УДК 550.34; 550.344.33

О ПРИРОДЕ КОСЕЙСМИЧЕСКИХ КОЛЕБАНИЙ ЗЕМЛИ В ЭПИЦЕНТРАЛЬНОЙ ОБЛАСТИ ОХОТСКОГО ЗЕМЛЕТРЯСЕНИЯ 24.05.2013 г. И ОЦЕНКА АМПЛИТУД Р-ВОЛН НА ТЕЛЕСЕЙСМИЧЕСКИХ РАССТОЯНИЯХ

И. П. Кузин*, член-корреспондент РАН Л. И. Лобковский, К. А. Дозорова

Поступило 23.01.2019 г.

Приведены результаты анализа косейсмических наблюдений по данным GPS в эпицентральной зоне Охотского землетрясения 24.05.2013 г., а также отмечены особенности изменения амплитуд сейсмических волн с расстоянием на основе записей российских и международных сейсмостанций. Проведено исследование глобального распространения Р-волн для Охотского и Боливийского (09.06.1994 г.) землетрясений и оценены их амплитуды на телесейсмических расстояниях.

Ключевые слова: косейсмические колебания, пункт GPS, абсолютная амплитуда, пиковые ускорения.

DOI: https://doi.org/10.31857/S0869-56524862237-242

В предыдущих публикациях [4, 5] аномальные эффекты проявления глубокофокусного Охотского землетрясения 24.05.2013 г. — сверхдальнее распространение ощутимых сотрясений и их слабое затухание с расстоянием трактовались качественно, с макросейсмических позиций. В настоящем сообщении приведено более обоснованное объяснение тех же факторов с учётом анализа косейсмических наблюдений и особенностей изменения амплитуд сейсмических волн с расстоянием на основе записей сейсмостанций как российских, так и международных.

Первая оценка амплитуды смещения поверхности Земли в эпицентральной области Охотского землетрясения была сделана на основе анализа данных, полученных в пунктах GPS Дальневосточного региона (Камчатка, Курилы, Сахалин и Приморье). Наблюдения были проведены через 6 ч после возникновения Охотского землетрясения. В работе [10] приведена схема наблюдений со сглаживанием положительных и отрицательных смещений грунта (рис. 1а). Вычисленные значения в экстремумах от +12 мм (под Охотским морем) и наблюдаемое на Камчатке до –18 мм являются самыми высокими из известных оценок постсейсмических движений эпицентральных областей сильнейших землетрясе-

*E-mail: ivkuzin2013@yandex.ru

ний [5]. Однако схема на рис. 1а весьма статична. Для придания ей динамичности на рис. 16 приведено распределение амплитуд смещений на профиле АБ, проходящем через экстремумы (+12 и -18 мм). При минимуме амплитуд смещений ±3 мм на концах профиля длина синусоиды составляет 2200 км, при их экстраполяции до ±1 мм она возрастает до 2500 км. При такой длине профиля и глубине очага 630 км время пробега согласно годографу Джеффриса-Буллена составляет $4,27^m$. Это соответствует периоду гармоники $_0S_{31}$ из спектра записи Охотского землетрясения станцией Обнинск [6]. Для определения параметров гармоник более низких порядков, а также обертонов необходима регистрация колебаний с меньшим временем запаздывания после основного толчка. Однако авторы [10] утверждают, что проведение наблюдений в пунктах GPS в более ранние сроки невозможно из-за очень высокого уровня помех.

На основе изложенного следует отметить, что результаты измерения смещений поверхности Земли в эпицентральных зонах сильнейших землетрясений по данным GPS не являются мерилом абсолютных показателей, так как обусловлены высокими гармониками собственных колебаний Земли.

Вместе с тем возможно определение абсолютных амплитуд смещений поверхности Земли при мантийных и глубокофокусных землетрясениях на записях близких к эпицентру станций. При неглубоких очагах основным препятствием для таких наблюде-

Институт океанологии им П.П. Ширшова Российской Академии наук, Москва * Б. mail. inlurin 2012@una day m

Рис. 1. а — схема измеренных и вычисленных косейсмических смещений грунта по данным GPS; звёздочка — эпицентр Охотского землетрясения, прямоугольник — проекция модельной плоскости очагового разрыва на поверхность Земли; вертикальными столбиками и изолиниями даны амплитуды вертикальных смещений; изолиниями показано поле вычисленных подвижек, штриховой линией — предполагаемое положение изолиний (по [10], с изменениями); *АБ* — линия профиля, проведённая через экстремумы смещений грунта. б — распределение амплитуд смещения на профиле *АБ*.

ний является возникновение остаточных деформаций поверхности.

Оценку абсолютной амплитуды смещения грунта в эпицентральной зоне Охотского землетрясения можно получить на основе анализа уравнения сферической сходящейся Р-волны

$$A_i = A_0 r^{-1} e^{-\alpha r} \cos(\omega t - kr),$$

где A_0 — начальная амплитуда, r — расстояние от источника, r^{-1} — коэффициент расхождения фронта волны, α — коэффициент поглощения, ω — круговая частота, k — волновое число. Амплитуда этой волны определяется произведением сомножителей, стоящих перед функцией соз. Исходную величину A_0 принимаем как среднее из оценок смещения по разрыву из работ [14] (10 м) и [13] (4 м), т.е. равной 7 м. Тогда за счёт коэффициента геометрического рас-

хождения r^{-1} при глубине очага 630 км амплитуда смещения в эпицентре уменьшится в 630 раз, до 11,1 мм.

Величину сомножителя $e^{-\alpha r}$, описывающего поглощение, можно в принципе определить на основе коэффициента затухания Р-волн в мантии, который на частоте 1 Гц (период 1 с) равен 0,00025 км⁻¹ [3]. Однако для оценки его реального значения необходимо знание частоты (периода) смещений поверхности Земли. Выход из этой неопределённой ситуации возможен на основе известного соотношения между смещением *d* (см), скоростью смещения V (см/с) и ускорением гармонических колебаний *a* (см/с²), которые пропорциональны $2\pi/T$, где *T* период колебаний [8].

В соотношении для скорости смещения $V = d \cdot 2\pi/T$ на записи станции Птр (Петропавловск)

известны амплитуда V = 1,3 см/с (13 мм/с) по [9] и видимый период колебаний примерно 4 с [5]. С учётом этих данных оптимально значение для периода смещения 5 с, при котором амплитуда смещения составляет ~1,03 см (10,35 мм). Вполне очевидно, что этот период не может быть меньше 5 с, а при периоде больше 5 с амплитуда смещения становится соизмеримой с амплитудой скорости смещения, что также недопустимо. На основе изложенного следует принять амплитуду смещения 10,35 мм, что при удвоении для стоячей Р-волны составит ~20,7 мм. Это значение в 1,38 раза больше средней амплитуды по данным GPS (15 мм) [10].

По копиям велосиграмм Охотского землетрясения для российских станций в диапазоне эпицентральных расстояний $\Delta = 49,3^{\circ} - 67,6^{\circ}$ (Ару, Пулково, Обнинск, Кисловодск и Гарни, рис. 2а) и станций глобальной сети при $\Delta = 12,5^{\circ} - 160^{\circ}$ (от Shemaya, Alaska до Sanae, Antarctica, рис. 2б), можно определить амплитуды P-волн при движении от эпицентра к апоцентру.

Следует отметить некоторые особенности записей на рис. 2а, б: а — цугообразный характер начальной части записи Р-волн (длительность около 30 с); б отсутствие явной зависимости амплитуд от азимута и расстояний (кроме зоны тени) для станций в Евразии, на Аляске, в Калифорнии, Мексике, Северной Африке, на Мадагаскаре, в Чили и Антарктиде. Первая особенность объясняется сжатием временного масштаба. Особенно хорошо это заметно на рис. 26. Вторая особенность может быть объяснена обнаружением телесейсмических Р-волн Охотского землетрясения с периодами от 2–3 до 40 с с одинаковой энергией во всех направлениях. Оно было выявлено при изучении кода записей этого землетрясения на станциях плошадной системы наблюдений США (US Array stations) в течение 10 ч после его возникновения и получило название "equipartitioning" (paвное распределение энергии) [12]. В этом случае Р-волны распространяются по большим дугам. Поскольку сейсмический эффект при Боливийском землетрясении оценивался по амплитудам пиковых ускорений в см/с² [11], необходим пересчёт амплитуд скоростей смещений (рис. 2а, б) в ускорения. Он произведён на частоту 1 Гц, которая считается преобладающей для всех станций согласно работе [9].

Результаты пересчёта нанесены в виде залитых кружков на рис. 3, график *a*. На участке графика в пределах эпицентральных расстояний 12,5° (Шемая, Аляска) и 82,3° (Хукурилла, Мексика) величины пиковых ускорений колеблются в пределах 0,38–

 $0,24 \text{ см/c}^2$, составляя в среднем $0,31\pm0,006 \text{ см/c}^2$. Межлу станциями Петропавловск ($\Delta = 3.7^{\circ}$) и Шемая $(\Delta = 12,5^{\circ})$ амплитуда ускорений уменьшается от 4,9 до $0,38 \text{ см/c}^2$, или в 13 раз при прохождении сейсмических волн через структуры дуг Курило-Камчатской и Алеутской. Вблизи начальной границы зоны тени ($\Delta = 97,8^{\circ}$, станция Таманрассет, Алжир), пиковое ускорение уменьшается в 2,0 раза, а вблизи центра этой зоны ($\Delta = 115^\circ$, станция Амбохимпаномто, Мадагаскар) ещё в 5,2 раза, т.е. в общем на порядок. К концу зоны тени ($\Delta = 140^\circ$, станция Викунья, Чили) и при выходе из неё ($\Delta = 160^\circ$, станция Санае, Антарктида) величина пикового ускорения линейно возрастает от 0,08 до 0,17 см/ c^2 , что всего в 2,2 раза меньше, чем для станции Шемая при $\Delta =$ 12,5°. При сохранении тенденции к возрастанию на расстояниях 140–160°, в апоцентре ($\Delta = 180^\circ$) можно ожидать величину ускорения ~ 0.34 см/с², т.е. что и в начале профиля ($\Delta = 12,5^{\circ}$).

Принимая во внимание, что на примере записей Воронежских станций при $\Delta = 59,6^{\circ}$ и 60,6° сотрясениям интенсивностью 2–3 балла соответствуют ускорения 0,22–0,38 см/с² [7], во всех пунктах, кроме приуроченных к зоне тени, уровень пиковых ускорений и сейсмический эффект слабо меняются с расстоянием. Тем самым подтверждается вывод о слабом изменении сотрясений по данным макросейсмики [4]. Как уже отмечено в последней работе, этот результат обусловлен наложением продольных волн, распространяющихся по траекториям внутри Земли, на бегущую Р-волну. Это соображение подтверждается "проседанием" точек графика *а* в пределах зоны тени.

Распределение пиковых ускорений при Боливийском землетрясении по данным станций глобальной сети (рис. 3, график δ) [11] существенно отличается от рассмотренного выше для Охотского землетрясения. Это определяется тем, что группа первых вступлений, предваряющих последующую интенсивную группу, не сливается с ней, как при Охотском землетрясении, а прослеживается на протяжении от 10° до 174°. Причина этого заключается в двухстадийном развитии очага Боливийского землетрясения. Первая стадия предположительно соответствует своего рода "растрескиванию" тонкого ядра плиты Наска, распространяющегося в течение 10 с со скоростью 3,5 км/с. На второй стадии через 10 с началось вспарывание метастабильного оливина плиты, вмещающего ядро, сначала в направлении С-ССЗ, а потом к СВ. Этот процесс продолжался 22 с со скоростью 1,5 км/с; в ходе него образовался разрыв длиной 30 км и шириной 40 км [15].

КУЗИН и др.

Рис. 2. Записи Охотского землетрясения 24.05.2013 г., зарегистрированные: а — российскими станциями по данным ГС РАН (ceme.gs ras.ru); б — станциями мировой сети (rev.seis.sc.edu). Коды и названия станций указаны рядом с записями, числа — расстояния станций от эпицентра, стрелками с цифрами показаны вступления Р-волн и их время в минутах.

Рис. 3. *а* — график распределения амплитуд пиковых ускорений Р-волн в диапазоне эпицентральных расстояний $10^{\circ}-174^{\circ}$ при Боливийском землетрясении 09.06.1994 г. по данным станций мировой сети (светлые кружки) [11]; *б* — залитые кружки — величины пиковых ускорений, пересчитанных из велосиграмм станций России и мировой сети, ромб в левом верхнем углу — ускорение по данным цифровой станции в здании Института вулканологии и сейсмологии РАН [9].

В связи с этим представляет интерес единственное в своём роде исследование глобального распространения Р-волн [11]. На графике рис. 3 (график δ) выделяются 3 ветви: верхняя мантия вплоть до зоны тени (10°–102°); зона тени (102°– 147°); верхняя мантия антиподного полушария (147°–180°). Обращает на себя внимание значительный разброс амплитуд пиковых ускорений в первой ветви. Это свидетельствует о том, что не все траектории сейсмических волн относятся к большим кругам. Величина пиковых ускорений в первой ветви уменьшается от 7,0 до 0,002 см/с², или в 3500 раз (3,5 порядка).

Повышение амплитуды волн в ядре от 0,002 до $0,09 \text{ см/c}^2$ (в 45 раз) может быть обусловлено проникновением в ядро отражённых от поверхности внутреннего ядра волн *РКіКР* и преломлённых в нём волн *РКІКР*.

Наконец, падение амплитуды колебаний в антиподной мантии от 0,09 до 0,009 см/с² на участке $147^{\circ}-180^{\circ}$ пропорционально наблюдаемому падению между 65 и 95° в верхней мантии Северного полушария Земли. Приведённые значения амплитуд колебаний в мантии сопоставимы с оценками по уравнению расходящейся сферической волны при периодах колебаний 4–5 с. Источник финансирования. Работа выполнена в рамках государственного задания ИО РАН № 0149— 2019—0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Болт Б. В глубинах Земли. М.: Мир, 1984. 191 с.
- 2. *Буллен К.Е.* Введение в теоретическую сейсмологию. М.: Мир, 1966. 460 с.
- 3. *Жарков В.Н.* Внутреннее строение Земли и планет. М.: Наука, 1983. 416 с.
- 4. *Кузин И.П., Лобковский Л.И., Дозорова К.А.* // ДАН. 2016. Т. 469. № 4. С. 483–487.
- 5. *Кузин И.П., Лобковский Л.И., Дозорова К.А.* // Вулканология и сейсмология. 2017. № 1. С. 75–88.
- 6. *Молоденский С.М., Молоденский М.С., Молоденский М.С., Молоденская М.С. //* Физика Земли. 2014. № 5. С. 14–21.
- Надежка Л.И., Ефременко М.А., Калинина Э.В., Пивоваров Р.С. Материалы восьмой Международной сейсмологической школы. Обнинск: ГС РАН. 2013. С. 1016–1018.
- Справочник геофизика. М.: Недра, 1990. Кн. 1. С. 83–90.
- 9. Чеброва А.Ю., Чебров В.Н., Гусев А.А. и др. // Вулканология и сейсмология. 2015. № 4. С. 3–22.

КУЗИН и др.

- 10. Шестаков Н.В., Оһгопо Н., Гордеев Е.И. и др. // ДАН. 2014. Т. 457. № 4. С. 471–476.
- 11. Anderson J.G., Savage M., Quayas R. // Geophys. Res. Lett. 1995. V. 22. № 16. P. 2293–2296.
- 12. Sens-Schönfelder C.R., Snieder R., Stäler S.C. // Geophys. Res. Lett. 2015. V. 42. P. 7483–7489.
- 13. Wei S., Helmberger D., Zhan Z., Graves R. // Geophys. Res. Lett. 2013. V. 40. P. 1–6.
- Ye L., Lay T., Kanamori H., Koper K.D. Energy Release of the 2013 M_w 8.3 Sea of Okhotsk Earthquake and Deep Slap Stress Heterogeneity // Science. 2013. V. 341. P. 1380–1384.
- *Zhan Z., Kanamori H., Tsai V.C., et al.* Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk Deep Earthquakes // Earth and Planet Sci. Lett. 2014. V. 385. P. 89–96.

OKHOTSK DEEP EARTHQUAKE 24.05.2013: NATURE OF COSEISMAL EARTH'S OSCILLATIONS AND ESTIMATION OF P-WAVE AMPLITUDES AT TELESEISMIC DISTANCES

I. P. Kuzin, Corresponding Member of the RAS L. I. Lobkovskiy, K. A. Dozorova

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

Received January 23, 2019

The results of coseismic GPS observations in the epicentral area of 2013 Sea-of Okhotsk earthquake are presented and specific features of seismic waves amplitudes variations with distance are detected basing on the records of Russian and international seismic stations. Global propagation of P-waves for the Sea-of-Okhotsk and Bolivian (09.06.1994) earthquakes was studied and their amplitudes on teleseismic distances were estimated.

Keywords: coseismic oscillations, GPS point, absolute amplitude, peak accelerations.