УДК 552.3

МЕЗОАРХЕЙСКИЕ ТОНАЛИТ-ТРОНДЬЕМИТ-ГРАНОДИОРИТОВЫЕ АССОЦИАЦИИ ВОСТОЧНОЙ САРМАТИИ: ВОЗРАСТ И ГЕОЛОГИЧЕСКОЕ ПОЛОЖЕНИЕ

© 2019 г. К. А. Савко^{1, *}, А. В. Самсонов², Е. Б. Сальникова³, А. Б. Котов³, А. Н. Ларионов⁴, Е. Х. Кориш¹, В. П. Ковач³, Н. С. Базиков¹

¹Воронежский государственный университет, Воронеж

² Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва

³Институт геологии и геохронологии докембрия РАН, Санкт-Петербург

⁴ Центр изотопных исследований Всероссийского научно-исследовательского геологического института им. А.П. Карпинского (ВСЕГЕИ), Санкт-Петербург

*e-mail: ksavko@geol.vsu.ru

Поступила в редакцию 01.06.2018 г. Принята к публикации 25.10.2018 г.

В пределах Курского блока Восточной Сарматии выделены два эпизода проявления мезоархейского магматизма (около 2.95 и 3.03 млрд лет назад), которые привели к образованию гранитоидов салтыковского комплекса, отвечающих по составу гранитоидам типичных тоналит-трондьемитгранодиоритовых (ТТГ) ассоциаций архейских кратонов. Эти эпизоды хорошо коррелируются с установленными ранее возрастными рубежами формирования мезоархейских ТТГ-ассоциаций Среднеприднепровского и Приазовского блоков Украинского щита, что подтверждает представление о принадлежности Курского блока к единому мезоархейскому ядру Восточной Сарматии. Геохимические и Sm–Nd изотопно-геохимические особенности мезоархейских гранитоидов салтыковского комплекса свидетельствуют о том, что их источниками послужили более древние ТТГ-гнейсы.

Ключевые слова: тоналит, трондьемит, гранодиорит, Сарматия, метаморфизм, архей. **DOI:** https://doi.org/10.31857/S0869-592X2754-18

введение

Основной объем континентальной коры архейских кратонов слагают ортогнейсы, которые отвечают по составу тоналитам, трондьемитам и гранодиоритам (ТТГ). Образование родоначальных для протолитов этих ортогнейсов расплавов обычно рассматривается как результат плавления метабазитов в поле устойчивости граната (Moyen, Martin, 2012 и ссылки в ней). Накопленные к настоящему времени данные показывают, что ТТГ-ассоциации архейских кратонов, которые долгое время объединялись под термином "серые гнейсы" (Moyen, 2011), различаются по изотопно-геохимическим характеристикам и по возрасту. Это, возможно, отражает разные условия формирования континентальной коры на протяжении ранней истории Земли. Реконструкция этих условий является одной из наиболее актуальных фундаментальных проблем геологии докембрия, для решения которой необходимо дальнейшее накопление информации о возрасте, составе и происхождении древних ТТГ-ассоциаций.

С этой целью было предпринято геохронологическое, геохимическое и изотопно-геохимическое изучение гранитоидов салтыковского комплекса Курского блока (рис. 1), который вместе со Среднеприднепровским и Приазовским блоками Украинского щита рассматривается как единое мезоархейское ядро Восточной Сарматии (Shchipansky, Bogdanova, 1996). Однако изза слабой изученности архейских комплексов Курского блока такая корреляция до сих пор не имеет надежных геохронологических и изотопно-геохимических и обоснований.

ОСНОВНЫЕ ЧЕРТЫ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ КУРСКОГО БЛОКА

Курский блок располагается в восточной части Сарматии (рис. 1). Он представляет собой типичную архейскую гранит-зеленокаменную

Рис. 1. Схематическая структурная карта Сарматии, составленная по (Bogdanova et al., 2006) для Украинского щита и по собственным материалам для Воронежского кристаллического массива. Схема сегментов Восточно-Европейского кратона по (Gorbatschev, Bogdanova, 1993).

Аббревиатуры: ГСЗ – Голованевская сутурная зона, ИКСЗ – Ингулец-Павлоградская сутурная зона, ОПСЗ – Орехово-Павлоградская сутурная зона, ОМП – Осницко-Микашевичский пояс.

область. Большую часть территории Курского блока занимают обширные поля ТТГ-гнейсов обоянского комплекса (Состояние..., 2008). среди которых расположены относительно небольшие зеленокаменные пояса петельчатой формы (рис. 2), сложенные метавулканическими породами основного и кислого состава, метакоматиитами, терригенными метаосадочными породами, а также породами железистокремнистой формации (Бочаров и др., 1993; Савко и др., 2004). Возраст циркона из мигматизированного плагиогнейса обоянского комплекса Курско-Бесединского домена составляет 3277 ± 33 млн лет (ID TIMS; Артеменко и др., 2006). При этом Nd-модельные возрасты ТТГ-гнейсов обоянского комплекса находятся в интервале 3.64-3.03 млрд лет (Щипанский и др., 2007). Это указывает на то, что в его состав включены гнейсы, протолиты которых имеют разный (мезо- и палеоархейский) возраст.

Предполагается, что исходные для протолитов ТТГ-гнейсов обоянского комплекса расплавы образовались при частичном плавлении осадочных и вулканических пород зеленокаменных поясов и пород более древних ТТГ-ассоциаций в результате ультравысокотемпературного (UHT) метаморфизма, признаки которого обнаружены в породах древнейших железисто-кремнистых формаций Курского (Fonarev et al., 2006) и Приазовского блоков (Пилюгин и др., 2010). UHT-метаморфизм с близкими *P*-*T* параметрами (T=900-1000°C, P=10-12 кбар) зафиксирован и в породах железисто-кремнистых формаций Курско-Бесединского домена Курского блока и Демьяновского и Юрьевского участков Мариупольского рудного поля (центральная

Рис. 2. Схематическая геологическая карта Воронежского кристаллического массива. 1 – обоянский комплекс; 2 – михайловская серия; 3 – лосевская серия; 4 – воронежская свита; 5 – воронцовская серия; 6 – курская серия; 7 – роговская свита; 8 – тимская свита; 9 – салтыковский комплекс; 10 – атаманский комплекс; 11 – стойло-николаевский комплекс; 12 – бобровский комплекс; 13 – павловский комплекс; 14 – усманский комплекс; 15 – шебекинский комплекс; 16 – лискинский комплекс; 17 – ольховский комплекс; 18 – золотухинский комплекс; 19 – смородинский комплекс; 20 – мамонский комплекс; 21 – новогольский комплекс; 27 – еланский комплекс; 23 – скважины, вскрывшие породы ТТГ-ассоциации, и их номера.

часть Приазовского блока) (Fonarev et al., 2006; Пилюгин и др., 2010). Время проявления этого метаморфизма в пределах Курского блока остается неизвестным, поскольку изотопные системы в цирконах и монацитах были полностью "переуравновешены" при более позднем (около 2.82 млрд лет назад) гранулитовом метаморфизме (Савко и др., 2010; Savko et al., 2018). Вполне возможно, что с UHT-метаморфизмом связано образование метаморфических цирконов с возрастом 3085 ± 5 млн лет в гранат-биотитовых гнейсах волчанской толщи Приазовского блока (ID TIMS; Щербак и др., 2004).

В обрамлении зеленокаменных поясов, а также среди гнейсов и мигматитов обоянского комплекса закартировано несколько ТТГ-массивов, которые относят к салтыковскому комплексу. На сегодняшний день для гранитоидов этого комплекса получена только одна оценка возраста — 3013 ± 80 млн лет (ID TIMS по циркону; Артеменко, 1995), что затрудняет корреляцию проявлений ТТГ-магматизма Курского блока и Украинского щита.

АНАЛИТИЧЕСКИЕ МЕТОДИКИ

Определение содержаний главных элементов в породах выполнено рентгенофлюоресцентным методом в Воронежском государственном университете, а содержаний элементов-примесей – методом ICP-MS в Аналитическом сертификационном испытательном центре Института проблем технологии микроэлектроники и особочистых материалов РАН (г. Черноголовка) с относительной погрешностью 3–5%.

Выделение акцессорного циркона проводилось по стандартной методике с использованием тяжелых жидкостей. U–Th–Pb геохронологические исследования выполнены в Центре изотопных исследований ВСЕГЕИ (г. Санкт-Петербург) на ионном микрозонде SHRIMP II по методике (Larionov et al., 2004) с использованием эталонных цирконов "91500" и "Тетога". При расчетах использованы константы распада урана, предложенные в (Steiger, Jäger, 1976). Поправки на нерадиогенный свинец введены по модели (Stacey, Kramers, 1975) на основе измеренных отношений ²⁰⁴Pb/²⁰⁶Pb. Полученные результаты обработаны с помощью программ SQUID v1.12 (Ludwig, 2005) и ISOPLOT/Ex 3.22 (Ludwig, 2003).

U-Pb геохронологические исследования (ID TIMS) проведены в ИГГД РАН (г. Санкт-Петербург). Выбранные для геохронологических исследований зерна циркона подвергались многоступенчатому удалению поверхностных загрязнений в спирте, ацетоне и 1 M HNO₂. При этом после каждой ступени они промывались особо чистой водой. Химическое разложение циркона и выделение U и Pb выполнено по модифицированной методике Т.Е. Кроу (Krogh, 1973). Для уменьшения степени дискордантности использовался метод предварительной кислотной обработки (Mattinson, 1994). Изотопные анализы выполнены на многоколлекторном масс-спектрометре TRITON ТІ как в статическом, так и в динамическом режимах (при помощи счетчика ионов). Для изотопных исследований использовался изотопный индикатор ²³⁵U-²⁰²Pb. Точность определения U/Pb отношений и содержаний U и Pb составила 0.5%. Холостое загрязнение не превышало 15 пг Рь и 1 пг U. Обработка экспериментальных данных проводилась при помощи программ PbDAT (Ludwig, 1991) и ISOPLOT (Ludwig, 2003). При расчете возрастов использованы общепринятые значения констант распада урана (Steiger, Jäger, 1976). Поправки на обычный свинец введены в соответствии с модельными величинами (Stacey, Kramers, 1975). Все ошибки приведены на уровне 2σ .

Sm-Nd изотопные исследования выполнены в ИГГД РАН (г. Санкт-Петербург). Изотопные составы Sm и Nd определены на многоколлекторном масс-спектрометре TRITON TI в статическом режиме. Измеренные отношения ¹⁴³Nd/¹⁴⁴Nd нормализованы к отношению 146 Nd/ 144 Nd = 0.7219 и приведены к отношению 143 Nd/ 144 Nd = 0.512115 в Nd-стандарте JNdi-1. Средневзвешенное значение ¹⁴³Nd/¹⁴⁴Nd в Ndстандарте JNdi-1 за период измерений составило 0.512102 ± 6 (n = 8). Точность определения концентраций Sm и Nd составила ±0.5%, 147 Sm/ 144 Nd $\pm 0.5\%$, изотопных отношений 143 Nd/ 144 Nd $\pm 0.005\%$ (2 σ). Уровень холостого опыта не превышал 0.2 нг Sm и 0.5 нг Nd. При расчете величин $\varepsilon_{Nd}(t)$ и модельных возрастов t_{Nd(DM)} использованы современные значения Sm–Nd отношений для однородного хондритового резервуара (CHUR) по (Jacobsen, Wasserburg, 1984) и деплетированной мантии (DM) по (Goldstein, Jacobsen, 1988).

ПЕТРОГРАФИЧЕСКИЕ И ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ГРАНИТОИДОВ САЛТЫКОВСКОГО КОМПЛЕКСА

Гранитоиды салтыковского комплекса представляют собой среднезернистые массивные и полосчатые, иногда порфировидные породы светло-серого цвета, обладающие аллотриоморфнозернистой (гранитной) структурой. Они сложены главным образом плагиоклазом ($X_{\rm Ca} = 0.15 - 0.25$; 45–55%), кварцем (20–25%), биотитом ($X_{\rm Mg} = 0.55 - 0.65$; 10–20%) и микроклином (до 5–10%). Редко присутствует зеленая роговая обманка (до 5%), которую часто замещают эпидот и хлорит. Акцессорные минералы представлены апатитом, цирконом, монацитом и сульфидами, а вторичные минералы – хлоритом, эпидотом и мусковитом.

Содержания SiO₂ и Al₂O₃ в гранитоидах салтыковского комплекса изменяются в пределах 62–72 и 13.9–16.4 мас. % соответственно (табл. 1). Эти породы относятся к мета- и перглиноземистыми гранитоидам (A/CNK = 0.88–1.10) и обогащены Na₂O (3.6–5.5 мас. %; Na₂O/K₂O = 1.3–3.9). На диаграмме Ab–An–Or точки их составов попадают преимущественно в поля трондьемитов и гранодиоритов (рис. 3). Для них характерны повышенные содержания MgO (1.0–3.8 мас. %, X_{Mg} = 0.30–0.57), значения суммы FeO_t + MgO + MnO + TiO₂ (4.2–10.1 мас. %) и повышенные значения суммы FeO + MgO при

Рис. 3. Составы пород ТТГ-ассоциации Курского блока на классификационной диаграмме гранитоидов.

САВКО и др.

	Скважина/глубина											
Компоненты	3759/	3146/	3759/	3756/	3785/	3785/	3797/	3005/	4183/	4193/	3334/	3335/
SiO	60 70	62.07	67.20	65.07	66.05	6/ 10	60 /1	71 44	68 71	68.64	70.87	60 27
510_2	033	0.73	0.42	0.31	00.95	04.19	0 34	0.34	0.51	03.04	0.33	0.30
110_2	14.65	16.14	15 22	12 00	14 54	15 12	1/ 00	14 44	14.64	16.26	14.65	14 72
A_2O_3	2.05	5.40	2 5 5	15.00	14.34	5.67	2 16	2 27	14.04	2 71	2.65	2 20
$\Gamma e_2 O_{3tot}$	3.03	2.40	2.55	1.50	4.41	2.70	5.10	1.02	4.92	2.71	2.03	3.20
MgO	1.93	3.34	2.14	1.04	2.83	3.78	1.30	1.02	1.80	1.09	1.3/	1.84
MnO	0.04	0.07	0.04	0.06	0.07	0.04	0.03	0.03	0.05	0.06	0.04	0.06
CaO	2.41	4.20	3.1/	2.87	3.31	3.05	3.21	2.84	3.17	2.41	2.68	2.24
Na ₂ O	4.16	5.11	4.76	4.70	3.70	3.60	4.71	4.25	3.17	5.38	5.22	5.45
K_2O	2.22	1.33	2.23	2.11	2.80	2.64	2.08	1.21	2.48	2.22	1.51	1.76
P_2O_5	0.10	0.46	0.21	0.12	0.26	0.18	0.15	0.06	0.25	0.10	0.13	0.14
Ппп	1.05	0.88	0.72	0.24	0.39	0.79	0.46	0.67	_	1.05	0.39	0.78
Сумма	99.73	99.93	99.77	99.66	99.76	99.70	99.73	99.57	99.70	100.25	99.84	99.87
X_{Mg}	0.56	0.55	0.54	0.30	0.56	0.57	0.45	0.38	0.42	0.44	0.51	0.53
Na_2O/K_2O	1.87	3.84	2.13	2.23	1.32	1.36	2.26	3.51	1.28	2.42	3.46	3.10
Fe_2O_3+MgO+ +MnO+TiO ₂	5.35	9.54	6.15	9.51	7.82	10.13	4.83	4.66	7.28	4.19	4.39	5.49
A/CNK	1.07	0.92	0.96	0.91	0.96	1.05	0.94	1.07	1.07	1.04	0.97	0.98
V	83.5	85.4	60.1	74.3	66.5	108	33.7	53.8	35.1	54.4	36.9	40.6
Cr	43.1	13.0	26.6	37.5	22.7	34.4	11.2	21.0	<ПО	15.6	18.1	20.6
Co	10.2	14.6	8.6	8.4	10.8	17.8	5.8	5.3	7.7	5.2	6.5	10.6
Ni	32.2	15.5	24.9	28.8	30.0	48.0	5.5	8.0	25.0	16.7	9.4	12.3
Ga	19.3	21.6	18.5	17.4	17.9	18.4	16.0	14.8	14.1	13.2	16.9	16.7
Rb	70.2	18.9	66.8	59.8	50.5	64.0	45.5	34.3	54.3	45.6	33.7	49.0
Sr	483	856	586	589	656	474	258	177	197	595	410	280
Y	8.0	10.5	7.6	4.7	8.2	11.4	4.0	8.3	5.7	4.9	2.8	3.5
Zr	195	63.5	136	101	127	147	195	167	261	50.2	208	244
Nb	6.3	5.3	5.1	5.8	6.1	4.2	4.0	7.1	4.0	2.5	3.8	5.2
Ва	1103	348	600	685	736	617	497	524	444	782	543	428
La	32.4	94.4	25.1	29.2	26.4	33.8	25.1	29.3	22.7	8.0	28.2	22.4
Ce	67.8	196	50.7	59.0	50.5	66.5	45.6	48.2	41.0	15.5	53.2	42.3
Pr	6.9	20.6	5.4	6.3	5.5	7.5	4.7	4.4	4.5	1.8	5.1	4.2
Nd	24.7	67.6	19.3	22.6	19.5	28.6	15.6	14.6	16.5	7.4	17.3	15.1
Sm	4.0	7.6	31	2.9	35	4.6	2.7	2.5	2.7	1.4	2.0	21
Eu	11	17	10	0.77	0.91	13	0.70	0.82	0.79	0.50	0.54	0.54
Gd	3.1	4 3	2.2	1.8	2.6	3.4	1.8	2.6	21	1.2	11	13
Th	0.39	0.47	0.29	0.19	0.30	0.41	0.20	0.34	0.26	0.18	0.12	0.15
Dv	17	2.5	0.97	0.15	11	21	0.20	1.8	13	11	0.57	0.15
Но	0.30	0.39	0.26	0.00	0.27	0.42	0.15	0.34	0.23	0.21	0.09	0.12
Fr	0.30	11	0.20	0.17	0.27	1 20	0.15	0.94	0.25	0.21	0.09	0.12
Tm	0.04	0.13	0.75	0.47	0.10	0.16	0.58	0.12	0.02	0.04	0.23	0.31
Vh	0.11	0.15	0.09	0.00	0.10	1.1	0.05	0.12	0.08	0.09	0.03	0.04
Iu	0.70	0.85	0.00	0.42	0.00	0.16	0.50	0.85	0.55	0.05	0.19	0.23
Lu Lf	0.11	1.2	2.7	0.00	2.6	4.0	0.05	12	5.00	1.4	0.03	2.5
	4.5	1.5	5.7 0.41	2.8	5.0	4.0	4.0	4.2	0.26	1.4	2.7	3.3
	0.48	0.18	0.41	0.40	0.4/	0.55	0.25	0.39	0.20	0.17	0.12	0.20
ZKEE	144	398	110	125	112	151	98	107	93	39	109	90
EU/EU^*	0.96	0.91	1.1/	1.03	0.92	1.00	0.9/	0.98	1.01	1.18	1.11	1.00
$(La/YD)_{CN}$	30.6	81.6	27.5	49.9	28./	22.0	60.0	24./	30.7	9.1	106.5	04.3
ST/Y	60	82	//	125	80	42	65	21	35	121	146	80
$(La/Sm)_n$	5.23	8.02	5.23	6.50	4.87	4.74	6.00	7.57	5.43	3.69	9.10	6.89
$(Gd/Yb)_n$	3.37	4.29	2.76	3.55	3.26	2.56	4.96	2.53	3.28	1.58	4.79	4.30
Nb/Nb*	1.29	0.66	1.30	1.26	1.47	0.98	1.25	1.19	1.69	-	—	23.4

Таблица 1. Химический состав гранитоидов салтыковского комплекса Курского блока

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 27

№ 5 2019

Рис. 4. Составы пород ТТГ-ассоциации Курского блока на диаграммах Харкера. 1 – ТТГ Курского блока; 2 – ТТГ Среднеприднепровского блока, относимые к днепропетровскому комплексу (по Щербак и др., 2005; Щербаков, 2005; Великанов и др., 2012).

низких концентрациях Cr и Ni. На диаграммах Харкера отчетливо выражена отрицательная корреляция Fe_2O_{3tot} , MgO, TiO₂ c SiO₂ (рис. 4).

Гранитоиды салтыковского комплекса характеризуются относительно низкими содержаниями высокозарядных элементов: Zr (50–261 мкг/г, среднее 158 мкг/г), которые возрастают с увеличением содержания SiO₂ (табл. 1), Nb (2.5– 10 мкг/г, среднее 5.1 мкг/г), Ta (0.1–0.7 мкг/г, среднее 0.3 мкг/г), Y (3.5–14.9 мкг/г, среднее 6.6 мкг/г), а также относительно низкими содержаниями Rb (19–70 мкг/г, среднее 49 мкг/г), повышенными содержаниями Sr (177–856 мкг/г, среднее 463 мкг/г) и высокими значениями отношений Sr/Y (21–146, среднее 78) и Nb/Ta (12– 32, среднее 18). За исключением двух образцов с аномально высокими содержаниями REE, гранитоидам салтыковского комплекса свойственны умеренные содержания REE (Σ REE = 90–151 мкг/г, среднее 114 мкг/г), при относительно высоких содержаниях LREE ($La_{cp.} = 31.4 \text{ мкг/r}$) и низких содержаниях HREE ($Yb_{cp.} = 0.55 \text{ мкг/r}$), что определяет высокие значения отношения (La/Yb)_{CN} = 44.6. При этом отсутствуют отчетливо выраженные Еu-аномалии (Eu/Eu* = 0.9–1.2) (табл. 1, рис. 5).

9

В целом гранитоиды салтыковского комплекса по геохимическим особенностям отвечают типичным породам архейских ТТГ-ассоциаций (Drummond, Defant, 1990; Martin, 1994; Martin et al., 2005; Condie, 2005) и близки к гранитоидам днепропетровского ТТГ-комплекса

Рис. 5. Распределение малых и редких элементов в ТТГ Курского блока.

Среднеприднепровского блока (рис. 4) (Щербак и др., 2005; Щербаков, 2005; Великанов и др., 2012). Им свойственны "адакитовые" характеристики — высокие значения отношений Sr/Y и La/Yb.

РЕУЛЬТАТЫ ГЕОХРОНОЛОГИЧЕСКИХ И ИЗОТОПНО-ГЕОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ

В качестве объектов для U–Th–Pb и U–Pb геохронологических исследований были выбраны трондьемит (образец 3759/461.7, скважина 3759, глубина 461.7 м) и тоналит (образец 3146/304, скважина 3146, глубина 304 м) салтыковского комплекса из западной части Курского блока (район Михайловской синформы), а также трондьемит салтыковского комплекса (образец 3335/422.5, скважина 3335, глубина 422.5 м) из центральной части Курского блока (Курско-

Рис. 6. Катодолюминесцентные снимки цирконов из ТТГ Курского блока и точки определения возраста их кристаллизации.

Бесединский домен). Места отбора образцов для геохронологических исследований показаны на рис. 2.

Акцессорный циркон, выделенный из трондьемита салтыковского комплекса западной части Курского блока (образец 3759/461.7), представлен субидиоморфными полупрозрачными кристаллами призматического облика (рис. 6), желтоватого и желтовато-коричневого цвета. Размер кристаллов составляет 50–100 мкм ($K_{yдл} = 2.0-3.0$) (рис. 6). Они характеризуются пониженной интенсивностью люминесценции, имеют зональное строение, трещиноваты, частично метамиктизированы и содержат твердофазные минеральные включения.

U–Th–Pb геохронологические исследования выполнены для 13 зерен циркона (табл. 2, рис. 7). При этом только для 5 зерен циркона удалось получить конкордантные и субкон-кордантные (D < 5%) оценки возраста (табл. 2, рис. 7). Среднее значение возраста по отношению 207 Pb/ 206 Pb, рассчитанное для этих зерен циркона, составляет 2956 ± 16 млн лет (СКВО = 1.8) (рис. 7).

Акцессорный циркон, выделенный из тоналита салтыковского комплекса западной части Курского блока (проба 3146/304), образует субидиоморфные, реже идиоморфные призматические и короткопризматические прозрачные и полупрозрачные кристаллы желтовато-коричневого цвета. Размер кристаллов изменяется от 50 до 100 мкм ($K_{yлл} = 2.0-3.0$). Для них характерно хорошо выраженное зональное строение (рис. 6).

В ходе U–Th–Pb геохронологических исследований получены 13 конкордантных и субконкордантных оценок возраста (D < 4%) циркона (табл. 2, рис. 7). Среднее значение возраста изученного циркона, рассчитанное по отношению ²⁰⁷Pb/²⁰⁶Pb, составляет 2951 ± 5 млн лет (СКВО = 1.6) (рис. 7).

Акцессорный циркон из трондьемита салтыковского комплекса центральной части Курского блока (образец 3335/422.5) представлен светло-коричневыми полупрозрачными, частично метамиктизированными субидиоморфными кристаллами короткопризматического и призматического облика (рис. 8). Они огранены комбинацией призм {100}, {110} и дипирамид {101}, {111}, {112} (рис. 8, I–IV). Размеры кристаллов варьируют от 50 до 100 мкм ($K_{yдл} = 1.0 -$ 3.0). Для них характерны осцилляторная зональность (рис. 8, V–VIII) и секториальность (рис. 8, VIII).

Для U–Pb геохронологических исследований использованы четыре навески циркона из размерных фракций >100 и <100 мкм, подвергнутого предварительной кислотной обработке

Номер ²⁰⁶ Рb _с ,		Содер	жание	, мкг/г		Изотопные отношения				Возра	Возраст, млн лет		
анализа	%	²⁰⁶ Pb*	U	Th	²³² Th/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	Kho	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	D, %	
	Трондьемит салтыковского комплекса западной части Курского блока (обр. 3759/461.7)											1	
6_1	0.71	357	3286	1324	0.42	0.1191±6	0.1255±2	2.060±6	0.29	762±13	1943±110	155	
3_2	1.03	345	2378	222	0.10	0.1515±1	0.1671±2	3.493±2	0.83	762±13	2364±21	137	
9_2	0.16	285	1971	2694	1.41	0.1549±1	0.1681±2	3.590±2	0.95	996±17	2401±10	140	
6_2	0.60	235	1314	317	0.25	0.1657±1	0.2067±2	4.726±2	0.93	1002±17	2516±12	108	
9_1	0.32	138	432	839	2.01	0.2026±1	0.3718±2	10.39±2	0.93	1211±20	2847±12	40	
11_1	0.26	148	335	130	0.40	0.2116±0.5	0.5128±1	14.97±1	0.75	2038±33	2918±8	9	
10_2	0.19	106	235	107	0.47	0.2149±1	0.5228±2	15.49±2	0.93	2669±12	2943±12	9	
5_2	0.08	145	313	172	0.57	0.2140±1	0.5371±1	15.85±1	0.67	2711±42	2936±9	6	
15_1	0.40	89.4	190	80	0.44	0.2139±1	0.5433±1	16.03±1	0.73	2771±12	2936±10	5	
10_3	0.13	56.1	118	54	0.47	0.2169±1	0.5509±1	16.48±1	0.74	2797±15	2958±12	5	
7_1	0.02	130	273	145	0.55	0.2186±1	0.5520±2	16.64±2	0.96	2829±19	2970±9	5	
10_1	0.18	159	334	176	0.54	0.2171±1	0.5530±2	16.55±2	0.96	2834±43	2959±9	4	
19_1	0.06	116	232	152	0.68	0.2163±1	0.5819±1	17.36±1	0.68	2838±43	2954±10	0	
	Т	онали	г салтн	ыковско	ого ком	иплекса запа	дной части І	Курского б	лока (обр. 3146/30	04)		
13_1	0.15	61.7	151	78	0.53	0.2139±0.5	0.4743±1	13.99±1	0.78	2503±12	2936±8	17	
11_1	0.33	44	102	53	0.53	0.2141±1	0.4995±1	14.75±1	0.69	2611±14	2937±11	12	
6_1	0.15	84.6	189	171	0.93	0.2171±0.5	0.5198±0.5	15.56±1	0.71	2698±10	2956± 7	10	
3_1	0.09	78	164	165	1.04	0.2174±0.5	0.5532±0.5	16.59±1	0.78	2839±11	2962±6	4	
3_2	0.26	36.1	76	31	0.42	0.2140±1	0.5540±1	16.35±1	0.78	2842±18	2936±10	3	
12_1	0.12	86.1	181	115	0.66	0.2148±0.5	0.5543±0.5	16.42±1	0.67	2843±11	2942±9	3	
8_1	0.07	69	143	94	0.68	0.2147±0.5	0.5608±0.5	16.60±1	0.78	2870±12	2941±7	2	
5_1	0.04	63.5	131	90	0.71	0.2156±0.5	0.5642±1	16.77±1	0.92	2884±24	2948±7	2	
7_1	0.09	93.5	192	136	0.73	0.2146±0.5	0.5650±0.5	16.72±1	0.81	2887±12	2941±6	2	
2_1	0.09	49.6	101	46	0.47	0.2177±0.5	0.5686±1	17.07±1	0.77	2902±14	2964±8	2	
13_2	0.06	32.7	67	33	0.51	0.2153±1	0.5707±1	16.94±1	0.77	2911±18	2946±10	1	
10_1	0.08	70.4	143	106	0.76	0.2153±0.5	0.5715±0.5	16.97±1	0.78	2914±12	2946± 7	1	
1_1	0.03	125	253	279	1.14	0.2169±0.5	0.5776±1	17.27±1	0.94	2939±19	2957±5	1	
9_1	0.11	65.8	132	112	0.87	0.2174±0.5	0.5782±1	17.33±1	0.81	2942±14	2961±7	1	
4_1	0.06	88.3	177	146	0.85	0.2161±0.5	0.5796±0.5	17.27±1	0.74	2947±12	2952±8	0	
8_2	0.12	57.3	114	74	0.67	0.2158±0.5	0.5847±1	17.40±1	0.77	2968±14	2949±8	-1	

Таблица 2. Результаты U–Th–Pb исследований цирконов из гранитоидов салтыковского комплекса Курского блока

Примечание. ²⁰⁶Pb_c и ²⁰⁶Pb^{*} – нерадиогенный и радиогенный свинец; нерадиогенный свинец скорректирован с помощью измеренного ²⁰⁴Pb; Rho – коэффициент корреляции ошибок отношений ²⁰⁷Pb/²³⁵U – ²⁰⁶Pb/²³⁸U; D – коэффициент дискордантности. Величины ошибок соответствуют 68%-ному доверительному интервалу (1σ).

Рис. 7. Результаты U-Рb датирования цирконов из ТТГ Курского блока методом SIMS.

Рис. 8. Облик и внутреннее строение кристаллов циркона из ТТГ Курского блока, отобранных для геохронологических исследований.

No	Размерная	TT/	Изотопные отношения						Возр	аст, мли	н лет
л <u>№</u> п/п	фракция (мкм) и характеристика циркона	Pb*	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb ^a	²⁰⁸ Pb/ ²⁰⁶ Pb ^a	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	Rho	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
1	<100, кисл.обр = 2.0	1.76	829	0.2148±1	0.0963±1	14.8740±321	0.5021±6	0.98	2807±6	2623±6	2942±1
2	<100, кисл.обр = 2.5	1.63	2035	0.2187±1	0.0716±1	16.1245±322	0.5348±6	0.95	2884±5	2762±4	2971±1
3	>100, кисл.обр = 2.0	1.58	825	0.2200±1	0.0793±1	16.4573±410	0.5425±7	0.97	2904±7	2794±7	2981±1
4	<100, кисл.обр = 3.0	1.76	2640	0.2219±1	0.0748±1	17.0603±235	0.5575±4	0.97	2928±4	2856±4	2995±1

Таблица 3. Результаты U–Pb геохронологических исследований акцессорного циркона из трондьемита салтыковского комплекса центральной части Курского блока (обр. 3335/422.5)

Примечание. ^а – изотопные отношения, скорректированные на бланк и обычный свинец; Rho – коэффициент корреляции ошибок отношений 207 Pb/ 235 U- 206 Pb/ 238 U; кисл.обр. = 2.0 – кислотная обработка циркона с заданной экспозицией (часы). Величины ошибок (2 σ) соответствуют последним значащим цифрам после запятой.

Таблица 4. Результаты Sm—Nd изотопно-геохимических исследований гранитоидов салтыковского комплекса Курского блока Восточной Сарматии

№ образца	Возраст, млн лет	Sm, мкг/г	Nd, мкг/г	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd (±2σ _{изм.})	ε _{Nd(t)}	t _{Nd(DM),} млн лет
3756/524.8	2960	2.60	19.92	0.0790	0.510421±3	+1.6	3069
3759/461.7	2960	2.80	18.21	0.0930	0.510648±3	+0.8	3140
3785/340	2960	4.32	27.3	0.0955	0.510675±2	+0.3	3171
3334/346.7	3025	2.16	17.79	0.0735	0.510206±4	+0.6	3180

в течение 2 или 3 часов (табл. 3). Точки их изотопного состава располагаются на дискордии, верхнее пересечение которой с конкордией соответствует возрасту 3025 ± 6 млн лет, а нижнее -996 ± 62 млн лет (СКВО = 1.1) (рис. 9).

Морфологические особенности изученных цирконов из гранитоидов салтыковского комплекса Курского блока указывают на их магматическое происхождение. Следовательно, полученные для них возрастные оценки можно интерпретировать как время кристаллизации родоначальных для них расплавов.

Результаты Sm-Nd изотопно-геохимических исследований гранитоидов салтыковского комплекса приведены в табл. 4. Величины $\varepsilon_{Nd}(t)$ гранитоидов этого комплекса варьируют от +0.3 до +1.6, т.е. являются значимо более низкими, чем величины $\varepsilon_{Nd}(t)$ деплетированной мантии этого возраста (+3.6) (рис. 10). Nd-модельные возрасты $t_{Nd(DM)}$ рассматриваемых гранитоидов находятся в интервале 3.2–3.1 млрд лет, что на 150–200 млн лет древнее, чем возраст их кристаллизации. Sm-Nd изотопные данные позволяют предполагать, что формирование родоначальных для гранитоидов салтыковского комплекса расплавов могло проис-

ходить посредством плавления более древних ТТГ-гнейсов или обогащенных легкими РЗЭ метабазитов с гранатом в остатке.

²⁰⁶Pb/²³⁸U

Рис. 9. Результаты U–Рb датирования цирконов из ТТГ Курского блока методом TIMS.

2019

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные геохронологические данные свидетельствуют о том, что к салтыковскому комплексу относятся гранитоиды разного возраста. Для трондьемита и тоналита этого комплекса западной части Курского блока (район Михайловской синформы) получены оценки возраста соответственно 2956 ± 16 и 2951 ± 5 млн лет, а для трондьемита из его центральной части — 3025 ± 6 млн лет. Таким образом, в истории геологического развития Курского блока можно выделить по крайней мере три эпизода проявления TTГ-магматизма:

(1) формирование протолитов ТТГ-гнейсов обоянского комплекса (около 3.2–3.3 млрд лет);

(2) становление интрузий гранитоидов салтыковского комплекса центральной части Курского блока (около 3.03 млрд лет);

(3) становление интрузий гранитоидов салтыковского комплекса западной части Курского блока (около 2.95 млрд лет).

ТТГ-магматизм широко проявлен в архее Восточной Сарматии. Породами именно этой ассоциации сложены самые древние сохранившиеся фрагменты палеоархейской коры Приазовского блока (Щербак и др., 2005). Как видно из схемы корреляции (рис. 11), ТТГмагматические комплексы Восточной Сарматии имеют главным образом мезоархейский возраст. В Среднеприднепровском блоке выделены следующие импульсы проявления ТТГ-магматизма: 3.20, 3.13, 3.08 и 2.97-3.03 млрд лет (Samsonov et al., 1996; Шербак и др., 2005). В Приазовском блоке установлены как палеоархейские (3.6–3.7, 3.5, 3.3 млрд лет), так и мезоархейские (2.97, 3.04, 2.89 млрд лет) ТТГ-магматические комплексы (Татаринова и др., 2001; Артеменко и др., 2004,

2014; Щербак и др., 2005). В Курском блоке пока достоверно установлены только два эпизода мезоархейского гранитоидного магматизма в интервале 2.95—3.03 млрд лет, в ходе которых произошло формирование гранитоидов салтыковского комплекса, близких по возрасту и геохимическим особенностям к ТТГ-гнейсам Среднеприднепровского (2.97—3.03 млрд лет) и Приазовского (2.97—3.04 млрд лет) блоков (рис. 11).

Мезоархейская эндогенная история Восточной Сарматии завершается региональным метаморфизмом гранулитовой и амфиболитовой фаций на рубеже 2.82 млрд лет (Щербак и др., 2005; Савко и др., 2010; Savko et al., 2018), который фиксирует консолидацию континентальной коры этого мегаблока. После этого метаморфического события проявления раннедокембрийского ТТГ-магматизма в Восточной Сарматии не установлены, хотя в пределах других древних кратонов неоархейские и даже палеопротерозойские ТТГ-магматические комплексы не являются редкостью.

Вариации составов разновозрастных гранитоидов салтыковского комплекса, их изотопных (рис. 10) и геохимических характеристик, в том числе таких индикаторных параметров, как концентрации Al, Sr, Y, Yb и отношения Sr/Y, La/Yb (рис. 4, 12), скорее всего, являются следствием формирования исходных для них расплавов за счет разных источников. Как уже отмечалось, рассматриваемые гранитоиды обладают "адакитовыми" геохимическими характеристиками (рис. 12), что обычно объясняется как результат частичного плавления метабазитов в равновесии с гранатсодержащим реститом (Moyen, Martin, 2012).

Рис. 10. Результаты Sm-Nd исследований ТТГ Курского и Среднеприднепровского блоков.

		Среднеприднепровский	Приазовский блок	Курский блок
Время,	, млн	ллет блок		
2500 —	\square	Платформенный этап. Формирование ЖКФ		Платформенный этап. Формирование ЖКФ
2600 —	-	2.62 млрд лет. Граниты анновского комплекса (Щербак и др., 1989)		2.61 млрд лет. А-граниты и риолиты (Савко и др., 2015)
2700 —	+	Базитовый вулканизм (новокриворожская свита) (Артеменко и др., 2015)		2.65-2.77 млрд лет. Базитовый вулканизм (александровская свита) (Савко и др., 2017)
2800 — 2900 —		2.80-2.85 млрд лет. Гранитный магматизм: токовский и мокромосковский комплексы (Щербак и др., 2005) 2.88 млрд лет (?). Метаморфизм (Lobach-Zhuchenko et al., 2014)	 2.81 млрд лет. Граниты А-типа (Щербак и др., 2005) 2.82 млрд лет. Гранулитовый метаморфизм (Щербак и др., 2005) 2.89 млрд лет. ТТГ (Татаринова и др., 2001) 2.91-2.94 млрд, лет. Габбро, диориты: обиточенский комплекс (Бибикова и др., 2008) 	2.80 млрд. лет. Гранитный магматизм (наши неопубликованные данные) 2.82 млрд лет. Гранулитовый метаморфизм (Савко и др., 2010)
3000 -	+	2.97-3.03 млрд лет. ТТГ интрузивы гранито-гнейсовых куполов: днепропетровский комплекс (Щербак и др., 2005)	2.97-3.04 млрд лет. ТТГ магматизм (Щербак и др., 2005)	2.96-3.03 млрд лет. ТТГ-магматизм (настоящая статья)
3100 — 3200 —		 3.08 млрд лет. Ранние плагиомигматиты гранито- гнейсовых куполов (Samsonov et al., 1996) 3.13 млрд лет. Кислый вулканизм: ЗКП и ТТГ плутоны (Samsonov et al., 1993, 1996) 3.20 млрд лет. Толентовый вулканизм ЗКП и бимодальный ТПТ-базальтовый магматизм аульской серии 	3.085 млрд лет. Метаморфизм (Щербак и др., 2005)	> 3.06 млрд лет (?). UHT-метаморфизм
3300 —	-	(Samsonov et al., 1996)	3.3 млрд лет. ТТГ магматизм (Артеменко и др., 2014)	
3400 —	-			
3500 —	-		3.5 млрд лет. ТТГ магматизм (Щербак и др., 2005)	
3600 —	-		3.67 мпрл пет. ТТГ магматиам (Шербак и др., 2005)	
3700 —			(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	

Рис. 12. Составы ТТГ Курского блока на классификационных диаграммах.

Sm—Nd изотопные данные свидетельствуют о сравнительно короткой коровой предыстории источников гранитоидов салтыковского комплекса или их обогащении легкими РЗЭ. Формирование исходных для них расплавов могло быть связано с высокими степенями плавления более древних ТТГассоциаций. В качестве таковых могли выступать ТТГ-гнейсы обоянского комплекса. Также нельзя исключать по аналогии с ТТГассоциациями Среднеприднепровского блока, что источниками расплавов гранитоидов салтыковского комплекса могли являться более ранние (3.2–3.1 млрд лет) основные и кислые вулканические породы зеленокаменных комплексов, обогащенные легкими РЗЭ (рис. 10).

ЗАКЛЮЧЕНИЕ

16

В пределах Курского блока широко проявлены гранитообразующие процессы мезоархейского возраста, которые привели к формированию гранитоидов салтыковского комплекса с возрастом около 2.95 и 3.03 млрд лет. Эти эпизоды ТТГ-магматизма хорошо коррелируются с установленными ранее возрастными рубежами формирования мезоархейских ТТГ-ассоциаций Среднеприднепровского и Приазовского блоков Украинского щита, что подтверждает представление о принадлежности Курского блока к единому мезоархейскому ядру Восточной Сарматии. За ними последовал региональный метаморфизм гранулитовой и амфиболитовой фаций (2.82 млрд лет) и консолидация мезоархейской коры этого мегаблока. Главным источником расплавов, родоначальных для мезоархейских гранитоидов салтыковского комплекса, скорее всего, послужили гранитоиды более древних ТТГ-ассоциаций.

Источники финансирования. Работа поддержана Госзаданием ИГЕМ РАН "Петрология и минерагения магматизма внутриплитных и посторогенных обстановок: роль литосферных и астеносферных источников в формировании расплавов".

СПИСОК ЛИТЕРАТУРЫ

Артеменко Г.В. Геохронологическая корреляция вулканизма и гранитоидного магматизма юго-восточной части Украинского щита и Курской магнитной аномалии // Геохимия и рудообразование. 1995. Вып. 21. С. 129–154.

Артеменко Г.В., Татаринова Е.А., Демедюк В.В., Швайка И.А. Возраст гранитоидов Славгородского блока (Среднеприднепровский мегаблок) // Докл. НАН Украины. 2004. № 8. С. 118–123.

Артеменко Г.В., Швайка И.А., Татаринова Е.А. Палеоархейский возраст ультраметаморфических плагиогранитоидов Курско-Бесединского блока (Воронежский кристаллический массив) // Геол. журн. 2006. № 1. С. 84–87.

Артеменко Г.В., Шумлянский Л.В., Швайка И.А. Позднепалеоархейские тоналитовые гнейсы Западно-Приазовского блока (Приазовский мегаблок Украинского щита) // Геол. журн. 2014. № 4 (349). С. 91–102.

Артеменко Г.В., Самборская И.А., Мартынюк А.В. Геохимическая характеристика и геодинамические условия формирования метабазитов и метакоматиитов Кривбасса (Среднеприднепровский мегаблок УЩ) // Минералогічний журнал. 2015. Т. 37. № 2. С. 76–89.

Бибикова Е.В., Лобач-Жученко С.В., Артеменко Г.В., Клаэссон С., Коваленко А.В., Крылов И.Н. Позднеархейские магматические комплексы Приазовского террейна Украинского щита: геологическое положение, изотопный возраст, источники вещества // Петрология. 2008. Т. 16. № 3. С. 227–247. Бочаров В.Л., Фролов С.М., Плаксенко А.Н., Левин В.Н. Ультрамафит-мафитовый магматизм гранитзеленокаменной области КМА. Воронеж: Изд-во ВГУ, 1993.

Великанов Ю.Ф., Великанова О.Ю., Занкевич Б.А., Николаенко В.И., Покалюк В.В., Шафранская Н.В. Гранитоиды обрамления Криворожской структуры. Проблемы корреляции геологических тел и комплексов // Геол. журн. 2012. № 3. С. 49–58.

Пилюгин С.М., Савко К.А., Новикова М.А. Физикохимические условия метаморфизма железисто-кремнистой формации Приазовского блока Украинского щита // Вестник Воронежского ун-та. Сер. геол. 2010. № 1. С. 121–134.

Савко К.А., Пилюгин С.М., Новикова М.А. Минералогия, фазовые равновесия и условия метаморфизма пород неоархейской железисто-кремнистой формации в пределах Тарасовских аномалий // Вестник Воронежского ун-та. Сер. геол. 2004. № 2. С. 111–126.

Савко К.А., Котов А.Б., Сальникова Е.Б., Кориш Е.Х., Пилюгин С.М., Артеменко Г.В., Кориковский С.П. Возраст метаморфизма гранулитовых комплексов Воронежского кристаллического массива: результаты U–Pb геохронологических исследований монацита // Докл. АН. 2010. Т. 433. № 2. С. 647–652.

Савко К.А., Холина Н.В., Холин В.М., Ларионов А.Н. Возраст неоархейских ультракалиевых риолитов – важный геохронологический репер эволюции раннедокембрийской коры Воронежского кристаллического массива // Материалы VI Российской конференции по изотопной геохронологии. СПб.: Sprinter, 2015. С. 247–249.

Савко К.А., Самсонов А.В., Холин В.М., Базиков Н.С. Мегаблок Сарматия как осколок суперкратона Ваалбара: корреляция геологических событий на границе архея и палеопротерозоя // Стратиграфия. Геол. корреляция. 2017. Т. 25. № 2. С. 3–26.

Состояние изученности стратиграфии докембрия и фанерозоя России. Задачи дальнейших исследований // Постановления Межведомственного стратиграфического комитета и его постоянных комиссий. Вып. 38. СПб.: ВСЕГЕИ, 2008.

Татаринова Е.А., Шпыльчак В.А., Бартницкий Е.А. U–Pb возраст тоналит-трондьемитовой ассоциации Гуляйпольского блока (западное Приазовье) // Вестник Воронежского ун-та. Сер. геол. 2001. № 12. C. 131–136.

Щербак Н.П., Артеменко Г.В., Бартницкий Е.Н., Змиевский Г.Е., Татаринова Е.А. Возраст осадочновулканогенных формаций Восточно-Анновской полосы // Докл. АН УССР. Сер. Б. 1989. № 2. С. 30–35.

Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н. Геохронология раннего докембрия Украинского щита. Архей. Киев: Наукова думка, 2004.

Щербак Н.П., Артеменко Г.В., Переверзев С.И., Демедюк В.В., Татаринова Е.А. Возрастные соотношения метаморфических и магматических комплексов Среднеприднепровского и Приазовского мегаблоков // Доп. НАН України. 2005. № 8. С. 121–126. *Щербаков И.Б.* Петрология Украинского щита. Львів: ЗУКЦ, 2005.

Щипанский А.А., Самсонов А.В., Петрова А.Ю., Ларионова Ю.О. Геодинамика восточной окраины Сарматии в палеопротерозое // Геотектоника. 2007. № 1. С. 43–70.

Bogdanova S., Gorbatschev R., Grad M., Guterch A., Janik T., Kozlovskaya E., Motuza G., Skridlait E.G., Starostenko V., Taran L. EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton // European Lithosphere Dynamics. Eds. Gee D.G., Stephenson R.A. Geol. Soc. London. Mem. 2006. V. 32. P. 599–628.

Condie K.C. TTGs and adakites: are they both slab melts? // Lithos. 2005. V. 80. P. 33–44.

De Paolo D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization // Earth Planet. Sci. Lett. 1981. V. 53. P. 189–202.

Drummond M.S., Defant M.J. A model from trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons // J. Geophys. Res. 1990. V. 95. P. 21503–21521.

Fonarev V.I., Pilugin S.M., Savko K.A., Novikova M.A. Exsolution textures of orthopyroxene and clinopyroxene in high-grade BIF of the Voronezh Crystalline Massif: evidence of ultrahigh-temperature metamorphism // J. Metamorphic Geol. 2006. V. 24. P. 135–151.

Goldstein S.J., Jacobsen S.B. Nd and Sr Isotopic Systematics of River Water Suspended Material – Implications for Crustal Evolution // Earth Planet. Sci. Lett. 1988. V. 87. № 3. P. 249–266

Gorbatschev R., Bogdanova S. Frontiers in the Baltic Shield // Precambrian Res. 1993. V. 64. P. 3–21.

Jacobsen S.B., Wasserburg G.J. Sm–Nd evolution of chondrites and achondrites // Earth Planet. Sci. Lett. 1984. V. 67. P. 137–150.

Krogh T.E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination // Geochim. Cosmochim. Acta. 1973. V. 37. P. 485–494.

Larionov A.N., Andreichev V.A., Gee D.G. The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite // The Neoproterozoic Timanide Orogen of Eastern Baltica. Eds. Gee D.G., Pease V.L. Geol. Soc. London Mem. 2004. V. 30. P. 69–74.

Lobach-Zhuchenko S.B., Balagansky V.V., Baltybaev Sh.K. et al. The Orekhov–Pavlograd zone, Ukrainian Shield: milestones of its evolutionary history and constraints for tectonic models // Precambrian Res. 2014. V. 252. P. 71–87. *Ludwig K.R.* PBDAT: A computer program for processing Pb–U–Th isotope data, version 1.20. Reston, Virginia: U.S. Geol. Surv. Open-File Report, 1991. 88–542. 40 p.

Ludwig K.R. User's manual for Isoplot/Ex version 3.00, a geochronological toolkit for Microsoft Excel. Berkley: Berkley Geochonology Center Spec. Publ., 2003. № 4. 72 p.

Ludwig K.R. SQUID 1.12 A User's Manual. A geochronological toolkit for Microsoft Excel. Berkley: Berkeley Geochronology Center Spec. Publ., 2005. 22 p. http://www.bgc.org/klprogrammenu.html

Martin H. The Archean grey gneisses and the genesis of the continental crust // Archean crustal evolution. Developments in Precambrian Geology. Ed. Condie K.C. Amsterdam: Elsevier, 1994. P. 205–259.

Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D. An overview of adakite, tonalite–trond-hjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution // Lithos. 2005. V. 79. № 1. P. 1–24.

Mattinson J.M. A study of complex discordance in zircons using step-wise dissolution techniques // Contrib. Mineral. Petrol. 1994. V. 116. P. 117–129.

Moyen J.-F. The composite Archaean grey gneisses: petrological significance and evidence for a non-unique tectonic setting for Archaean crustal growth // Lithos. 2011. V. 123. P. 21–36.

Moyen J.-F., Martin H. Forty years of TTG research // Lithos. 2012. V. 148. P. 312–336.

Samsonov A.V., Zhuravlev D.Z., Bibikova E.V. Geochronology and petrogenesis of an Archaean acid volcanoplutonic suite of the Verchovtsevo greenstone belt, Ukrainian Shield // Int. Geol. Rev. 1993. V. 35. P. 1166–1181.

Samsonov A.V., Chernyshev I.V., Nutman A.P., Compston W. Evolution of the Archaean Aulian Gneiss Complex, Ukraine: SHRIMP U–Pb zircon evidence // Precambrian Res. 1996. V. 78. P. 65–78.

Savko K.A., Samsonov A.V., Kotov A.B., Sal'nikova E.B., Korish E.H., Larionov A.N., Anisimova I.V., Bazikov N.S. The Early Precambrian metamorphic events in eastern Sarmatia // Precambrian Res. 2018. V. 311. P. 1–23.

Shchipansky A.A., Bogdanova S.V. The Sarmatian crustal segment: Precambrian correlation between the Voronezh Massif and the Ukrainian Shield across the Dniepr-Donets Aulacogen // Tectonophysics. 1996. V. 268. P. 109–125.

Stacey J.S., Kramers J.D. Approximation of terrestrial lead isotope evolution by a two stage model // Earth Planet. Sci. Lett. 1975. V. 26. P. 207–221.

Steiger R.H., Jäger E. Subcommission on geochronology: convention of the use of decay constants in geo- and cosmo-chronology // Earth Planet. Sci. Lett. 1976. V. 36. P. 359–362.

Рецензенты А.А. Щипанский, В.Н. Серегеев

THE MESOARCHAEAN TONALITE-TRONDHJEMITE-GRANODIORITE ASSOCIATIONS OF THE EASTERN SARMATIA: AGE AND GEOLOGICAL PLACEMENT

K. A. Savko¹, A. V. Samsonov², E. B. Sal'nikova³, A. B. Kotov³, A. N. Larionov⁴, E. H. Korish¹, V. P. Kovach³, N. S. Bazikov¹

¹Voronezh State University, Voronezh, Russia

² Institute of Ore Geology, Petrography, Mineralogy and Geochemistry (IGEM) RAS, Moscow, Russia ³ Institute of Precambrian geology and geochronology RAS (IPGG RAS), Saint-Petersburg, Russia

⁴ Centre of Isotopic Research of A.P. Karpinsky Russian Geological Research Institute, Saint-Petersburg, Russia

Two Mesoarchaean magmatism episodes (ca. 2.95 and 3.03 Ga) occurred within the Kursk domain of the Eastern Sarmatia. They formed the Saltyki complex granitoids with composition typical for Mesoarchaean cratons tonalite-trondhjemite-granodiorite associations (TTG). The mentioned episodes correlate well with the previously estimated geochronological boundaries for the Mesoarchaean Middle Dnieper and Azov domains (Ukrainian Shield) formation, which confirms the assumption that the Kursk domain was a part of the uniform Mesoarchaean Eastern Sarmatia nucleus. According to the Mesoarchaean Saltyki complex granitoids geochemical and Sm–Nd isotopic characteristics, the older TTG-gneisses seem to be the protolith for their formation.

Keywords: tonalite, trondhjemite, granodiorite, Sarmatia, metamorphism, Archaean.

DOI: https://doi.org/10.31857/S0869-592X2754-18