (рис. 3). Создаваемая под воздействием повышенных тектонических напряжений флюидная проницаемость зрелого литосферного блока может обеспечивать плавление в локализованной области внутри относительно холодной литосферы [14]. При снятии в результате процессов растяжения общего давления образующиеся магмы приобретают большую динамическую силу и могут внедряться в вышележащие толщи (таким образом, базифицируя земную кору) и по латерали. В последнем случае в примыкающей к зоне плавления мантийной среде понижаются скорость и линейно связанная с ней плотность. По обе стороны от зоны плавления характер скоростных неоднородностей напоминает процесс деламинации — отслоение магмой от коры и погружение более тяжёлых высокоскоростных блоков подкоровой мантии ($V_S = 4,5$ км/с; $V_P = 8,1$ км/с).

Мантийные линзовидные области на широтном разрезе (рис. 3) — поперечное сечение линейных структур, выявленных вдоль Байкала [15], так что коромантийный раздел и подкоровая мантийная структура в значительной степени подобны вдоль всей Байкальской впадины. Инициация Байкальского рифтогенеза могла начаться именно на юге из-за вынужденного растяжения и разломообразования литосферы при конвергенции юго-западной окраины Сибирского кратона с Центрально-Азиатским подвижным поясом вследствие удалённого воздействия Индо-Азиатской коллизии. А дальнейшее развитие рифта в северо-восточном направлении на окраине кратона, вероятно, обеспечено своеобразной цепной реакцией в зрелой флюидизированной литосфере кратона: плавление в подкоровой мантии, радиальное внедрение магмы в окружающую среду, повышение пластичности коры и соскальзывание пластин горных пород по древним надвигам (чему

способствует уклон основания коры к востоку, вызванный соответствующим уклоном мантийной кровли кратона [11]). Соскальзывание — деструктивный процесс по отношению к раннепалеозойской коллизии Сибирского континента, в результате которой островодужные комплексы венда-ордовика совместно с более древними образованиями, слагавшими цоколи отдельных островов, были надвинуты на кратон с юго-востока [2]. Современным литосферным процессам благоприятствует масштабное астеносферное течение на юго-восток, существование которого установлено комплексом сейсмических и тектонофизических методов [8, 9, 12].

Источник финансирования. Исследования поддержаны грантами РФФИ 12—05—01024_а, 14—35— 50697 мол_нр и экспедиционных проектов РФФИ 14—05—10028 и 15—05—10085.

СПИСОК ЛИТЕРАТУРЫ

- Эволюция южной части Сибирского кратона в докембрии / Под ред. Е. В. Склярова. Новосибирск: Изд-во СО РАН, 2006. 367 с.
- 2. Zorin Yu. A., Mordvinova V. V., Turutanov E. Kh., et al. // Tectonophysics. 2002. V. 359. № 3/4. P. 307–327.
- 3. Kosarev G. L., Petersen N. V., Vinnik L. P., et al. // J. Geophys. Res. 1993. V. 98. № B3. P. 4437–4448.
- 4. Мордвинова В. В., Дешам А., Дугармаа Т. и др. // Физика Земли. 2007. № 2. С. 11–22.
- 5. Лобковский Л. И. Геодинамика зон спрединга, субдукции и двухъярусная тектоника плит. М.: Наука, 1988. 251 с.
- 6. Зорин Ю. А., Балк Т. В., Новоселова М. Р. и др. // Физика Земли. 1988. № 7. С. 33-42.
- 7. Zorin Yu. A., Belichenko V. G., Turutanov E. Kh., et al. // Tectonophysics. 1993. V. 225. P. 361–378.
- 8. *Мельникова В. И., Радзиминович Н.А. //* ДАН. 2007. Т. 416. № 4. С. 543–545.
- 9. Саньков В.А., Лухнев А.В., Парфеевец А.В. и др. // ДАН. 2011. Т. 436. № 3. С. 401-406.
- 10. Мордвинова В. В., Винник Л. П., Косарев Г. Л. и др. // ДАН. 2000. Т. 372. № 2. С. 248–252.
- Emmerson B., Jackson J., McKenzie D., et al. // Geophys. J. Intern. 2006. V. 167. P. 1233–1272. DOI: 10.1111/j.1365–246X.2006.03075. x.
- Barruol G., Deschamps A., Deverchere J., et al. // Earth and Planet. Sci. Lett. 2008. V. 274. P. 221–233. DOI: 10.1016/epsl.2008.07.027.
- Nielsen Ch., Thybo H. // Tectonophysics. 2009. V. 470. P. 298–318.
- 14. Летников Ф.А., Феоктистов Г.Д., Вилор Н. В. и др. Петрология и флюидный режим континентальной литосферы. Новосибирск: Наука, 1988. 187 с.
- 15. Ананьин Л. В., Мордвинова В. В. // ДАН. 2012. Т. 444. № 4. С. 440-443.

DEEP VELOCITY STRUCTURE OF THE SOUTHERN EDGE OF THE SIBERIAN CRATON AND BAIKAL RIFTING

V. V. Mordvinova, M. M. Kobelev, M. A. Chritova, E. Ch. Turutanov, E. A. Kobeleva, D. S. Trynkova, L. R. Tsydypova

Presented by Academician of the RAS F.A. Letnikov June 17, 2018

Received June 5, 2018

The velocity structure of the southern edge of the ancient Siberian craton has been modeled to an 80-km depth based on teleseismic records of a *P*-receiver function method (P-S). The correlation between the deep and the surface structure determined through modeling is indicative of the submeridional convergence of the south-western edge of the Siberian craton with the Central Asian mobile belt. A sublatitudinal crust extension in the contact zone caused by such convergence may initiate Baikal rifting at the craton's southeastern edge.

Keywords: the south-eastern margin of the Siberian Craton, *P*-receiver function, *S*-velocity models, the crust and the most upper mantle, Baikal rifting.