УДК 553.212:548.4

ПОРОДЫ МАССИВА ОНГОНИТОВ АРЫ-БУЛАК: ВЗАИМОСВЯЗИ МЕЖДУ ГЕОХИМИЧЕСКИМИ ОСОБЕННОСТЯМИ, МИНЕРАЛЬНО-ФАЗОВЫМИ АССОЦИАЦИЯМИ И ПРОЦЕССАМИ ОБРАЗОВАНИЯ

© 2024 г. И.С. Перетяжко^{а,*}, Е.А. Савина^а, А.С. Дмитриева^а

^аИнститут геохимии им. А.П. Виноградова СО РАН, Иркутск, Россия

*e-mail: pgmigor@mail.ru Поступила в редакцию 03.08.2023 г. После доработки 31.10.2023 г. Принята к публикации 19.11.2023 г.

Представлены результаты изучения геохимии, минерально-фазовых ассоциаций пород массива онгонитов Ары-Булак, составов главных, второстепенных и акцессорных минералов (кварца, полевых шпатов, топаза, циннвальдита, прозопита, редких алюмофторидов Са, вольфрамоиксиолита, колумбита, циркона, касситерита, флюоцерита), фторидно-кальшиевой фазы и образованного из нее флюорита. Породообразующими минералами порфировых онгонитов являются кварц, альбит и санидин, второстепенными – топаз и циннвальдит. Матрикс онгонитов сложен кварц-санидин-альбитовым агрегатом с игольчатыми кристаллами топаза микронных размеров. В порфировых породах переходного типа и в эндоконтактовой афировой зоне интерстиции между минералами матрикса заполняет фторидно-кальциевая фаза, образованная из F-Ca (флюоритового, стехиометрического) расплава. Фторидно-силикатная жидкостная несмесимость в оногонитовой магме и флюидно-магматические процессы привели к перераспределению REE, Y, многих примесных элементов между расплавами, флюидами, минералами и контрастной смене минерально-фазовых ассоциаций в породах массива. С этим связано появление тетрад-эффектов М-типа (T_{1 La-Nd}, T_{4 Er-Lu}) и W-типа (T_{3 Gd-Ho}) в нормированных к хондриту REE спектрах пород. Дегазация магматических флюидов через эндоконтактовую афировую зону массива сопровождалась кристаллизацией Sr-содержащего прозопита и водосодержащих кальциевых алюмофторидов. Афировые породы по сравнению с онгонитами и прорфировыми породами переходного типа обогащены водой, Sr, Ba, Rb, Sn, W, Ta, Be, Zr, Hf, Sb, As, Sc, но содержат меньше Li, Pb, Zn, Y и REE. В процессе воздействия магматических флюидов на обогащенные Са и F породы, особенно эндоконтактовой зоны, альбит частично либо полностью замещался F-Ca фазой и каолинитом, а F-Ca фаза перекристаллизовалась в агрегаты микрозернистого флюорита стехиометрического состава без примесных элементов. Также кристаллизовалась Rb-Cs слюда в кайме на лейстах циннвальдита, максимально обогащенные рубидием области которой при соотношении катионов Rb > K > Сѕ могут быть новым минералом. Геохимия пород, особенности слагающих их минерально-фазовых ассоциаций, эволюция составов минералов и F-Са фазы являются следствием формирования массива Ары-Булак из онгонитовой магмы в ходе флюидно-магматического процесса, осложненного фторидно-силикатной жидкостной несмесимостью с участием флюоритового и других фторидных расплавов, а также магматических флюидов *P-Q* и первого типов.

Ключевые слова: массив онгонитов Ары-Булак, фторидно-кальциевая (F-Ca) фаза, флюоритовый расплав, фторидно-силикатная жидкостная несмесимость, магматические флюиды *P-Q* и первого типов, геохимия пород, минерально-фазовые ассоциации

DOI: 10.31857/S0869590324030032 EDN: DAWIWK

ВВЕДЕНИЕ

Массив Ары-Булак является модельным объектом для изучения минералогии, геохимии, изотопии, условий и процессов формирования обогащенных фтором гранитоидных пород — онгонитов, которые по (Коваленко и др., 1975; Коваленко, Коваленко, 1976) являются субэффузивными аналогами редкометалльных Li-F гранитов. Массив был открыт в 1975 г. и в дальнейшем неоднократно изучался (Антипин и др., 1980, 2009; Трошин и др., 1983; Костицын и др., 1995; Кузнецов и др., 2004; Наумов и др., 1990; Перетяжко и др., 2007а, 2007б, 2011; Перетяжко, Савина, 2010а, 2010б, 2010в; Agangi

et al., 2014; Дмитриева и др., 2021; Алферьева и др., 2022). Минеральный и валовый составы, геохимические особенности и экспериментальные данные по условиям образования онгонитов массива Ары-Булак описаны в монографии (Коваленко, Коваленко, 1976) и публикациях (Антипин и др., 2009; Перетяжко, Савина, 2010а, 2010б, 2011). Здесь были впервые обнаружены экстремально обогащенные F и Са породы, которые формировались в результате совместной кристаллизации несмесимых расплавов – онгонитового и фторидно-кальциевого (F-Ca), близкого по составу к флюориту (Перетяжко и др., 2007а). При исследовании расплавных включений в кварце и топазе были получены доказательства гетерогенного состояния онгонитовой магмы, в которой сосуществовали фторидные (F-Ca, алюмофторидные) и силикатный несмесимые расплавы. в том числе аномально обогашенные Cs и As (Перетяжко и др., 2007б; Перетяжко, Савина, 2010а; Дмитриева и др., 2021). В минералах детально изучались сингенетичные включения силикатных и фторидных расплавов, первичные флюидные включения с водными растворами Р-О типа, свойства которых использовались для оценок Р-Т параметров образования массива в субэффузивных условиях (Перетяжко, 2009). Также предполагалось, что появление значительных тетрад-эффектов в нормированных к хондриту спектрах REE пород связано с фторидно-силикатной жидкостной несмесимостью расплавов и флюидов в онгонитовой магме (Перетяжко, Савина, 2010б). Кроме того, получены оценки длительности формировании пород массива Ары-Булак (Перетяжко, Савина, 2010а) и по Rb-Sr изотопной системе определен их возраст с минимальной ошибкой — 141.6 ± 0.5 млн лет (Перетяжко и др., 2011).

Ранее не проводился комплексный анализ связей между геологическим строением массива Ары-Булак, процессами образования, геохимией и детальной минералогией слагающих его пород. В работах (Перетяжко, Савина, 2007а, 2010б; Перетяжко и др., 2011) были представлены валовые анализы 12 образцов пород массива на главные и примесные элементы, но не описаны составы многих слагающих их минералов. В настоящей работе приводится уточненная геологическая карта массива Ары-Булак, анализируются более полные данные по валовой геохимии пород, приводятся составы главных, второстепенных и акцессорных минералов. Обсуждаются генетические связи между минерально-фазовыми ассоциациями, геохимическими особенностями и процессами формирования массива по флюидно-магматической модели.

МЕТОДЫ ИССЛЕДОВАНИЙ

Выполнено петрографическое описание шлифов всех разновидностей пород массива.

ПЕТРОЛОГИЯ том 32 № 3 2024

Аналитические работы проводили в ЦКП "Изотопно-геохимических исследований" ИГХ СО РАН (г. Иркутск). Концентрации в породах SiO₂, TiO₂, Al₂O₃, FeO, Fe₂O₃, MnO, MgO, CaO, K₂O, Na₂O, Li₂O, Rb₂O, Cs₂O, P₂O₅, B₂O₃, F, CO₂ и H₂O определяли комплексом физико-химических методов из растворов, полученных после кислотного разложения валовых проб. Содержания примесных элементов получили методом масс-спектрометрии с ионизацией в индуктивно связанной плазме (ICP-MS) на масс-спектрометрах NexION 300D (Agilent Technologies Inc), VG PlasmaQuard PQ 2+ и Element II. Для этого растертые пробы пород сплавляли с метаборатом лития в стеклоуглеродных и/или платиновых тиглях перед кислотным разложением. Во всех валовых пробах пород методом количественного спектрального анализа измеряли также концентрации W. B. Cu. Zn. Ge. Mo. Sn, Tl и Pb. Качество аналитических результатов в нескольких партиях анализов разных типов пород контролировали по стандартам: JG-2 (гранит), JG-3 (гранодиорит), SG-1А (шелочной гранит). Методики анализов и данные по стандартным образцам представлены на сайте ЦКП "Изотопно-геохимических исследований" ИГХ СО РАН (http:// www.igc.irk.ru/ru/uslugi/eksperimentalnye-obraztsy).

Составы минералов и фаз определяли методом сканирующей электронной микроскопии и энергодисперсионной спектрометрии (СЭМ ЭДС) на электронном микроскопе Tescan Mira 3 LMH с системой микроанализа AZteclive Advanced ULTIM MAX 40 (Oxford Instruments Analytical Ltd) при ускоряющем напряжении 20 кВ, времени накопления 30 с в режиме сканирования полированных срезов образцов на площади до 10 мкм². Качество анализов контролировали на эталонных образцах минералов и синтетических соединений из стандартных наборов для микроанализа (6316 и 7682 Micro-Analysis Consultants Ltd). Предел обнаружения оксидов был 0.2-0.3 мас. % при средней случайной погрешности в зависимости от их содержаний (мас. %): > 10 ± 0.9 отн. %, $1-10 \pm 3.0$ отн. % и $0.3-1 \pm \pm 13$ отн. % (Лаврентьев и др., 2015). Кристаллохимические формулы минералов рассчитывали в программе CRYSTAL (Перетяжко, 1996).

ГЕОЛОГИЧЕСКИЙ ОЧЕРК

Массив Ары-Булак расположен на юго-востоке Забайкальского края в 25 км к западу от пос. Шерловая Гора. Позднемезозойские субвулканические тела редкометалльных гранитоидных пород, в том числе онгонитов, Шерловогорского рудного района представлены штокообразными массивами, дайками или частично эродированными апикальными выступами небольших интрузий (Сырицо и др., 2012; Андреева и др., 2020). Первая геологическая карта-схема массива была составлена

Рис. 1. Геологические карты-схемы массива Ары-Булак по литературным данным.

(а) Схема Б.А. Гайворонского, опубликована в (Коваленко, Коваленко, 1976). 1 – осадочные и вулканогенные породы усть-борзинской свиты, 2 – базальтоиды, 3 – афировые эндоконтактовые онгониты, 4 – порфировые онгониты.

(б) Вертикальный разрез массива, по (Трошин и др., 1983). 1 – метаэффузивы, 2 – андезиты, андезито-базальты, 3 – онгониты, 4 – четвертичные отложения, 5 – скважины.

(в) Карта, по (Антипин и др., 2009). 1 – четвертичные отложения, 2 – порфировые онгониты, 3 – "раскристаллизованные онгониты, с Са-F стеклом", 4 – афировые онгониты, мелкозернистые и стекловатые, 5 – базальты, андезито-базальты, 6 – известняки, 7 – сланцы. Отметим, что в породах массива Ары-Булак, по нашим данным, не содержится силикатного или какого-либо фторидного стекла. в 1974 г. геологом Б.А. Гайворонским и опубликована в монографии (Коваленко, Коваленко, 1976). На ней базальтоиды и осадочно-вулканогенные породы усть-борзинской свиты контактируют с зоной афировых онгонитов, которые сменяются порфировыми онгонитами в центральной части массива (рис. 1а). В работе (Трошин и др., 1983) приведен схематичный вертикальный разрез, составленный по буровым скважинам, на котором массив не имеет афировой зоны и на восточном крутом фланге находится в контакте с андезитами и андезито-базальтами, а на западном более пологом – преимущественно с метаэффузивами (рис. 1б). На карте, представленной в (Антипин и др., 2009), вскрытая поверхность пород имеет эллипсовидную форму, а на юго-западном фланге афировые мелкозернистые и стекловатые онгониты сменяются зоной так называемых "раскристаллизованных онгонитов с Са-F стеклом" и далее к центру – порфировыми онгонитами (рис. 1в). На этой карте массив контактирует только со сланцами и известняками. Согласно объяснительной записке к государственной геологической карте (Государственная ..., 2019), в плане форма массива изометричная, несколько вытянутая в субширотном направлении, а контакты с вмещающими девонскими породами интрузивные.

Мы провели картирование массива по нескольким разрезам с GPS привязками точек отбора образцов, выходов скважин и коренных обнажений всех разновидностей пород. В результате построили карту, учитывающую типизацию пород массива, данные бурения и геофизики (электроразведки) по разрезам скважин (рис. 2). Бурение проводилось по субширотному (АБ) и субмеридиональному (ВГ) разрезам на глубину от 37 до 71 м. Наиболее глубокая скв. 9 не вышла из порфировых онгонитов до горизонта 171 м. Согласно нашей карте, которая существенно отличается от опубликованных ранее (рис. 1), массив имеет грибообразную форму (возможно, лакколита) с максимальным размером под четвертичными отложениями в горизонтальной проекции 700 × 1500 м и углами наклона 35°-12° относительно андезито-базальтов, базальтов (J_3) и девонских (D_{1-2}) метаморфизованных сланцев усть-борзинской свиты. По буровым разрезам порфировые онгониты контактируют со сланцами, базальтами и андезито-базальтами (скв. 4, 11). Вблизи массива на западном фланге находятся базальты, андезито-базальты и сланцы (скв. 12), а на южном – сланцы (скв. 14). В плане поролы массива образуют субмеридионально ориентированный эллипс размером 500 × 800 м. На юго-западном фланге вмещающие породы контактируют с афировыми породами эндоконтактовой зоны шириной 50-100 м, которые в интервале нескольких десятков метров постепенно сменяются порфировыми онгонитами. На эродированной поверхности все

контакты с вмещающими породами скрыты четвертичными отложениями (суглинком, глиной и песком). В афировых породах (иногда, флюидальных) редко находятся остроугольные ксенолиты сланцев. В других породах массива не встречались ксенолиты вулканических и осадочных пород.

ТИПИЗАЦИЯ ПОРОД

По валовому составу, петрографическим особенностям и СЭМ ЭДС данным выделяется три разновидности пород: порфировые, афировые и переходного типа. Порфировые онгониты преобладают в объеме массива (рис. 2). Это светло-серые породы с массивной текстурой и порфировой структурой, содержащие 20-30 об. % вкрапленников дымчатого кварца, санидина, альбита размером 1-6 мм, а также идиоморфные крупные до 2 мм по удлинению кристаллы прозрачного топаза и лейсты зеленовато-бурой слюды (рис. 3а, 3г). Матрикс онгонитов слагает кварц-санидин-альбитовый агрегат, в котором находятся многочисленные тонкоигольчатые кристаллы топаза. В валовом составе порфировых онгонитов содержится <0.5 мас. % СаО и 1-1.5 мас. % Г. На юго-западном фланге, реже в центральной части, и на северо-восточном фланге массива встречаются небольшие участки породы размером 1-2 м, по внешнему облику практически неотличимые от порфировых онгонитов (рис. 3б, 3д), но имеющие необычно высокие концентрации СаО до 13 мас. % и F до 9 мас. %. Ранее было установлено (Перетяжко, Савина, 2010а), что аномалии Са и F связаны с большим количеством фторидно-кальциевой (F-Ca) фазы в матриксе таких порфировых пород, которые мы относим к переходному типу. По данным порошковой дифрактометрии F-Ca фаза состоит из агрегата микрозерен флюорита размером 200-800Å (Перетяжко и др., 2007а). Для афировых пород эндоконтактовой зоны характерны максимальные концентрации CaO до 22 мас. % и F до 19 мас. %. В них находится <5 об. % порфировых вкрапленников кварца и санидина размером 0.5-2 мм, а матрикс содержит кварц, санидин, игольчатый топаз, прозопит, F-Ca фазу и другие акцессорные минералы (рис. 3в, 3е).

ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ПОРОД

Валовый состав определен для 116 образцов, из которых 64 представляют порфировый онгонит, 24 — породы переходного типа и 28 — афировые породы. Средние составы, стандартные отклонения, минимальные и максимальные концентрации компонентов приводятся в табл. 1.

По (Коваленко и др., 1975; Коваленко, Коваленко, 1976), все породы массива Ары-Булак

Рис. 2. Геологическая карта массива Ары-Булак. Построена с учетом данных буровых и геофизических работ, проводившихся геологическими партиями – Чесучейской в 1964–1965 гг. и Леонтьевской в 1967–1969 гг. (материалы предоставлены геологом Б.А. Гайворонским).

называются онгонитами. В этой связи отметим, что петротипом онгонита считается топазсодержащая дайковая лейкократовая порода из района Онгон-Хайерхан в Монголии, для которой характерно преобладание Na₂O (5.5–5.1 мас. %) над K₂O (3.2–3.4 мас. %). Ранее обогащенные калием субвулканические редкометалльные гранитоидные породы предлагалось относить к эльванам (Дергачев, 1992). Этому критерию соответствуют все породы массива, в которых содержание K_2O достигает 5–5.5 мас. % (рис. 4а). Мы не придерживаемся такой формальной типизации и вслед за В.И. Коваленко называем онгонитом преобладающую порфировую породу массива Ары-Булак. Аномально обогащенные Са и F порфировые и афировые породы массива, содержащие большое количество

318

Рис. 3. Породы массива: (а) – порфировый онгонит с кристаллами дымчатого кварца, топаза и санидина, обр. АРБ-28; (б) – порфировая порода переходного типа, обр. АРБ-26. (в) – афировая порода, обр. АРБ-19; (г–е) – ми-кроструктурные особенности в шлифах (поляризаторы полускрещены): (г) – порфировый онгонит, обр. АРБ-34; (д) – порфировая порода переходного типа, обр. АРБ-190; (е) – афировая порода, обр. АРБ-184. Длина масштабного отрезка на (а–в) – 10 мм, на (г–е) – 1 мм. *Qz* – кварц, *Tpz* – топаз, *Ab* – альбит, *Sa* – санидин, *Psp* – прозопит, F-Ca – фторидно-кальциевая фаза.

F-Ca фазы, имеют специфические минералого-геохимические характеристики и должны относиться к необычному типу Li-F гранитоидных пород, образованных в результате совместной кристаллизации F-Ca (флюоритового, стехиометрического) и силикатного онгонитового несмесимых расплавов (Перетяжко и др., 2007а; Перетяжко, Савина, 2010а).

Наблюдаются линейные зависимости между концентрациями CaO, F и SiO₂ для пород массива (рис. 4б–4г). В пересчете на флюорит порфировые породы переходного типа содержат 15–18 мас. % CaF₂, а афировые – 25–28 мас. % CaF₂ (рис. 4б). Отклонения точек состава от линейной зависимости по этим компонентам связаны с примесью топаза во всех породах, а также прозопита и кальциевых алюмофторидов в афировых разновидностях. По соотношению индексов A/CNK и A/NK все порфировые онгониты соответствуют плюмазитовым породам (рис. 5а). Количество K₂O и Al₂O₃ во всех породах находится примерно на одном уровне, а концентрации Na₂O и (FeO + Fe₂O₃)

ПЕТРОЛОГИЯ том 32 № 3 2024

уменьшаются в порфировых переходных, и особенно в афировых разновидностях (рис. 56–5д). Породы афировой зоны и часть образцов пород переходного типа содержат на 2–3 мас. % больше воды по сравнению с порфировыми онгонитами (рис. 5е). Минимальное количество MgO (<0.07 мас. %) характерно для онгонитов, а переходные и афировые породы содержат 0.1–0.4 мас. % (в единичных пробах, до 0.8 мас. %) этого компонента. Во всех породах обнаружены примеси (мас. %): TiO₂ < 0.3, MnO < 0.06 и CO₂ < 0.8. Повышенные концентрации CO₂ (1–2 мас. %, рис. 53) определены только в нескольких образцах порфировых пород, имеющих небольшую примесь вторичного кальцита.

Концентрации примесных элементов, в том числе REE и Y, определены для 63 образцов пород: 33 онгонитов, 20 порфировых переходных и 13 афировых. Средние, стандартные отклонения, минимальные и максимальные значения концентраций элементов представлены в табл. 2 и 3. На рис. 6–8 для пород показаны вариации содержаний Li, Rb, Cs, Ba, Sr, Zr, Ta, Nb, W, Sn, Zn, Pb в зависимости

Конто	Порфи	ировые	онгонит	гы (64)	Пе	реходні	ый тип ((37)	Афировые породы (28)			
ненты	сред- нее	СТ. ОТК.	мин.	макс.	сред- нее	СТ. ОТК.	мин.	макс.	сред- нее	СТ. ОТК.	мин.	макс.
SiO ₂	71.99	1.45	67.83	76.13	65.01	3.91	59.03	74.83	53.62	5.40	42.11	65.48
TiO ₂	0.05	0.05	0.02	0.33	0.08	0.11	0.01	0.57	0.07	0.11	0.02	0.54
Al_2O_3	15.90	0.71	13.58	17.83	15.54	1.83	12.28	18.36	15.85	1.22	12.97	18.56
Fe ₂ O ₃	0.43	0.18	0.10	0.98	0.43	0.26	0.10	1.31	0.30	0.15	0.03	0.82
FeO	0.32	0.18	0.07	1.00	0.34	0.17	0.10	0.68	0.28	0.26	0.10	0.58
MnO	0.04	0.01	0.03	0.08	0.04	0.01	0.03	0.09	0.03	0.00	0.03	0.05
MgO	0.07	0.14	0.03	0.79	0.21	0.26	0.03	1.28	0.22	0.11	0.07	0.50
CaO	0.62	0.58	0.05	2.18	5.88	3.40	1.40	13.03	14.41	4.12	3.79	21.97
Na ₂ O	3.64	0.58	0.95	4.27	2.48	1.13	0.61	4.05	0.79	0.28	0.34	1.24
K ₂ O	4.47	0.28	3.68	5.35	4.40	0.50	3.46	5.45	4.25	0.75	2.80	5.50
Li ₂ O	0.10	0.01	0.05	0.14	0.09	0.13	0.02	0.86	0.03	0.02	0.02	0.11
Rb ₂ O	0.22	0.04	0.16	0.39	0.26	0.10	0.15	0.44	0.33	0.06	0.21	0.42
Cs ₂ O	0.02	0.02	0.00	0.19	0.01	0.01	0.00	0.06	0.02	0.03	0.00	0.16
P_2O_5	0.03	0.01	0.02	0.07	0.03	0.02	0.02	0.07	0.05	0.03	0.02	0.14
B_2O_3	0.02	0.00	0.02	0.02	0.03	0.02	0.02	0.08	0.03	0.01	0.02	0.05
F	1.46	0.50	0.97	3.50	5.41	2.14	1.25	9.00	12.41	3.16	5.30	18.75
S	0.03	0.04	0.02	0.20	0.02	0.00	0.02	0.02	0.02	0.00	0.02	0.02
CO ₂	0.34	0.32	0.02	1.92	0.38	0.28	0.05	1.50	0.31	0.23	0.06	0.86
H ₂ O	0.95	0.43	0.43	2.91	1.76	0.86	0.74	3.80	2.39	0.88	0.34	4.11
$\Sigma(-O=F_2)$	100.07	0.35	99.37	101.52	99.83	0.47	97.62	100.55	99.87	0.34	98.77	100.43
A/CNK	1.34	0.12	1.02	1.59	0.91	0.40	0.40	1.85	0.53	0.19	0.29	1.26
A/NK	1.48	0.15	1.30	2.27	1.84	0.51	1.29	2.81	2.81	0.73	1.99	4.43

Таблица 1. Средние валовые составы пород, мас. %

Примечание. В скобках указано количество анализов, по которым получены средние значения, стандартные отклонения, минимальные и максимальные концентрации компонентов. Сумма – с поправкой на фтор. A/CNK = $Al_2O_3/(CaO + Na_2O + K_2O)$, A/NK = $Al_2O_3/(Na_2O + K_2O)$, оксиды – мол. кол-ва.

от SiO_2 , мультиэлементные нормированные к примитивной мантии распределения и нормированные к хондриту спектры REE.

Геохимические характеристики порфировых онгонитов соответствуют типу редкометалльных плюмазитовых гранитов, по (Таусон, 1977). Все разновидности пород массива Ары-Булак имеют высокие концентрации Li, Rb и Cs. Порфировые онгониты наиболее обогащены Li, Pb, Ga и Zn. Породы переходного типа характеризуются значительными вариациями концентраций примесных элементов, но только среди них встречаются разновидности, максимально обогащенные REE, Y, и U. При уменьшении кремнекислотности в ряду от порфировых онгонитов к афировым породам наиболее закономерно увеличиваются концентрации Sr, Ba, Sn, Rb, W, Ta, Zr, Hf, Sc, Be, Ge и снижаются – Li, Pb, Zn, а такие элементы как B, Nb, Cu, Th, Tl и Ni имеют большую дисперсию содержаний (рис. 6, табл. 2).

Онгониты и порфировые породы переходного типа характеризуются близкими по форме нормированными мультиэлементными распределениями с хорошо выраженными минимумами Со, V, Cu, Ge, Mo, Li, Be, Ba, La, Eu, Ti, Y и максимумами Ga, Tl, Cs, Rb, U, Ta, Pb, Hf (рис. 7). Афировые породы по сравнению с онгонитами и прорфировыми породами переходного типа обогащены Sr, Ba, Sn, As, Sb, W, Ta, Zr, Hf, Be, Sc, Ge, но содержат меньше Li, Pb, Zn, Y и суммы REE.

Анализ распределений REE и тетрад-эффектов в нормированных к хондриту REE спектрах пород массива Ары-Булак обсуждался ранее по ограниченной выборке данных (Перетяжко, Савина, 2010б). В этой работе мы анализируем спектры REE в породах всех типов для большого количества проб (табл. 3). Породы массива имеют низкую сумму REE (в среднем, $\Sigma REE < 48$ ppm) и Y ≤ 5.2 ppm. Максимальные средние значения

320

Рис. 4. Соотношения K_2O , Na_2O , CaO, F и SiO₂ в породах массива.

ΣREE (86 ppm) и Y (13 ppm) характерны для пород переходного типа, а минимальные – для афировых пород (9.1 и 0.3 соответственно). Все породы обогащены LREE относительно HREE. В спектрах REE наблюдается более крутой наклон LREE относительно HREE и отрицательная аномалия европия. Значения (La/Yb)_n и Y/ Но в среднем повышаются от 1.8 и 10 для онгонитов, 2.3 и 13 для порфировых переходных, до 2.4 и 16 для афировых пород. Отрицательная аномалия Еи наблюдается в онгонитах, переходных порфировых и менее выраженная – в афировых породах (значение Eu/Eu* повышается от 0.08, 0.14 до 0.53).

Для нормированных спектров REE характерны тетрад-эффекты в первой ($T_{1 La-Nd}$, М-тип), третьей ($T_{3 Gd-Ho}$, М-тип и W-тип) и четвертой ($T_{4 Er-Lu}$, М-тип) тетрадах (рис. 8). Во всех породах наиболее сильно выражены выпуклые тетрад-эффекты

М-типа в первой и четвертой тетрадах при максимальных средних значениях $T_1 = 1.75$ и $T_4 = 1.34$ для афировых пород (табл. 3). В третьей тетраде небольшой тетрад-эффект М-типа (среднее значение $T_3 = 1.18$) проявлен только в онгонитах. В некоторых переходных, и особенно афировых, породах для третьей тетрады характерна вогнутая форма W-типа при минимальном значении T_3 от 0.82 до 0.64. Отметим также, что только в REE спектрах некоторых образцов порфировых пород переходного типа наблюдается отрицательная аномалия церия (рис. 8).

МИНЕРАЛЬНО-ФАЗОВЫЙ СОСТАВ ПОРОД

Главные породообразующие минералы и F-Ca фаза

Кварц встречается во всех породах в виде крупных идиоморфных кристаллов дымчатой окраски и мелких зерен в матриксе (рис. 9). Кристаллы

Рис. 5. Диаграмма A/CNK–A/NK и соотношения между SiO₂ и K₂O, Al₂O₃, Na₂O, (FeO + Fe₂O₃), H₂O, TiO₂, CO₂ в породах массива. Условные обозначения см. на рис. 4.

Dray (a)	Порф	ировые	онгонит	ы (33)	Переходный тип (20)				Афировые породы (13)			
Элемен- ты	сред- нее	ст. отк.	мин.	макс.	сред- нее	ст. отк.	мин.	макс.	сред- нее	ст. отк.	мин.	макс.
В	34.6	13.9	13.0	73.0	62.4	74.5	17.0	300	66.2	66.7	19.0	290
Li	464	71.8	232	557	348	125	97.5	511	156	72.6	92.9	339
Be	8.48	1.65	5.91	11.4	13.2	10.7	5.90	53.3	19.3	6.25	12.9	29.3
Sc	3.30	0.72	2.09	4.32	6.12	2.59	3.07	10.1	12.9	4.18	9.07	18.9
Ti	46.4	7.20	36.7	64.0	36.3	7.82	28.6	52.4	48.5	0.00	48.5	48.5
V	12.4	45.2	0.01	182	1.86	0.75	0.05	2.52	2.51	0.23	2.16	2.72
Cr	15.0	7.50	1.38	26.8	15.4	9.07	0.91	35.4	21.2	5.17	16.6	29.9
Co	0.98	1.04	0.23	3.81	0.91	1.04	0.21	4.03	3.97	4.38	0.12	13.9
Ni	9.99	17.6	1.84	92.1	7.20	5.08	2.94	19.4	7.27	2.46	3.89	11.0
Cu	7.40	5.49	2.27	26.2	6.80	3.17	2.85	13.9	4.85	2.39	1.45	10.0
Cu	7.46	1.95	4.60	14.0	7.23	1.88	4.80	13.0	6.67	1.72	4.70	10.0
Zn	24.4	7.99	7.69	40.5	20.3	8.05	7.28	31.6	10.65	4.49	3.83	21.1
Zn	28.2	6.17	16.0	44.0	22.7	6.48	11.0	36.0	13.7	3.99	7.10	21.0
Ga	51.2	5.94	40.2	63.7	46.7	6.44	35.9	61.9	46.0	8.59	29.8	58.6
Ge	3.85	1.49	1.87	6.42	3.58	1.50	0.72	5.28	3.97	2.71	0.41	7.78
Ge	4.79	0.57	3.30	6.20	5.31	1.12	3.00	7.60	5.59	0.79	4.30	7.50
As	12.8	6.59	5.57	23.5	34.7	49.5	7.28	145	39.3	14.8	26.5	62.0
Rb	1950	449	1442	3923	2010	892	1281	4308	2860	682	1773	3890
Sr	30.6	19.4	7.59	92.8	207	190	7.59	725	1027	802	112	2654
Zr	29.4	9.40	18.4	55.5	31.9	13.5	16.1	63.6	48.9	9.44	27.5	62.4
Nb	74.6	10.3	57.6	103	76.4	29.0	59.3	195	65.3	22.0	0.11	85.0
Мо	0.56	0.51	0.08	1.93	0.51	0.46	0.06	1.39	3.22	7.55	0.08	18.6
Mo	0.51	0.24	0.26	1.30	0.44	0.17	0.25	0.85	0.48	0.20	0.26	0.81
Sn	44.6	27.9	12.7	133	46.0	25.1	12.9	96.5	94.0	62.4	10.2	167
Sb	4.50	2.06	2.31	12.3	11.3	17.5	1.63	76.0	38.1	54.6	12.1	149
Cs	111	67.5	33.5	257	96.9	81.1	30.0	385	154	121	73.5	529
Ba	43.6	24.9	1.94	95.5	79.5	83.2	4.46	346	380	342	82.1	1123
Hf	4.02	1.48	2.64	8.63	4.41	2.30	2.08	10.6	7.31	2.47	0.11	10.6
Та	36.0	14.2	20.0	102	42.1	20.6	21.8	107	78.7	27.2	18.6	108
W	29.4	12.9	10.4	78.3	35.6	16.9	17.9	65.7	58.3	26.5	10.2	114
W	26.0	9.49	12.0	55.0	35.3	18.4	10.0	82.0	68.2	38.3	38.0	230
Tl	7.38	3.03	1.11	10.3	9.14	6.01	0.24	18.5	17.7	41.9	0.68	149
Tl	8.43	1.97	5.60	16.0	10.4	4.67	5.10	20.0	12.1	3.13	6.40	21.0
Pb	28.0	6.40	16.1	49.4	25.9	5.88	16.1	38.3	14.9	6.21	8.89	32.2
Pb	27.4	5.18	17.0	42.0	23.9	6.62	13.0	39.0	17.2	6.72	9.00	37.0
Th	14.9	3.34	8.49	22.6	16.7	4.77	8.46	28.3	19.9	7.44	11.6	35.3
U	12.2	8.67	2.67	36.4	40.6	67.7	4.21	313	11.2	3.66	7.59	19.9

Таблица 2. Средние содержания примесных элементов в породах, ppm

Примечание. В скобках указано количество анализов, по которым получены средние значения, стандартные отклонения, минимальные и максимальные концентрации элементов-примесей по ICP-MS. Жирным выделены концентрации B, Cu, Zn, Mo, W, Tl и Pb по данным количественного спектрального анализа 64 проб порфировых онгонитов, 37 порфировых пород переходного типа и 28 проб афировых пород.

323

ПЕРЕТЯЖКО и др.

Komio-	Порф	ировые	онгонит	ы (33)	Переходный тип (20)				Афировые породы (13)			
ненты	сред- нее	ст. отк.	мин.	макс.	сред- нее	ст. отк.	мин.	макс.	сред- нее	ст. отк.	мин.	макс.
Y	2.65	2.20	0.39	8.06	5.16	4.22	0.04	13.4	1.16	0.55	0.26	2.22
La	4.33	2.39	0.73	11.0	7.21	4.33	0.98	16.9	1.82	0.85	0.89	3.90
Ce	14.0	7.51	1.38	35.8	17.4	6.51	6.72	27.3	6.70	1.75	4.44	9.66
Pr	1.70	0.91	0.34	4.18	3.05	1.85	0.74	6.71	1.11	0.49	0.60	2.21
Nd	4.40	2.55	0.94	11.8	8.75	5.83	1.14	19.2	2.88	1.53	1.59	6.64
Sm	1.13	0.63	0.25	3.21	2.15	1.48	0.21	4.99	0.56	0.32	0.19	1.32
Eu	0.03	0.02	0.00	0.07	0.06	0.07	0.01	0.27	0.10	0.06	0.02	0.26
Gd	0.95	0.57	0.09	2.78	1.71	1.13	0.26	3.97	0.69	0.30	0.30	1.40
Tb	0.19	0.10	0.03	0.51	0.32	0.21	0.03	0.74	0.08	0.03	0.03	0.11
Dy	1.25	0.74	0.15	3.14	2.08	1.59	0.10	5.06	0.41	0.15	0.16	0.67
Но	0.24	0.15	0.06	0.67	0.41	0.35	0.02	1.21	0.08	0.03	0.03	0.14
Er	0.81	0.50	0.19	2.39	1.42	1.30	0.05	4.64	0.22	0.10	0.08	0.39
Tm	0.19	0.11	0.07	0.58	0.34	0.33	0.03	1.22	0.06	0.02	0.03	0.10
Yb	1.72	0.94	0.41	5.03	2.95	2.75	0.41	10.1	0.57	0.21	0.30	1.02
Lu	0.25	0.14	0.07	0.73	0.42	0.38	0.06	1.45	0.09	0.03	0.05	0.14
ΣLREE	24.4	12.9	4.77	62.1	36.4	17.7	9.89	66.1	12.5	4.08	7.80	19.5
ΣHREE	5.60	3.14	1.08	14.5	9.65	7.83	0.96	27.2	2.19	0.73	1.00	3.63
ΣREE	31.2	16.0	7.25	76.5	48.3	25.5	11.1	85.9	15.4	5.06	9.18	24.7
ΣLREE/ ΣHREE	4.51	1.54	1.56	7.69	5.29	2.45	1.60	10.8	5.86	1.21	4.34	7.81
Y/Ho	10.0	3.15	5.72	18.2	12.8	4.80	2.30	26.7	15.8	6.67	4.54	29.9
(La/Yb) _n	1.75	0.77	0.73	3.74	2.28	1.02	0.45	3.58	2.38	1.16	0.90	4.41
Eu/Eu*	0.08	0.05	0.01	0.22	0.14	0.17	0.01	0.59	0.53	0.24	0.16	1.18
T _{1 (La-Nd)}	1.59	0.32	1.01	2.85	1.45	0.47	1.07	2.99	1.75	0.33	1.05	2.33
T _{3 (Gd-Ho)}	1.18	0.16	0.84	1.42	1.09	0.13	0.82	1.34	0.89	0.19	0.64	1.27
$T_{4(Er-Lu)}$	1.28	0.07	1.16	1.55	1.31	0.20	1.06	1.88	1.34	0.24	1.00	1.81
T ₁₋₄	1.33	0.11	1.05	1.61	1.26	0.15	1.09	1.70	1.26	0.15	0.93	1.46

Таблица 3. Средние содержания REE и Y в породах, ppm

Примечание. В скобках указано количество анализов, по которым получены средние значения, стандартные отклонения, минимальные и максимальные концентрации REE и Y по ICP-MS. $\Sigma LREE - сумма La, Ce, Pr, Nd и Sm. \Sigma HREE - сумма Gd, Ho, Er, Tm, Yb и Lu. Eu/Eu* = Eu/(Sm×Gd)^{1/2}. Значения (La/Yb)_n, Eu/Eu* и тетрад-эффектов T₁, T₃, T₄ получены для нормированных к хондриту C1 содержаний REE, по (McDonough, Sun, 1995).$

 $T_1 = (Ce \times Pr/La \times Nd)^{1/2}, T_3 = (Tb \times Dy/Gd \times Ho)^{1/2}, T_4 = (Tm \times Yb/Er \times Lu)^{1/2}, T_{1-4} = (T_1 \times T_3 \times T_4)^{1/3}.$

дымчатого кварца имеют дипирамидальную кристаллографическую форму и гексагональное сечение до 6 мм (в среднем, 2–4 мм). В кристаллах кварца находятся вкрапленники альбита, санидина, топаза, акцессорных минералов, расплавные и флюидные включения, а в кварце из афировых пород – обособления F-Ca фазы. Кварц содержит 0.5-1.2 мас. % Al_2O_3 , а в некоторых зернах отмечаются примеси Ca, Na, K и Fe при суммарном количестве оксидов этих элементов <0.5 мас. %.

Полевые шпаты

Альбит образует ограненные таблитчатые, призматические полупрозрачные кристаллы с удлинением от 1:1 до 1:4 и размером до 1 мм в максимальном сечении. В шлифах наблюдается полисинтетическое двойникование альбита (рис. 9а, 9б, 9з). В порфировых породах типичны срастания кристаллов альбита и санидина, а также футлярные кристаллы альбита с санидиновой каймой (рис. 10а). В афировых породах альбит частично либо полностью замещен F-Ca фазой (агрегатом

Рис. 6. Соотношения между SiO₂ (мас. %) и Li, Rb, Cs, Ba, Sr, Zr, Ta, Nb, W, Sn, Zn, Pb (ppm) в породах массива. Условные обозначения см. на рис. 4. Концентрации W, Sn, Zn, Pb – по данным количественного спектрального анализа, остальные элементы – по ICP-MS.

Рис. 7. Нормированные к примитивной мантии мультиэлементные распределения пород массива. Концентрации элементов в примитивной мантии по (McDonough, Sun, 1995).

Рис. 8. Нормированные к хондриту REE распределения пород массива. Концентрации элементов в хондрите C1 по (McDonough, Sun, 1995). Линиями со знаками показаны спектры REE по средним составам пород. Для обр. APБ-24 и APБ-105 характерна отрицательная цериевая аномалия. Т₁, Т₃ и Т₄ – тетрады REE как следствие фторидно-силикатной несмесимости для порфировых онгонитов (а), взаимодействия магматических флюидов с порфировыми породами переходного типа (б) и афировой зоной массива (в).

Рис. 9. Минеральные ассоциации пород в шлифах (поляризаторы скрещены).

(а) – срастание кристаллов альбита и санидина, обр. АРБ-357. (б) – матрикс онгонита, обр. АРБ-34. (в) – кристалл топаза с каймой, содержащей расплавные и флюидные включения, обр. АРБ-34. (г) – зональный циннвальдит, обр. АРБ-146. (д) – прозопит и топаз в афировой породе, обр. АРБ-19. (е) – матрикс афировой породы, обр. АРБ-54. (ж) – фенокристы альбита (показаны контуры) полностью замещены F-Са фазой и/или каолинитом, обр. АРБ-343. (з) – агрегат кальцита в матриксе онгонита, обр. АРБ-142. Длина масштабного отрезка – 200 мкм. *Аb* – альбит, *Sa* – санидин, *Qz* – кварц, *Tpz* – топаз, *Mica* – циннвальдит, *Psp* – прозопит, F-Ca – фторидно-кальциевая фаза, *Kln* – каолинит, *Cal* – кальцит.

Рис. 10. Полевые шпаты в породах: (а) — футлярные кристаллы альбита с каймой санидина в порфировой породе переходного типа, обр. АРБ-106; (б) — кристалл альбита в санидине частично замещен F-Ca фазой в афировой породе, обр. АРБ-184; (в) — футлярный кристалл альбита полностью замещен F-Ca фазой и каолинитом в афировой породе, обр. АРБ-4; (г) — кристалл санидина с включениями альбита, часть из которых замещена F-Ca фазой в афировой породе, обр. АРБ-182. В матриксе афировых пород (в и г) F-Ca фаза содержит игольчатые включения санидина микронных размеров. Длина масштабного отрезка — 100 мкм. Условные обозначения см. на рис. 9. ВSE изображения.

мелкозернистого флюорита) и/или каолинитом (рис. 9ж, 10б–10г). Для санидина характерны таблитчатые, изометричные кристаллы или зерна неправильной формы размером 0.5–0.7 мм (рис. 9а). Многочисленные игольчатые включения микронных размеров санидина встречаются только в F-Ca фазе из афировых пород (рис. 10в, 10г).

Составы полевых шпатов приведены на диаграмме Ab-An-Or (рис. 11) и в табл. 4. Количество минала Ab в санидине 23–35 мол.%, а минала Or

Рис. 11. Составы полевых шпатов на диаграмме анортит (*An*)–ортоклаз (*Or*)–альбит (*Ab*). Миналы: *Sa* – санидин, *Ant* – анортоклаз, *Olg* – олигоклаз.

Компоненты	Порфиров	ый онгонит	Порфиров переход	ая порода, ный тип	Афировые породы		
	альбит (18)	санидин (13)	альбит (42)	санидин (40)	альбит (9)	санидин (36)	
SiO ₂	67.76	66.44	67.66	65.64	68.10	65.08	
Al_2O_3	19.88	18.87	19.64	18.56	19.61	18.55	
Fe_2O_3	0.06	0.02	0.14	_	_	_	
CaO	0.25	_	0.42	_	0.19	_	
Na ₂ O	11.01	3.87	10.93	3.88	10.99	2.54	
K ₂ O	0.38	10.90	0.42	10.95	0.40	12.64	
Rb ₂ O	_	_	—	_	—	0.27	
Сумма	99.34	100.10	99.21	99.03	99.29	99.08	
		Форму	льные коэффиі	циенты			
Si	2.980	3.004	2.982	3.004	2.994	3.000	
Al	1.030	1.005	1.020	1.001	1.016	1.008	
Fe ³⁺	0.002	0.001	0.005				
Ca	0.012		0.020		0.009		
Na	0.939	0.339	0.934	0.344	0.937	0.227	
Κ	0.021	0.629	0.024	0.639	0.022	0.743	
Rb						0.008	
Сумма	4.984	4.977	4.984	4.988	4.978	4.986	
Ab	96.6	35.0	95.6	35.0	96.8	23.4	
An	1.2		2.0		0.9		
Or	2.2	65.0	2.4	65.0	2.3	76.6	

Таблица 4.	Средние составы	полевых	шпатов,	мас.	%
------------	-----------------	---------	---------	------	---

Примечание. В скобках – количество СЭМ ЭДС анализов, по которым рассчитаны средние значения. Прочерк – содержания ниже предела обнаружения методом СЭМ ЭДС. Формульные коэффициенты рассчитаны на 8 атомов кислорода. *Аb, An, Or* – миналы альбита, анортита и ортоклаза, мол. %.

в альбите <3 мол.%. Концентрации Na₂O в альбите 10.8–10.9 мас. %, а $K_2O < 0.5$ мас. %. Санидин содержит 12.5 мас. % K_2O и 3.9 мас. % Na₂O. Альбит и санидин имеют примесь 0.2–0.4 мас. % СаО. Полевые шпаты в порфировых породах содержат до 0.4 мас. % Fe₂O₃, а санидин в афировых породах – до 1 мас. % Rb₂O.

Фторидно-кальциевая фаза

Заполняет интерстиции между минералами матрикса порфировой породы переходного типа и афировых пород (рис. 3б, 3в, 3д, 3е, 9е-9з, 10). В некоторых участках F-Ca фазы иногда встречаются хорошо оформленные кристаллы флюорита (рис. 12в). Средние составы F-Са фазы в образцах пород представлены в табл. 5. В отличие от флюорита стехиометрического состава (51.33 мас. % Са и 48.67 мас. % F), F-Са фаза содержит меньше Са, F и больше примесных элементов при следующих вариациях средних концентраций в образцах пород (мас. %): 0.9-5.2 О, 0.1-0.3 Si, 0.1–1.2 Al, 0.1–0.6 Na, 0.1–0.7 Sr, <0.4 Ba (табл. 5). Кристаллы флюорита в F-Ca фазе (как на рис. 12в) имеют стехиометрический состав без примесей на уровне разрешающей способности СЭМ ЭДС.

Второстепенные минералы

Топаз образует прозрачные крупные (до 2 мм) призматические кристаллы в порфировых онгонитах и породах переходного типа, а также многочисленные игольчатые кристаллы субмикронных размеров в матриксе (рис. 3а, 3г, 9в, 9д, 13). В крупных кристаллах топаза встречаются срастания игольчатых кристаллов вольфрамоиксиолита (рис. 136—13г), включения альбита, санидина, W-содержащего колумбита и циннвальдита, а краевая зона иногда содержит большое количество расплавных и флюидных включений, вкрапленники альбита, санидина и кварца (рис. 9в, 13г). Топаз содержит 18–19 мас. % F и небольшое количество примесей FeO, CaO и K₂O, в сумме не превышающее 0.4-0.6 мас. %.

Слюда – характерный минерал для всех типов пород – образует чешуйчатые лейсты и обособления неправильной формы с отчетливой спайностью размером от 10-20 мкм до 1-2 мм (рис. 9г, 9е, 14). В крупных лейстах часто встречаются включения кварца, альбита, санилина, циркона, вольфрамоиксиолита, касситерита, ксенотима и колумбита (рис. 14, 17а, 17в), а в краевой зоне – игольчатого топаза. Слюда имеет промежуточный Fe-Al-Li состав между триоктаэдрическими сидерофиллитом KFe²⁺₂Al[Al₂Si₂]O₁₀(OH, F)₂, полилитионитом KLi₂AlSi₄O₁₀(F, OH)₂ и ди-триоктаэдрическим фторлюаньшивейиитом KLiAl_{1.5 0.5}[Al_{0.5}Si_{3.5}]O₁₀F₂ (табл. 6). Количество лития в слюде было рассчитано по эмпирическому соотношению между концентрациями Li₂O и SiO₂ из (Tindle, Webb, 1990). В соответствии с диаграммой mgli [Mg – -Li] -*feal* [Fe_{общ} + Mg + Ti -Al^{VI}], по (Tischendorf et al., 2004), слюда такого состава соответствует ииннвальдиту.

Крупные лейсты циннвальдита (рис. 14а, 14б) в онгонитах и порфировых породах переходного типа имеют в центральных областях максимально железистый состав (18–21 мас. % FeO, 1.1–1.3 форм. ед. Fe; табл. 6, ан. 1, 3, 6). Лейсты

Это		Порфи	ровые по	роды, пе	Афировые породы							
менты	54 (5)	106 (15)	131 (12)	148 (12)	343 (9)	353 (14)	370 (14)	4 (46)	19 (21)	176 (35)	182 (9)	184 (13)
Ca	47.25	49.87	47.93	47.90	49.69	48.63	50.07	50.12	45.55	47.03	48.03	50.67
F	48.59	48.04	47.39	46.57	46.43	45.31	47.32	47.20	48.67	47.56	47.64	47.33
0	2.33	1.64	3.73	5.18	0.85	3.57	1.51	1.63	1.84	2.07	2.04	1.40
Si	0.28	0.07	0.25	0.09	0.07	0.14	0.03	0.16	0.25	0.12	0.13	0.20
Al	1.21	0.38	0.91	_	0.12	0.18	0.12	0.50	0.97	0.96	0.94	0.30
Na	0.57	—	—	_	—	0.10	—	_	0.38	0.43	0.43	_
Ba	_	—	—	_	—		—	_	0.35	0.45	0.08	_
Sr	0.33	0.13	—	_	—	0.11	0.02	_	0.69	0.66	0.65	_
S	_	—	—	_	—	0.13	0.02	_	_	0.13	0.09	_
Сумма	100.56	100.13	100.22	99.74	97.18	98.45	99.10	99.61	98.69	99.40	100.15	99.90

Таблица 5. Средние составы F-Са фазы, мас. %

Примечание. Здесь и в табл. 6, 7 все номера образцов имеют префикс "АРБ-". В скобках – количество СЭМ ЭДС анализов, по которым рассчитаны средние значения. Прочерк – содержания ниже предела обнаружения методом СЭМ ЭДС.

Рис. 12. Фторидные кристаллические фазы в афировых породах. (а) – вкрапленники прозопита, обр. АРБ-325; (б) – сросток прозопита и санидина, обр. АРБ-19; (в) – кристаллы флюорита в F-Ca фазе, обр. АРБ-106; (г) – прожилок в обр. АРБ-4 с врезками: (д) – геарксутит в F-Ca фазе, (е) – недиагностированный кальциевый алюмофторид, состав которого сравнивается с карлхинтзеитом. Длина масштабного отрезка на (а, б, г) – 100 мкм, на (в, д, е) – 10 мкм. *Fl* – флюорит, *Gak* – геарксутит, *Chz*? – недиагностированный кальциевый алюмофторид, остальные обозначения см. на рис. 9. (а–б) – фотографии шлифов, поляризаторы скрещены, (в–е) – BSE изображения.

Рис. 13. Топаз в породах: (а) – игольчатые кристаллы в матриксе, обр. АРБ-34; (б) – кристалл с включениями минералов, обр. АРБ-371; (в) – кристалл с включениями альбита, циннвальдита и вольфрамоиксиолита, обр. АРБ-106; (г) – включения игольчатых кристаллов вольфрамоиксиолита, обр. АРБ-34. Длина масштабного отрезка на (а, б, г) – 50 мкм, на (в) – 1 мм. W-Ix – вольфрамоиксиолит, остальные обозначения см. на рис. 9; (а, в) – BSE изображения; (б, г) – фотографии шлифов в проходящем свете.

обрастают тонкой менее железистой каймой (рис. 14в), содержащей 10–13 мас. % FeO (0.7– 0.8 форм. ед. Fe; табл. 6, ан. 2, 4, 5, 7). В циннвальдите из афировых пород обычно меньше FeO (9 мас. %, 0.5–0.6 форм. ед. Fe; табл. 6, ан. 9, 10). Циннвальдит из афировых пород и кайм в лейстах из онгонитов и порфировых пород имеет наиболее высокие концентрации лития и фтора. Во всех породах циннвальдит содержит 1–3 мас. % MnO, 0.8-2.3 мас. % Rb₂O, а также примеси Na₂O и ZnO на уровне предела обнаружения методом СЭМ ЭДС (0.2-0.3 мас. %).

Рис. 14. Циннвальдит в породах: (а) – с многочисленными включениями, обр. АРБ-34 и (б) – АРБ-106; (в) – с менее железистой каймой, обр. АРБ-370; (г) – с Rb-Cs каймой и включением колумбита-(Mn), обр. АРБ-4. Длина масштабного отрезка – 50 мкм. *Clb* – колумбит-(Mn), *Zrn* – циркон, остальные обозначения см. на рис. 9. ВSE изображения.

В образце афировой породы АРБ-4 обнаружены крупные (до 2 мм) лейсты циннвальдита с железистой Rb-Cs каймой (рис. 14г), содержащей, в мас. %: 11 FeO (0.7 форм. ед. Fe), 5.2–9.1 Rb₂O и 3.1–3.4 Cs₂O (табл. 6, ан. 11, 12). В некоторых участках Rb-Cs слюды из каймы соотношение щелочных катионов Rb > K > Cs и количество Rb превышает 33 мол.% (рис. 15).

Кальциевые алюмофториды

Прозопит CaAl₂F₆(OH)₂ встречается только в афировых породах. В некоторых образцах содержится 20–26 мас. % этого минерала (Перетяжко и др., 2007а, 2011; Перетяжко, Савина, 2010а). Крупные зерна прозопита неправильной формы размером до 1 мм часто с включениями игольчатого

	Онго	ниты		Порфи	ровые, і	тереходн	ый тип		А	фировы	е породн	Ы
Компо- ненты	34 (23)	34 (15)	54 (21)	54 (12)	343 (23)	131 (2)	131 (14)	148 (8)	184 (6)	4 (66)	4 (286)	4 (62)
	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	40.83	45.38	38.98	43.96	44.38	39.78	46.25	45.20	46.69	46.12	43.46	43.01
TiO ₂	0.33	0.22	0.29	0.15	0.13	_	_	_	_	0.12	_	—
Al_2O_3	22.13	21.12	21.40	21.16	20.76	21.48	20.99	21.43	21.11	20.61	18.94	18.76
FeO	18.47	12.78	19.60	12.66	10.07	20.65	12.76	12.62	9.13	9.16	11.31	11.43
MnO	1.38	1.34	1.35	1.74	2.59	1.16	1.24	1.59	2.95	2.75	1.85	1.74
ZnO	0.07	_	_	_	0.22	—	—	_	0.29	0.22	_	—
Na ₂ O	0.44	0.48	0.41	0.43	0.37	—	0.60	0.41	0.41	0.38	0.26	—
K ₂ O	9.66	9.53	9.29	9.65	9.45	10.07	9.70	10.11	10.09	9.91	4.91	3.88
Rb ₂ O	1.17	2.25	0.96	1.06	1.60	—	—	_	1.21	1.23	7.49	8.31
Cs ₂ O	_	_	_	_	0.32	—	_	_	_	_	2.67	4.13
Li ₂ O*	2.17	3.47	1.63	3.06	3.18	1.86	3.72	3.42	3.85	3.68	2.92	2.79
F	6.00	7.58	5.37	7.20	7.79	6.18	8.40	8.68	8.23	7.93	7.78	7.68
Cl	_	_	0.08	_	_	—	_	_	_	_	0.07	—
Сумма	100.11	100.97	97.10	98.05	97.56	98.58	100.14	99.80	100.50	98.77	98.39	98.51
			1	Фо	рмульнь	ые коэфо	фициенті	ы		I		
Κ	0.909	0.865	0.908	0.899	0.887	0.968	0.875	0.922	0.909	0.907	0.479	0.384
Na	0.062	0.066	0.061	0.061	0.052		0.082	0.057	0.056	0.053	0.039	
Rb	0.056	0.103	0.047	0.050	0.075				0.055	0.057	0.369	0.414
Cs					0.010						0.087	0.137
Сумма	1.027	1.035	1.016	1.010	1.024	0.968	0.957	0.979	1.020	1.017	0.974	0.934
Fe ²⁺	1.139	0.761	1.255	0.773	0.619	1.302	0.755	0.754	0.539	0.550	0.724	0.741
Li	0.642	0.994	0.503	0.900	0.941	0.565	1.058	0.983	1.093	1.063	0.900	0.871
Al^{VI}	0.933	1.003	0.915	1.029	1.061	0.906	1.019	1.036	1.053	1.051	1.037	1.050
Mn	0.086	0.081	0.088	0.108	0.161	0.074	0.074	0.096	0.176	0.167	0.120	0.114
Ti	0.018	0.012	0.017	0.008	0.007				0.006			
Сумма	2.818	2.851	2.777	2.818	2.790	2.847	2.906	2.869	2.862	2.837	2.781	2.776
Si	3.010	3.231	2.984	3.209	3.263	2.998	3.270	3.230	3.297	3.309	3.328	3.335
Al ^{IV}	0.990	0.769	1.016	0.791	0.737	1.002	0.730	0.770	0.703	0.691	0.672	0.665
F	1.400	1.706	1.300	1.661	1.811	1.473	1.879	1.962	1.837	1.799	1.885	1.884
Cl			0.010								0.009	
OH^*	0.600	0.294	0.690	0.339	0.189	0.527	0.121	0.038	0.163	0.201	0.106	0.116
mgli	-0.642	-0.994	-0.503	-0.900	-0.941	-0.565	-1.058	-0.983	-1.093	-1.063	-0.900	-0.871
feal	0.224	-0.230	0.357	-0.248	-0.435	0.403	-0.257	-0.275	-0.507	-0.494	-0.313	-0.300

Таблица 6. Средние составы Li-Al-Fe слюды, мас. %

Примечание. В скобках – количество анализов, по которым рассчитаны средние значения. Суммы анализов – с поправкой на фтор и хлор. Прочерк – содержания ниже предела обнаружения методом СЭМ ЭДС. 11 и 12 – Rb-Cs кайма на лейстах циннвальдита, обр. APБ-4: 11 – K > Rb > Cs, 12 – Rb > K > Cs. Li₂O*, мас. $\% = 0.287 \times \text{SiO}_2 - 9.552$, по (Tindle, Webb, 1990), OH* – по стехиометрии. Формулы рассчитаны на 22 положительных заряда катионов. *mgli* = Mg – Li и *feal* = Fe_{общ} + Mg + Ti – Al^{VI}, форм. ед., по (Tischendorf et al., 2004).

топаза образуют срастания с санидином, кварцем и F-Ca фазой (рис. 3е, 9д, 12а, 12б). Прозопит массива Ары-Булак, по сравнению со стехиометрическим составом этого минерала, содержит меньше фтора и до 1 мас. % SrO (табл. 7, ан. 5).

В афировых породах встречаются прожилки, сложенные F-Ca фазой с включениями микронных размеров кальциевых алюмофторидов — геарксути*та* CaAlF₄OH·H₂O и недиагностированного минерала, имеющего соотношение Са, Аl и F, близкое к карлхинтзеиту Ca₂AlF₇·H₂O (рис. 12д, 12е, 16). Алюмофториды неустойчивы под зондом и в процессе СЭМ ЭДС анализа быстро разрушаются, что указывает на присутствие в них слабо связанной молекулярной воды. Вероятно, этим объясняются завышенные суммы компонентов в анализах (табл. 7, ан. 6, 8). Состав геарксутита отличается от стехиометрического повышенными концентрациями Al и Ca, а недиагностированный минерал, в отличие карлхинтзеита, содержит больше Al, Ca и меньше F (табл. 7, ан. 7, 9, рис. 16).

Акцессорные минералы

Зерна акцессорных минералов находятся в матриксе пород, а также в порфировых вкрапленниках минералов (кварце, топазе, санидине, циннвальдите) в виде включений. Наиболее часто встречаются вольфрамоиксиолит и колумбит (рис. 136–13г).

Вольфрамоиксиолит (Nb,W,Ta,Fe,Mn)O₄ образует игольчатые кристаллы длиной до 250 мкм, не превышающие 10 мкм по ширине, часто в срастаниях радиально-лучистых агрегатов (рис. 13г, 176). Минерал имеют устойчивый состав при небольших вариациях W, Nb, Fe, Mn и примесей Ta, Ti, Sr, Sc, Ca (табл. 8).

W-содержащий колумбит (Fe,Mn)(Nb,Ta,Ti)₂O₆ образует пластинчатые кристаллы размером 20– 130 мкм (рис. 17а). В минерале преобладает Nb (54–60 мас. % Nb₂O₅) относительно Ta (6–9 мас. % Ta₂O₅), содержится также W (7–10 мас. % WO₃) и небольшое количество Ti, Sc, Sn (табл. 8). Обнаружено две разновидности колумбита с разным соотношением Mn и Fe, среди которых чаще встречается колумбит-(Mn).

Зерна циркона неоднородны по составу. Для них характерны большие вариации содержаний Th, U, Hf, Y и тяжелых REE, в мас. %: 1.0-9.9 ThO₂, 1.2-2.7 UO₂, 2.3-4.1 HfO₂, 1.2-2.9 Y₂O₃, 0.9-2.0 Dy₂O₃, 0.5-0.9 Er₂O₃, 1.3-2.4 Yb₂O₃. Суммы анализов намного меньше 100 мас. %, что косвенно указывает на метамиктное состояние циркона.

В касситерите обнаружены примеси Nb, Ti, W, Zr и Mn, а в составе вольфрамита преобладает минал гюбнерита (табл. 8). Флюоцерит-(Ce) имеет большой диапазон концентраций главных

Рис. 15. Соотношение между К, Rb и Cs в Rb-Cs слюде из каймы по лейстам циннвальдита в афировой породе, обр. АРБ-4.

и примесных элементов, в мас. %: $43-56 \text{ Ce}_2\text{O}_3$, 9–24 La₂O₃, 28–36 F, 3–4 Pr₂O₃, 6–9 Nd₂O₃, до 6 Sm₂O₃ и 2–10 ThO₂. *Монацит-(Ce)* содержит, в мас. %: $34-35 \text{ Ce}_2\text{O}_3$, $29-30 \text{ P}_2\text{O}_5$, $10-11 \text{ Nd}_2\text{O}_3$, 9–10 HfO₂, 6–7 La₂O₃, 2–3 Sm₂O₃, 3–4 Pr₂O₃. Составы монацита-(Ce), флюоцерита-(Ce) и циркона приводятся также в (Перетяжко, Савина, 2010а, см. табл. 4).

Из *вторичных минералов* в некоторых образцах порфировых онгонитов отмечается кальцит (рис. 93) в виде мелкозернистых агрегатов в матриксе или по трещинам в порфировых вкрапленниках.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Массив Ары-Булак был первым природным объектом, где изучались породы, содержащие реликты F-Ca (флюоритового, стехиометрического) расплава. Многочисленные аргументы, показывающие реальность существования такого расплава в гранитоидных и других магматических системах, ранее детально обсуждались и анализировались на примере пород массива, а также открытых нами позже аномально обогащенных флюоритом риолитов в Монголии (Peretyazhko, Savina, 2020) и по экспериментальным данным их плавления в большом диапазоне *P-T* параметров (1250–650°C, 5.5–1 кбар; Перетяжко и др., 2020).

Результаты минералого-геохимических и изотопных исследований пород массива, расплавных и флюидных включений в минералах (Перетяжко и др., 2007а, 2007б, 2011; Перетяжко, 2009;

			Прозопи	ſΤ		Геа	рксутит	Алюмофторид Са		
Компо- ненты	4 (17)	19 (20)	176 (9)	182 (7)	прозопит	4 (9)	геарксутит	4 (4)	карлхинтзеит	
	1	2	3	4	5	6	7	8	9	
Al_2O_3	44.93	43.60	43.87	46.06	42.12	37.64	28.63	29.92	19.75	
CaO	24.92	20.91	21.74	21.95	23.17	36.05	31.49	45.36	43.45	
SrO	_	0.95	0.59	_	_	_	_	_	_	
F	42.39	34.38	34.67	36.93	47.09	47.68	42.67	46.53	51.52	
H ₂ O					7.44		15.17		6.98	
Сумма	94.39	85.36	86.27	89.39	100.00	101.29	100.00	102.21	100.00	
				Формулы	ные коэффи	циенты				
Al	1.996	2.055	2.044	2.069	2	1.055	1	1.216	1	
Ca	1.006	0.896	0.921	0.896	1	0.918	1	1.676	2	
Sr		0.022	0.014							
Сумма	3.002	2.973	2.978	2.978	3	1.973	2	2.892	3	
F	5.053	4.348	4.334	4.452	6	3.585	4	5.075	7	

Таблица 7. Средние составы кальциевых алюмофторидов, мас. %

Примечание. В скобках – количество анализов, по которым рассчитаны средние значения. Суммы – с поправкой на фтор. Прочерк – содержания ниже предела обнаружения методом СЭМ ЭДС. Формулы рассчитаны по сумме положительных зарядов катионов. 1–4 – прозопит, 6 – геарксутит, 8 – недиагностированный кальциевый алюмофторид (формула по стехиометрии карлхинтзеита). Идеальные составы минералов: 5 – прозопит CaAl₂F₆(OH)₂, 7 – геарксутит CaAlF₄OH·H₂O, 9 – карлхинтзеит Ca₂AlF₇·H₂O.

Перетяжко, Савина, 2010а, 2010в), а также особенности тетрад-эффектов в нормированных к хондриту REE спектрах пород (рис. 8; Перетяжко, Савина, 2010б) свидетельствуют о сложных процессах флюидно-фторидно-силикатной жидкостной несмесимости, которые происходили на разных стадиях эволюции и кристаллизации онгонитовой магмы. Интенсивным конвекционным течениям расплавов и флюидов в магматической камере способствовала низкая вязкость и высокая подвижность обогащенного фтором и водой онгонитового расплава (Перетяжко, Савина, 2010а, 2011). Было установлено, что при кристаллизации крупных кристаллов кварца, альбита, санидина и топаза в онгонитовой магме сосуществовали водно-солевые флюиды разных типов (Перетяжко, 2009) и фторидные стехиометрические расплавы, близкие по составам к флюориту, селлаиту, криолиту, хиолиту и другим фторидам (Перетяжко, Савина, 2010а, 2010в).

Кварц, альбит и санидин являются главными минералами пород массива Ары-Булак. Эти минералы, наряду с топазом и циннвальдитом, слагают породообразующую минеральную ассоциацию порфировых онгонитов. Дымчатый кварц встречается в виде крупных кристаллов и мелких зерен. Кристаллы кварца содержат вкрапленники альбита, санидина, топаза, расплавные и флюидные включения. В онгонитах и порфировых породах переходного типа типичны срастания кристаллов альбита и санидина, а также футлярные кристаллы альбита с внешней санидиновой каймой. Из акцессорных минералов во всех породах наиболее часто встречаются вольфрамоиксиолит и колумбит-(Mn) (рис. 17а, 17б). Для порфировых пород переходного типа более характерны монацит-(Ce), флюоцерит-(Ce) и ксенотим, а для афировых – прозопит, касситерит, вольфрамит и водосодержащие кальциевые алюмофториды (рис. 12г–12e, 17в–17д).

Из онгонитовой магмы кристаллизовались онгониты, слагающие основной объем массива, небольшие обособления порфировых пород переходного типа и афировые породы эндоконтактовой зоны мощностью 50–100 м, имеющие аномально высокие концентрации Са и F. Интерстиции между минералами матрикса порфировых переходного типа и афировых пород заполняет F-Ca фаза, которая образовалась при кристаллизации флюоритового расплава (Перетяжко, Савина, 2010а). В отличие от стехиометрического флюорита, F-Ca фаза в породах массива Ары-Булак содержит меньше Ca, F, примеси кислорода, Al, Si и других элементов (табл. 5).

Условия и процессы формирования афировых пород наиболее сложны для интерпретации. По модели, представленной в (Перетяжко, Савина, 2010а, Перетяжко и др., 2011), афировая зона массива образовалась при локальной декомпрессии апикальной части магматической камеры, которая вызвала закаливание и стеклование накопленных

Компоненты	Вольфрамо- иксиолит (17)	Колумбит-(Mn) (14)	Колумбит-(Fe) (1)	Касситерит (12)	Вольфрамит (3)
TiO ₂	1.08	1.78	1.13	3.22	1.38
Al_2O_3	_	1.14	2.04	0.45	_
FeO	14.67	8.21	13.56	3.46	7.51
MnO	6.46	12.04	7.41	0.28	10.32
CaO	_	_	_	_	1.10
SrO	3.48	_	_	_	5.52
Sc_2O_3	0.38	0.34	0.28	_	0.33
ZrO ₂	_	_	_	1.36	2.34
SnO ₂	_	_	_	80.82	4.45
WO ₃	25.53	6.46	16.75	3.01	54.93
Nb_2O_5	44.66	60.63	48.11	6.55	7.63
Ta ₂ O ₅	4.39	8.78	5.60	_	3.76
Сумма	100.66	99.38	94.88	99.15	99.25
		Формульные	коэффициенты		
Ti	0.034	0.079	0.054	0.057	0.051
Al		0.079	0.153	0.013	
Fe ²⁺	0.516	0.405	0.720	0.069	0.308
Mn	0.230	0.602	0.399	0.006	0.429
Ca					0.058
Sr	0.085				0.157
Sc	0.014	0.018	0.016		0.014
Zr				0.016	0.056
Sn				0.765	0.087
W	0.278	0.099	0.276	0.019	0.698
Nb	0.848	1.617	1.381	0.070	0.169
Та	0.050	0.141	0.097		0.050
Сумма	2.055	3.039	3.094	1.014	2.075

Таблица 8. Средние составы акцессорных минералов, мас. %

Примечание. Прочерк – содержания ниже предела обнаружения методом СЭМ ЭДС. В скобках – количество анализов, по которым рассчитаны средние значения. Формулы рассчитаны по сумме положительных зарядов катионов.

на фронте кристаллизации флюоритового и онгонитового несмесимых расплавов. В дальнейшем происходило автометасоматическое преобразование пород под воздействием высокотемпературных магматических флюидов.

При кристаллизации обогащенной F и Ca онгонитовой магмы альбит замещался F-Ca фазой частично в переходных порфировых породах или почти полностью в афировой зоне (рис. 10). Только в афировой зоне F-Ca фаза содержит многочисленные игольчатые включения санидина субмикронных размеров (рис. 10в, 10г). В ходе флюидно-магматического процесса афировые породы обеднялись натрием по сравнению с онгонитами и порфировыми породами переходного типа (рис. 5г).

Проникая в афировую зону, NaF-содержащий магматический флюид Р-Q типа, сосуществующий с дегазирующим онгонитовым расплавом в магматической камере, охлаждался, становился многокомпонентным и его свойства стали соответствовать водно-солевой системе первого типа, в которой преобладали хлориды (Перетяжко, 2009). В афировой зоне такой флюид вскипал и разделялся на две несмесимые фазы – высококонцентрированный солевой раствор (рассол) и низкоплотный паровой водный раствор (Перетяжко, Савина, 2010в). В условиях относительно низкого давления, при котором образовывались породы массива в субэффузивных условиях (<800 бар, по Перетяжко, 2009), происходило выделение из кипящего обогащенного фтором флюида солевого

Рис. 16. Составы кальциевых алюмофторидов в афировых породах (обр. АРБ-4, АРБ-19, АРБ-176 и АРБ-182) на диаграмме Ca–F–Al.

раствора (рассола) с большими концентрациями Cl, F, K, Cs, Na, Mn, Fe, Al (Peretyazhko, Tsareva, 2008; Перетяжко, Савина, 2010а). Как предполагалось (Перетяжко и др., 2007а), при взаимодействии кислотного водного флюида с альбитом и F-Ca фазой в переходных и афировых породах происходило образование прозопита и автометасоматического кварца по реакции: 2NaAlSi₃O_{8(альбит)} + +CaF_{2(F-Ca фаза)} + 4HF_(флюид) = CaAl₂F₄(OH)_{4(прозопит)} + + 6SiO_{2(кварц)} + 2NaF[↑]_(флюид). Альбит в футлярных кристаллах замещался каолинитом (рис. 10б, 10в) по реакции: $2NaAlSi_3O_{8(aльбит)} + 2HF_{(флюид)} + H_2O =$ = $Al_2Si_2O_5(OH)_{4(каолинит)} + 4SiO_{2(кварц)} + 2NaF\uparrow_{(флюид)}$. В результате автометасоматического процесса флюид обогащался NaF и соответствовал водно-солевой системе *P-Q* типа. Отметим, что игольчатые микролиты каолинита также кристаллизовались в F-Ca фазе (рис. 12в), вероятно, заимствуя из нее примесные элементы – О, Аl и Si. В процессе взаимодействия с флюидом F-Ca фаза преобразовалась в микрозернистые агрегаты флюорита, иногда содержащие хорошо оформленные его кристаллы (рис. 12в) стехиометрического состава без примесных элементов.

Флюидно-магматические процессы при кристаллизации онгонитовой магмы определяют как минералогические, так и геохимические особенности пород массива. Повышенные концентрации REE, Y и U в порфировых породах переходного типа связаны с присутствием в их составе монацита-(Ce), флюоцерита-(Ce), ксенотима и первичной F-Ca фазы. Дегазация магматических флюидов через афировую зону сопровождалась

ПЕТРОЛОГИЯ том 32 № 3 2024

кристаллизацией Sr-содержащего прозопита и акцессорных минералов (касситерита, вольфрамита, водных кальциевых алюмофторидов), свойственных только афировым породам. Это объясняет геохимическую специфику пород афировой зоны — увеличение концентрации воды до 4 мас. % (рис. 5е) и многих примесных элементов (Sr, Ba, Rb, Sn, W, Ta, Be, Zr, Hf, Sb, As, Sc, рис. 6, табл. 2).

Только в афировой зоне обнаружены лейсты циннвальдита с Rb-Cs каймой (рис. 14г). Отметим, что в группе слюд крайне редко встречаются Rb-Cs минералы, из которых один рубидиевый – ди-триокраэдрический волошинит RbLiAl_{1.5 0.5}[Al_{0.5}Si_{3.5}]O₁₀F₂ и четыре цезиевых – триоктаэдрические соколоваит CsLi₂[AlSi₄] $O_{10}F_2$, гармит CsLiMg₂Si₄O₁₀F₂, крейтерит CsLi₂Fe³⁺Si₄O₁₀F₂ и диоктаэдрический нанпингит $CsAl_2[AlSi_3]O_{10}(OH, F)_2$. В отличие от волошинита, Rb-Cs слюда в каймах на лейстах циннвальдита содержит большое количество железа (0.5-0.8 форм. ед. Fe²⁺). По нашим неопубликованным данным (монокристалльным и EBSD) циннвальдит в породах массива Ары-Булак и Rb-Cs слюда в кайме имеют моноклинную структуру (пространственная группа С2, 1М политип). На этом основании Rb-Cs слюда с максимальным содержанием рубидия при соотношении катионов Rb > K > Cs(рис. 15; табл. 6, ан. 11) может быть новым ди-триокраэдрическим минералом – рубидиевым и цезийсодержащим циннвальдитом-фторлюаньшивейиитом с упрощенной идеальной формулой (Rb, K, Cs) $LiAlFe^{2+}_{0.75} \square_{0.25}[Al_{0.5}Si_{3.5}]O_{10}F_2.$

Рис. 17. Акцессорные минералы: (а) – колумбит-(Мп) и вольфрамоиксиолит в циннвальдите, обр. АРБ-136; (б) – игольчатые кристаллы вольфрамоиксиолита в топазе, обр. АРБ-146; (в) – ксенотим в циннвальдите, обр. АРБ-106; (г) – циркон и флюоцерит-(Се) в порфировой породе переходного типа, обр. АРБ-353; (д) – касситерит в породе переходного типа, обр. АРБ-131. Длина масштабного отрезка на (а–г) – 100 мкм, на (д) – 20 мкм. *Xtm* – ксенотим, *Fcrt*-Се – флюоцерит-(Се), *Cst* – касситерит, остальные обозначения см. на рис. 9, 13 и 14. (а–в) фотографии шлифов, проходящий свет (а) поляризаторы скрещены (б, в), (г, д) – BSE изображения.

Перераспределение REE и Y между расплавами, флюидами, минералами было вызвано жидкостной несмесимостью в онгонитовой магме и автометасоматическими преобразованиями пород массива под воздействием флюидов. После публикаций (Veksler et al., 2005; Перетяжко, Савина, 2010б; Peretyazhko et al., 2020) фторидно-силикатная несмесимость с участием фторидных, в том числе флюоритового, расплавов признается многими исследователями (Huang et al., 2015; Lv et al., 2018; Yang et al., 2018; Shuai et al., 2021 и др.) как наиболее вероятная причина появления тетрад-эффектов М-типа в нормированных REE спектрах обогащенных фтором гранитоидных пород. Максимальные величины тетрад-эффекта М-типа в первой тетраде и низкое нехондритовое отношение Y/Ho < 18, характерное для порфировых онгонитов массива Ары-Булак (рис. 8, табл. 3) и многих Li-F гранитов, объясняются перераспределением REE между несмесимыми фторидными и силикатными расплавами (Перетяжко, Савина, 2010б). Фторидные расплавы концентрируют в десятки-сотни раз больше REE, чем силикатные (Veksler et al., 2005; Граменицкий, Щекина, 2005; Щекина и др., 2020; Peretyazhko, Savina, 2020; Перетяжко и др., 2020). По всей видимости, это объясняет

наиболее высокую сумму REE в некоторых порфировых породах переходного типа, содержащих первичную F-Ca фазу (рис. 8б). Интенсивное флюидное воздействие на эти и афировые породы привело к увеличению значения У/Но и к снижению концентраций всех REE, особенно из третьей тетрады: на REE спектрах появляется тетрад-эффект W-типа между Gd и Er (рис. 86, 8в). Отметим, что только в порфировых породах переходного типа на REE спектрах наблюдается минимум Се. Появление такого минимума может быть вызвано с увеличением фугитивности кислорода, окислением Се³⁺ до Ce⁴⁺ и преимущественным относительно других REE перераспределением Ce⁴⁺ из пород во флюидную фазу. Подобный минимум Се отмечался нами также в REE спектрах F-Ca фазы из обогащенных флюоритом риолитов в Монголии (Peretyazhko, Savina. 2020: Перетяжко и др., 2020).

ЗАКЛЮЧЕНИЕ

Представлены данные изучения геохимии, минерально-фазовых ассоциаций пород массива онгонитов Ары-Булак, составов главных, второстепенных и акцессорных минералов, F-Ca фазы и образованного из нее флюорита. Породообразующими минералами порфировых онгонитов являются кварц, альбит и санидин, второстепенными – топаз и циннвальдит. Матрикс онгонитов сложен кварц-санидин-альбитовым агрегатом с игольчатыми кристаллами топаза микронных размеров. В порфировых породах переходного типа и в эндоконтактовой афировой зоне интерстиции между минералами матрикса заполняет F-Ca фаза, образованная из флюоритового расплава.

Фторидно-силикатная жидкостная несмесимость в оногонитовой магме и флюидно-магматические процессы привели к перераспределению REE, Y, многих примесных элементов между расплавами, флюидами, минералами и к контрастной смене минерально-фазовых ассоциаций в породах массива. Это объясняет появление тетрад-эффектов М-типа ($T_{1 La-Nd}$, $T_{4 Er-Lu}$) и М-типа ($T_{3 Gd-Ho}$) в нормированных к хондриту REE спектрах пород. Дегазация магматических флюидов через эндоконтактовую зону массива сопровождалась кристаллизацией Sr-содержащего прозопита и водосодержащих кальциевых алюмофторидов. По сравнению с онгонитами и профировыми породами переходного типа, в афировой зоне содержится больше воды, Sr, Ba, Sn, As, Sb, W, Ta, Zr, Hf, Be, Sc, Ge, но меньше Li, Pb, Zn, Y и REE. В результате воздействия магматических флюидов в обогащенных Са и F породах, особенно афировой зоны, альбит частично либо полностью замещался F-Ca фазой и каолинитом, а F-Ca фаза перекристаллизовалась в агрегат микрозернистого флюорита стехиометрического состава без примесных элементов. Лейсты

циннвальдита обрастали Rb-Cs слюдой, максимально обогащенные рубидием области которой могут быть новым минералом.

Геохимия пород, особенности слагающих их минерально-фазовых ассоциаций, эволюция составов минералов и F-Са фазы являются следствием формирования массива Ары-Булак из онгонитовой магмы в ходе флюидно-магматического процесса, осложненного фторидно-силикатной жидкостной несмесимостью с участием флюоритового и других фторидных расплавов, а также магматических флюидов разных типов.

Благодарности. Авторы благодарят Ю.Д. Щербакова и О.Ю. Белозерову (ИГХ СО РАН, г. Иркутск), оказавших помощь при изучении пород и минералов методом СЭМ ЭДС, а также двух рецензентов за комментарии и предложения, позволившие улучшить стиль текста статьи.

Источники финансирования. Работы выполнены при поддержке программы ФНИ 0284-2021-0006.

СПИСОК ЛИТЕРАТУРЫ

Андреева О.В., Петров В.А., Полуэктов В.В. Мезозойские кислые магматиты Юго-Восточного Забайкалья: петрогеохимия, связь с метасоматизмом и рудообразованием // Петрология. 2020. Т. 62. № 1. С. 76–104. https://doi.org/10.1134/S1075701520010018

Антипин В.С., Гайворонский Б.А., Сапожников В.П., Писарская В.А. Онгониты Шерловогорского района (Восточное Забайкалье) // Докл. АН СССР. 1980. Т. 253. № 1. С. 228–232.

Антипин В.С., Андреева И.А., Коваленко В.И., Кузнецов В.А. Геохимические особенности онгонитов Ары-Булакского массива, Восточное Забайкалье // Петрология. 2009. Т. 17. № 6. С. 601-612.

https://doi.org/10.1134/S0869591109060034

Алферьева Я.О., Чевычелов В.Ю., Новикова А.С. Экспериментальное исследование условий кристаллизации онгонитов массива Ары-Булак (Восточное Забайкалье) // Петрология. 2022. Т. 30. № 2. С. 209–224.

https://doi.org/10.1134/S0869591122020011

Государственная геологическая карта Российской Федерации масштаба 1 : 200000. Издание второе. Серия Даурская. Лист М-50-XIV (Ниж. Цасучей), XX (Соловьевск). Объяснительная записка [Электронный ресурс] / А.В. Куриленко, Н.Г. Ядрищенская, В.В. Карасев и др.; Минприроды России, Роснедра, Забайкалнедра, ОАО "Читагеолсъемка". М.: Московский филиал ФГБУ "ВСЕГЕИ", 2019.

Граменицкий Е.Н., Щекина Т.И. Поведение редкоземельных элементов и иттрия на заключительных этапах дифференциации фторсодержащих магм // Геохимия. 2005. № 1. С. 45–59.

https://doi.org/10.31857/S001675252004010X

Дергачев В.Б. Классификация пород группы онгонита // Геология и геофизика. 1992. № 2. С. 104–112.

Дмитриева А.С., Перетяжко И.С., Савина Е.А. Реликты фторидно-кальциевого (флюоритового) и солевых расплавов в породах массива Ары-Булак (Восточное Забайкалье) // Изв. Томского политех. ун-та. Инжиниринг георесурсов. 2021. Т. 332. № 5. С. 201-214. doi: 10.18799/24131830/2021/05/3203

Коваленко В.И., Коваленко Н.И. Онгониты – субвулканические аналоги литий-фтористых гранитов. М.: Наука, 1976. 124 c.

Коваленко В.И., Гребенников А.М., Антипин В.С. Онгониты Ары-Булакского массива (Забайкалье) – первая находка субвулканических аналогов редкометальных литий-фтористых гранитов ("апогранитов") в СССР // Докл. АН СССР. 1975. T. 220. № 5. C. 1169-1171.

Костицын Ю.А., Коваленко В.И., Ярмолюк В.В. Rb-Sr – изохронное датирование штока онгонитов Ары-Булак: Восточное Забайкалье // Докл. АН. 1995. Т. 343. № 3. C. 381-384.

Кузнецов В.А., Андреева И.А., Коваленко В.И. и др. Содержание волы и элементов-примесей в онгонитовом расплаве массива Ары-Булак, Восточное Забайкалье (данные изучения расплавных включений) // Докл. АН. 2004. Т. 396. № 4. C. 524-529.

Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. Электронно-зондовое определение состава минералов: микроанализатор или сканирующий микроскоп? // Геология и геофизика. 2015. Т. 56. № 8. С. 1473-1482. https://doi.org/10.1016/j.rgg.2015.07.006

Наумов В.Б., Соловова И.П., Коваленко В.И., Гужова А.В. Кристаллизация топаза, альбита, калиевого полевого шпата, слюды и колумбита из онгонитового расплава // Геохимия. 1990. № 8. С. 1200-1205.

Перетяжко И.С. CRYSTAL – прикладное программное обеспечение для минералогов, петрологов, геохимиков // Зап. ВМО. 1996. № 3. С. 141-148.

Перетяжко И.С. Включения магматических флюидов: *P-V-T-X* свойства водно-солевых растворов разных типов, петрологические следствия // Петрология. 2009. Т. 17. № 2. C. 197–221.

https://doi.org/10.1134/S0869591109020052

Перетяжко И.С., Савина Е.А. Флюидно-магматические процессы при образовании пород массива онгонитов Ары-Булак (Восточное Забайкалье) // Геология и геофизика. 2010а. Т. 51. № 10. С. 1423–1442.

https://doi.org/10.1016/j.rgg.2010.09.003

Перетяжко И.С., Савина Е.А. Тетрад-эффекты в спектрах распределения редкоземельных элементов гранитоидных пород как индикатор процессов фторидно-силикатной жидкостной несмесимости в магматических системах / Петрология. 2010б. Т. 18. № 5. С. 536-566.

https://doi.org/10.1134/S086959111005005X

Перетяжко И.С., Савина Е.А. Признаки жидкостной несмесимости в онгонитовой магме по данным изучения расплавных и флюидных включений в породах массива Ары-Булак (Восточное Забайкалье) // Докл. АН. 2010в. T. 433. № 5. C. 678–683.

https://doi.org/10.1134/S1028334X10080192

Перетяжко И.С., Загорский В.Е., Царева Е.А., Сапожников А.Н. Несмесимость фторидно-кальциевого и алюмосиликатного расплавов в онгонитах массива Ары-Булак (Восточное Забайкалье) // Докл. АН. 2007а. Т. 413. № 2. С. 244-250.

https://doi.org/10.1134/S1028334X07020419

Перетяжко И.С., Царева Е.А., Загорский В.Е. Первая находка аномально цезиевых алюмосиликатных расплавов

в онгонитах (по данным изучения расплавных включений) // Докл. АН. 2007б. Т. 413. № 6. С. 791–797. https://doi.org/10.1134/S1028334X07030324

Перетяжко И.С., Савина Е.А., Дриль С.И., Герасимов H.C. Rb-Sr изотопная система и особенности распределения Rb и Sr в породах массива онгонитов Ары-Булак, образованных при участии процессов фторидно-силикатной магматической несмесимости // Геология и геофизика. 2011. T. 52. № 11. C. 1776-1789.

https://doi.org/10.1016/j.rgg.2011.10.009

Перетяжко И.С., Савина Е.А., Сук Н.И. и др. Эволюция состава фторидно-кальциевого расплава по экспериментальным данным и процессы образования флюорита в риолитах // Петрология. 2020. Т. 28. № 3. С. 254-279. https://doi.org/10.1134/S0869591120030054

Сырицо Л.Ф., Баданина Е.В., Абушкевич В.С. и др. Вулканоплутонические ассоциации кислых пород в пределах редкометальных рудных узлов Забайкалья: геохимия пород и расплавов, возраст, Р-Т условия кристаллизации // Петрология. 2012. Т. 20. № 6. С. 622-648. https://doi.org/10.1134/S0869591112060057

Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов. М.: Наука, 1977. 280 с.

Трошин Ю.П., Гребенщикова В.И., Бойко С.М. Геохимия и петрология редкометалльных плюмазитовых гранитов. Новосибирск: Наука, 1983. 181 с.

Шекина Т.И., Русак А.А., Алферьева Я.О. и др. Распределение REE, Y, Sc и Li между алюмосиликатным и алюмофторидным расплавами в модельной гранитной системе в зависимости от давления и содержания воды // Геохимия. 2020. T. 65. № 4. C. 343-361.

doi: 10.31857/S001675252004010X

Agangi A., Kamenetsky V.S., Hofmann A. et al. Crystallisation of magmatic topaz and implications for Nb-Ta-W mineralisation in F-rich silicic melts - the Ary-Bulak ongonite massif // Lithos. 2014. V. 202-203. P. 317-330.

https://doi.org/10.1016/j.lithos.2014.05.032

Huang F., Wang R.-C., Xie L. et al. Differentiated rare-element mineralization in an ongonite - topazite composite dike at the Xianghualing tin district, Southern China: an electron-microprobe study on the evolution from niobium-tantalum-oxides to cassiterite // Ore Geol. Rev. 2015. V. 65. P. 761-778. https://doi.org/10.1016/j.oregeorev.2014.08.008

Lv Z.-H., Zhang H., Tang Y. Lanthanide tetrads with implications for liquid immiscibility in an evolving magmatic-hydrothermal system: evidence from rare earth elements in zircon from the No. 112 pegmatite, Kelumute, Chinese Altai // J. Asian Earth Sci. 2018. V. 164. P. 9-22.

https://doi.org/10.1016/j.jseaes.2018.05.031

McDonough W.E., Sun S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223-253.

https://doi.org/10.1016/0009-2541(94)00140-4

Peretyazhko I.S., Savina E.A. Fluoride-calcium (F-Ca) melt in rhyolitic magma: Evidence from fluorite-rich rhyolites of the Nyalga Basin, Central Mongolia // Lithos. 2020. V. 354-355. 105348.

https://doi.org/10.1016/j.lithos.2019.105348

Peretyazhko I.S., Tsareva E.A. Processes of fluid-magmatic crystallization of heterogeneous magma at rock formation of Ary-Bulak ongonite massif, Russia // ACROFI-2 Asian Current Research on Fluid Inclusions. India, Kharagpur, 2008. P. 147-150.

Shuai X., Li S.-M., Zhu Di-C. et al. Tetrad effect of rare earth elements caused by fractional crystallization in high-silica granites: an example from central Tibet // Lithos. 2021. V. 384–385. 105968. https://doi.org/10.1016/j.lithos.2021.105968

Tindle A.G., Webb P.C. Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks // Eur. J. Mineral. 1990. V. 2. P. 595–610. https://doi.org/10.1127/ejm/2/5/0595

Tischendorf G., Rieder M., Förster H.-J. et al. A new graphical presentation and subdivision of potassium micas // Mineral. Mag. 2004. V. 68. P. 649–667. https://doi.org/ 10.1180/0026461046840210

Veksler I.V., Dorfman A.M., Kamenetsky M. et al. Partitioning of lanthandes and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks // Geochim. Cosmochim. Acta. 2005. V. 69. P. 2847-2860.

https://doi.org/10.1016/j.gca.2004.08.007

Yang Z.-Y., Wang Q., Zhang C. et al. Rare earth element tet-

rad effect and negative Ce anomalies of the granite porphyries in

southern Qiangtang Terrane, central Tibet: new insights into the

genesis of highly evolved granites // Lithos. 2018. V. 312-313.

P. 258–273.

https://doi.org/10.1016/j.lithos.2018.04.018

Rocks of the Ary-Bulak Ongonite Massif: Relationship between Geochemical Features, Mineral-Phase Assembleges, and Formation Processes

I. S. Peretyazhko¹, E. A. Savina¹, A. S. Dmitrieva¹

A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia

The paper reports the study of geochemistry, mineral-phase assemblages of rocks of the Ary-Bulak ongonite massif, compositions of major, minor and accessory minerals (quartz, feldspars, topaz, zinnwaldite, prosopite, rare Ca–Al-fluorides, W-ixiolite, columbite, zircon, cassiterite, and fluocerite), fluoride-calcium (F-Ca) phase, and fluorite formed from it. The rock-forming minerals of porphyritic ongonites are quartz, albite and sanidine, and minor minerals are topaz and zinnwaldite. The ongonitic matrix is composed of a quartz-sanidine-albite assemblage with micron-sized needle-shaped topaz crystals. In transitional porphyritic rocks and in the endocontact aphyric zone, the interstices between matrix minerals are filled with a F-Ca phase formed from a F-Ca (fluoritic) stoichiometric melt. Fluoride-silicate liquid immiscibility in ongonitic magma and fluid-magmatic processes led to the redistribution of REE, Y, and many trace elements between melts, fluids, minerals and a contrasting change in mineral-phase assemblages in the rocks. This is associated with the appearance of M-type $(T_{1 La-Nd}, T_{4 Er-Lu})$ and W-type $(T_{3 Gd-Ho})$ tetrad effects in the chondrite-normalized REE patterns of rocks. Degassing of magmatic fluids through the endocontact aphyric zone was accompanied by the crystallization of Sr-bearing prosopite and hydrous Ca-Al-fluorides. Aphyric rocks, compared to porphyritic ongonites and porphyritic transitional rocks, are enriched in H₂O, Sr, Ba, Rb, Sn, W, Ta, Be, Zr, Hf, Sb, As, Sc, but contain less Li, Pb, Zn, Y and REE. During the effect of magmatic fluids on rocks enriched in Ca and F, especially in the endocontact aphyric zone, albite was partially or completely replaced by the F-Ca phase and kaolinite, and the F-Ca phase recrystallized into aggregates of micronsized grains of stoichiometric fluorite without trace elements. Rb-Cs mica also crystallized in the rim of zinnwaldite laths, the zones of which maximally enriched in rubidium with the cation relation Rb > K > Cs may be a new mineral. The geochemistry of the rocks, the features of their mineral-phase assemblages, the compositional evolution of the minerals and the F-Ca phase are a consequence of the formation of the Ary-Bulak massif from ongonitic magma during a fluid-magmatic process complicated by fluoride-silicate liquid immiscibility with the participation of fluoritic and other fluoride melts, as well as magmatic fluids of P-Q and the first types.

Keywords: Ary-Bulak ongonite massif, fluoride–calcium (F-Ca) phase, fluoritic melt, fluoride–silicate liquid immiscibility, magmatic fluids of *P*-*Q* and first types, rock geochemistry, mineral-phase assemblages