ВЫСТУПЛЕНИЕ ЧЛЕНА-КОРРЕСПОНДЕНТА РАН С.А. ТИХОЦКОГО И ГЕНЕРАЛЬНОГО ДИРЕКТОРА ООО "ГАЗПРОМНЕФТЬ НТЦ" ДОКТОРА ТЕХНИЧЕСКИХ НАУК М.М. ХАСАНОВА

Материал поступил в редакцию 03.12.2018 г. Принят к публикации 25.12.2018 г.

Ключевые слова: геолого-геофизическая отрасль, разведка и разработка месторождений полезных ископаемых, высокопроизводительные вычисления, анализ Больших данных.

DOI: https://doi.org/10.31857/S0869-5873894360-361

Представители геолого-геофизической и горнодобывающей отраслей наряду с военными всегда были основными потребителями вычислительных ресурсов с момента возникновения первых ЭВМ. Это направление отвечает двум приоритетам Стратегии научно-технологического развития РФ: "Переход к передовым цифровым, интеллектуальным, роботизированным системам, новым материалам и способам конструирования, создание систем обработки больших объёмов данных, машинного обучения и искусственного интеллекта" и "Повышение эффективности добычи, глубокой переработки углеводородного сырья".

Почему применение высокопроизводительных вычислений так важно для геолого-геофизического направления? С этой трибуны академик РАН А.Э. Конторович сказал, что мы стоим перед проблемой истощения запасов традиционных углеводородов. Иными словами, разведанных запасов простой в добыче нефти v нас осталось совсем немного. По разным оценкам, "лёгкой" нефти нам хватит до конца 2030-х — начала 2040-х годов. Кроме того, нет перспектив открытия крупных месторождений традиционного типа. Это значит, что для сохранения уровня добычи в будущем необходимо решать сложнейшие технологические задачи моделирования физических, физико-химических процессов в пласте, которые протекают в ходе добычи, причём делать это максимально эффективно, имея в виду скорость вычисления. Следует отметить, что для ряда задач вычисления надо производить в реальном времени, то есть следить, как бурится скважина, что происходит в пласте по мере повышения или понижения пластового давления. Всё это можно делать только с помощью высокопроизводительных вычислений. Я остановлюсь на нескольких примерах.

Рассмотрим типичную задачу при сейсмической разведке месторождений — моделирование сейсмического волнового поля. Если небольшое месторождение, то только для обработки одного источника нам нужно сделать 1021 операцию в секунду, что соответствует вычислительной мощности примерно в 1 экзафлопс, а источников может быть десятки тысяч. Чтобы их обсчитать за обозримое

время, нам нужны вычислительные центры с производительностью пета- и экзафлопсного уровня, о которых говорилось в предыдущих докладах.

К счастью, у нас есть хорошие разработки эффективных алгоритмов с высокой степенью параллелизма, предложенные различными организациями, в частности, Институтом прикладной математики им. М.В. Келдыша РАН, Институтом нефтяной геологии и геофизики им. А.А. Трофимука СО РАН, Вычислительным центром МГУ им. М.В. Ломоносова. Но если в решении фундаментальных задач (наработка алгоритмов — в этом ряду) мы достигли высокого уровня, во многом опережающего мировой, то результатами использования научной идеи при переходе из лаборатории в производство похвастаться не можем.

Сейчас примерно 90% рынка геолого-геофизического программного обеспечения представлено зарубежными продуктами. Однако нельзя сказать, что в этой области ничего не делается. Весной 2018 г. Научно-технический центр компании "Газпромнефть", который возглавляет мой уважаемый содокладчик, вместе с компанией "Яндекс Терра" (ООО "Сейсмотек") завершили двухлетнюю программу тестирования комплекса отечественного программного обеспечения "Prime" для обработки и интерпретации сейсморазведочных данных. Практическая работа доказала возможность решения задач производственной обработки и последующей интерпретации результатов сейсмического проекта с использованием только российского программного обеспечения. Обработка сейсмического материала в системе "Prime" позволила увеличить объём получаемой полезной геологической информации. Применение российского цифрового решения привело к качественному улучшению результата, в частности, удалось получить более высокий уровень детальности изображения, на 20-30% превышающий показатели зарубежного конкурента, а в интерпретации данных – уточнить сейсмогеологическую модель месторождения и объём запасов, а также определить оптимальную систему разработки.

Сейчас на завершающей стадии находится российско-белорусская программа "Скиф-Недра",

в рамках которой проходит испытание высокопроизводительного программно-аппаратного комплекса — суперкомпьютера с программным обеспечением для обработки и моделирования геолого-геофизических данных, способствующих решению актуальных и перспективных задач при поиске, разведке и разработке месторождений углеводородного сырья и других полезных ископаемых. Пользователи данных комплексов получат готовый инструмент с программным обеспечением, который можно будет использовать не только в корпоративных центрах нефтегазодобывающих и нефтегазосервисных компаний, но и на скважине в полевых условиях, на борту сейсмического судна или плавучей буровой платформы. В разработке проекта активное участие приняли академические институты и вузы, а также ряд технологических инновационных компаний, которые созданы вокруг научных организаций и высшей школы.

До сих пор мы говорили об импортозамещении, а теперь несколько слов об импортоопережении.

Гидродинамическое моделирование (то есть моделирование процесса перетекания флюида в пласте в ходе разработки месторождения) — это уже стандарт де-факто и де-юре при подготовке и сопровождении разработки месторождений. Государственная комиссия по запасам полезных ископаемых, которая несёт ответственность за обоснованность оценки достоверности запасов, подготовленности месторождений для промышленного освоения и пригодности участков недр для их использования, не поставит запасы на учёт, если не будет выполнено гидродинамическое моделирование.

Но мы хорошо понимаем, что при разработке месторождения углеводородов, в особенности трудноизвлекаемых, где требуется активное воздействие на пласт (например, методом гидроразрыва, или внутрипластового горения, изобретённого в 1930-е годы в Советском Союзе), необходимо не только следить, как течёт нефть и другие флюиды, но и понимать, как меняется напряжённодеформированное состояние пласта. В противном случае возрастает потенциальный риск аварий.

Что предлагает для решения этих задач наша вычислительная наука? Комплекс на базе двух отечественных разработок: программного продукта tNavigator — параллельного интерактивного

пакета для гидродинамического моделирования пласта, созданного российской компанией "Rock Flow Dynamics", и программного продукта CAE Fidesys нового поколения, разработанного выпускниками и сотрудниками мехмата МГУ из компании "Fidesys", который позволяет осуществлять полный цикл прочностного инженерного анализа. В результате объединения этих двух продуктов мы сможем не только наблюдать процессы, происходящие в пласте, но и оптимизировать режим, повышая извлекаемость запасов. Однако пока мы находимся на полпути, потому что для решения нашей задачи необходимо построить сопряжённую вычислительную систему, где элементы или алгоритмы взаимодействия не вступают в противоречие друг с другом.

Следует сказать о необходимости использования технологий Больших данных (Big Data), которые в ближайшей перспективе займут одно из важных мест в технологическом портфеле энергетического сектора. Посредством такого инструмента, как Big Data, успешно решается широкий круг задач: поиск объектов-аналогов, обработка массивов данных сейсморазведки, восстановление исторических эксплуатационных данных, анализ данных исследований в масштабах месторождения, выявление и прогнозирование осложнений в режиме реального времени и т. п. Российские нефте- и газодобывающие компании активно занимаются анализом и обработкой цифровой информации, развивая и внедряя технологии Big Data.

Резюмируя, можно сказать, что задачи разведки и разработки месторождений углеводородов (как и других полезных ископаемых) требуют высокопроизводительных вычислений и создания алгоритмов с использованием современных технологий. В ряде академических институтов и ведущих вузов есть разработки по данному направлению, опережающие мировой уровень. Опыт сотрудничества нефтяных компаний с научными организациями и вузами показывает, что для их коммерциализации и внедрения необходимо формировать консорциумы с участием заинтересованных нефтяных компаний. Такой консорциум, в частности, может быть создан, как предусматривает Национальный проект 'Наука", в виде Научно-образовательного центра. Для координации работ целесообразно создать научный совет при президиуме РАН.

SPEECH OF CORRESPONDING MEMBER OF RAS S.A. TIKHOTSKY AND CEO OF GAZPROMNEFT NTC DOCTOR OF ENGINEERING M.M. KHASANOV

Received: 03.12.2018 Accepted: 25.12.2018

Keywords: geological and geophysical industry, exploration and development of mineral deposits, high-performance computing, big data analysis.