УДК 550.42+551.2.03 (470.5)

ГРАНИТНЫЙ МАССИВ ВОДОРАЗДЕЛЬНЫЙ (ПРИПОЛЯРНЫЙ УРАЛ) И ПРОБЛЕМЫ КОРРЕЛЯЦИИ ДООРДОВИКСКИХ ГРАНИТОИДОВ И ВУЛКАНИТОВ СЕВЕРНОЙ ЧАСТИ ЛЯПИНСКОГО АНТИКЛИНОРИЯ

© 2023 г. Г. Ю. Шардакова^{1, *}, Е. Н. Волчек¹, В. С. Червяковский¹, М. В. Червяковская¹, В. В. Холоднов¹

¹Институт геологии и геохимии УрО РАН, Екатеринбург, Россия *e-mail: shardakovagalina@mail.ru Поступила в редакцию 16.07.2022 г. После доработки 04.08.2022 г. Принята к публикации 19.10.2022 г.

Петрогеохимические особенности гранитов массива Водораздельный (Приполярный Урал, Ляпинский антиклинорий) свидетельствуют о том, что эти породы близки к І-гранитам и являются надсубдукционными образованиями. Соотношения ключевых элементов (Rb, Ba, Th, Sr, Y, Nb) позволяют предполагать, что в генерации гранитов могли участвовать базиты плавящегося слэба и флюид, отделившийся при их дегидратации. Определен U-Pb возраст главной популяции магматогенных цирконов, 593 ± 4 млн лет, что отвечает венду (эдиакарию). Он совпадает с возрастом гранитов близлежащего Вангырского массива (598 ± 5 млн лет), а также с возрастом ядер цирконов из гранитов Кожимского массива, расположенного севернее. Величины $\varepsilon_{Hf}(t)$ от $-2 \ge 0$ в магматогенных цирконах с возрастом, отвечающим возрасту гранитов массива Водораздельный, указывают на гетерогенный источник расплавов. В цирконах из этих гранитов также присутствуют древние ядра с U–Pb возрастом от 2200 до 700 млн лет, для них величины $\varepsilon_{Hr}(t)$ от +0.8 до +13 свидетельствуют о наличии в субстрате коровой компоненты (вещество фундамента древней платформы). Петрогеохимические и изотопно-геохронологические параметры гранитов (и цирконов из них) не подтверждают правомерность отнесения пород массива Водораздельный (и его аналогов Вангырского и Кожимского массивов) к кембрийскому сальнерско-маньхамбовскому комплексу и указывают на возможность выделения при геологической съемке самостоятельного комплекса (вендского?) с возрастом около 598 млн лет. Наличие в Ляпинском антиклинории нескольких этапов гранитообразования (средний рифей-венд-кембрий), сопряженного метаморфизма и сложный состав древних метаморфических толщ, сосредоточенных в фундаменте этой структуры, обуславливают варьирующие изотопные параметры, характеризующие гетерогенность источника расплавов, с одной стороны, и конвергентность ряда геохимических признаков, с другой.

Ключевые слова: Приполярный Урал, венд, граниты, цирконы, изотопия, аккреция, субдукция, плюм **DOI:** 10.31857/S0869592X23030079, **EDN:** KFPTPN

Памяти С.Г. Червяковского посвящается

ВВЕДЕНИЕ

Петрогеохимические особенности и изотопногеохронологические параметры гранитоидов, являющихся важной составляющей верхней части земной коры, позволяют корректировать представления о глубинной геодинамике магматических процессов. Анализ литературных и фондовых данных показывает, что и в настоящее время в мире имеются малоизученные объекты, для типизации которых данных еще недостаточно (Соболева, 2001; Пыстин, Пыстина, 2011; Пучков, 2018; Холоднов и др., 2022 и мн. др.). Таких "белых пятен" особенно много в секторах, имеющих сложное строение, например в аккреционных зонах, в которых скучены блоки разного состава и происхождения. Примерами аккреционных структур являются блоки, расположенные западнее зоны Главного Уральского разлома, — Большеземельская зона (Приполярный Урал), а также ряд более южных блоков (рис. 16). В них широко развиты кембрийско-палеозойские осадочные образования, а фундамент представлен вулканогенно-осадочными и метаморфическими породами, встречаются интрузии ультрабазитов (редко), габброидов и гранитоидов.

Доордовикские комплексы, входящие в структуры современного Уральского орогена и его западного обрамления, принято именовать протоуралидами или доуралидами (Пучков, 2000; Кузнецов и др., 2007). Они обнажаются в Центрально-Уральском поднятии, формируя субмеридиональную полосу длиной не менее 2000 км. Северной ее

ШАРДАКОВА и др.

Рис. 1. Позиция объектов исследования в структурах Урала и его обрамления.

(а) Положение Уральского складчатого сооружения на карте России.

(б) Тектоническая схема Урала и его обрамления, с расположением объектов исследования, по (Пучков, 2000; Кузнецов и др., 2007), с дополнениями. Зоны разломов: ПИЧ – Припечоро-Илыч-Чикшинская зона, ГУР – Главный Уральский разлом. Структуры и мегазоны: I – Восточно-Европейская платформа; II, III – Тиманский мегаблок: II – Тиманская и III – Ижемская зоны; IV, V – Печорский мегаблок: IV – Печорская и V – Большеземельская зоны; VI, VII – Восточно-Уральская и Магнитогорская зоны нерасчлененные), VII – зона Восточно-Уральского понятия; VIII – Западно-Сибирская платформа. Блоки с древним фундаментом, в пределах которых развиты магматические породы рифей-венд-кембрийского возраста (с севера на юг): ЛА – Ляпинский антиклинорий; ИА – Ишеримский антиклинорий; ККА – Кваркушско-Каменногорский антиклинорий; УБ – Уфалейский блок; БМА – Башкирский мегантиклинорий; Кожимский (север) и Маньхамбовский (юг) блоки.

(в) Геологическая схема Ляпинского антиклинория, по (Пучков, 2000; Кузнецов и др., 2007; Душин и др., 2017). 1 – мезозойско-кайнозойские комплексы чехла Западно-Сибирской плиты; 2 – пермо-триасовые комплексы чехла Восточно-Европейской платформы и тиманид; 3–8 – позднедокембрийско-палеозойские комплексы (доуралиды и уралиды) Западно-Уральской мегазоны: 3 – ордовикско-позднепалеозойские комплексы (уралиды); 4–8 – позднедокембрийско-кембрийские комплексы (доуралиды): 4 – вулканогенно-осадочные комплексы (саблегорская свита и ее аналоги), 5 – метаморфизованные осадочно-вулканогенные комплексы, 6 – гнейсово-амфиболитовые и гнейсовомигматитовые комплексы Восточно-Уральской мегазоны; 10 – габброиды. Цифрами в кружках показаны гранитные и офиолитовые комплексы Восточно-Уральской мегазоны; 10 – габброиды. Цифрами в кружках показаны гранитные массивы. Кожимский блок: 1 – Лемвинский; 2 – Яротский и Бадьяюский; 3 – Тынаготский; 4 – Хаталамба-Лапчинский; 5 – Кожимский, 6 – Лапчавожский; 7 – Малдинский; 8 – Народинский; 9 – Водораздельный; 10 – Вангырский; 11 – Парнукский, Маньхобеюский, Городковский; 12 – Неройско-Патокский; 13 – Сальнерский; 14 – Няртинский; 15 – Малопатокский; 16 – Тынаготский, Кефталыкский; 17 – Хартесский; 18 – Кулемшорский. Маньхамбовский блок: 19 – Илья-Из; 20 – Маньхамбо; 21 – Сотчемъёльский (габбровый); 22 – Торрепоре-Из; 23 – Ыджидляга; 24 – Сысьинский (вне масштаба). Черной рамкой показана позиция исследуемых гранитоидов.

(г) Геологическая карта района массивов Водораздельный (I) и Вангырский (II), по (Душин и др., 2017), с упрощениями. 1 — пуйвинская свита (RF_2 рv): сланцы филлитовидные слюдяно-кварцевые, с маломощными линзами доломитов и кварцитов; 2 — хобеинская свита (RF_3 hb): кварциты, кварцитопесчаники, полосчатые алевросланцы, в нижней части — линзы доломитов; 3 — мороинская свита (RF_3 mr): сланцы филлитовидные, слюдяно-кварцевые, углеродистые, в нижней части содержат линзы доломитов и мраморов, микрофоссилии; 4 — базальтоиды мороинского комплекса (в составе свиты); 5 — лаптопайская свита ($V_2 - \in$ Ip): углеродистые сланцы с прослоями тиллитовидных конгломератов, горизонт олистостромов, полимиктовые конгломераты и гравелиты; 6 — арьяншорская свита (V_1): алевросланцы, алевролиты, песчаники, в верхней части — пестроцветные сланцы, линзы доломитов; 7 — обеизская свита (O_1 ob): нерасчлененная, содержит красноцветные кварцевые конгломераты, кварцитовидные песчаники, алевро-глинистые сланцы; 8 — четвертичные отложения; 9 — граниты и лейкограниты массивов Водораздельный (I) и Вангырский (II); 10 — разрывные нарушения: а — трассируемые, б — предполагаемые.

составляющей является Ляпинский антиклинорий, охватывающий Приполярно- и Североуральский сегменты Центрально-Уральского поднятия. Антиклинорий включает Маньхамбовский (юг) и Кожимский (север) блоки, которые разделены между собой поперечными крупными разрывными нарушениями и, по мнению ряда исследователей (Волчек, 2004; Холоднов и др., 2022), могли развиваться асинхронно. Магматические породы этой структуры подробно охарактеризованы в обширной литературе (Фишман, Голдин, 1963; Червяковский и др., 1992; Махлаев, 1996; Соболева, 2001, 2004; Удоратина и др., 2006; Udoratina et al., 2021; Кузнецов и др., 2007; Пыстин, Пыстина, 2008; Душин и др., 2009, 2012, 2017; Андреичев, 2010 и др.). В частности, показано, что здесь присутствуют доордовикские гранитоиды А-, І-, S-типа, при этом в ряде случаев граниты разного геохимического типа внедрялись почти синхронно. Они проявляют определенную "конвергентность" признаков, и некоторые разногласия вызывает установление геодинамического режима внедрения гранитодов в интервале от 650 до 480 млн лет и, соответственно, отнесение их к тому или иному комплексу при геологическом картировании, то есть корреляция гранитоидов разных массивов.

В литературе приводятся различные модели доордовикской геодинамической эволюции структур Приполярного Урала и связанных с ними гранитоидов: рифтогенная, аккреционно-коллизионная, океаническая; подробно они рассмотрены в работах (Кузнецов и др., 2007; Кузнецов, 2009; Udoratina et al., 2021 и др.). В публикации других авторов приведена оригинальная точка зрения о том, что в южной части Ляпинского антиклинория (Маньхабовский блок) в венде-кембрии имели место трансформные движения преимущественно дивергентного характера, инициированные несколькими импульсами плюмовой активности, и показана разная роль океанического и континентального компонентов в субстрате (Холоднов и др., 2022). Палеозойские граниты уральского" этапа развития ниже не обсуждаются, это предмет для отдельного изучения.

Объект нашего исследования — граниты массива Водораздельный (Кожимский блок Ляпинского антиклинория) (рис. 1), ранее подробно не изученные и не датированные. Актуальной прикладной проблемой является определение их возраста, соотношений с вмещающим породами, правомерность отнесения к какому-либо из комплексов при геологическом картировании.

Ранее граниты массивов Водораздельного и близ расположенного Вангырского включались в состав палеозойского кожимского комплекса (Фишман, Голдин, 1963; Андреичев, 2010). Молодой возраст вангырских гранитов современными методами не подтвердился, и название исчезло с геологических карт (Иванов и др., 2013а, 2013б; Душин и др., 2017). На основании U–Pb возраста циркона (485 млн лет; Удоратина и др., 2020) в последних редакциях Го-

сударственной геологической карты 1 : 200000 (Иванов и др., 20136) Кожимский, Вангырский и Водораздельный массивы отнесены к венд-нижнекембрийскому сальнерско-маньхамбовскому (II фаза) комплексу. Однако данные, приводимые в нашей статье, не подтверждают эту точку зрения.

Цель данного исследования — уточнение схемы корреляции и представлений о геодинамической обстановке внедрения гранитов Ляпинского

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

Рис. 2. ТАЅ диаграмма для пород массива Водораздельный и его возможных аналогов, по (Шарпенок и др., 2013). Граниты из массивов: 1 – Вангырского, 2 – Кожимского, 3, 4 – Маньхамбовского (3 – І фаза, 4 – ІІ фаза), 5 – Водораздельного; 6 – риолиты саблегорского комплекса.

антиклинория в венде—начале кембрия. Для этого проанализированы данные по петрогеохимии пород массива Водораздельный, особенностям химического состава цирконов из них, выделены популяции цирконов и определены их возраст и параметры их Lu—Hf системы. Результаты являются новыми, оригинальными, вносят вклад в представления о типизации и геодинамических режимах внедрения гранитов Ляпинского антиклинория в указанном возрастном интервале; могут быть использованы при геологическом картировании.

КРАТКАЯ ГЕОЛОГО-ПЕТРОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА

Массив Водораздельный расположен на водоразделе рек Вангыра и Надежд (правый приток р. Б. Паток), на западном склоне Приполярного Урала, в контурах Кожимского блока (рис. 1в, 1г). В плане этот массив имеет грушевидную форму, при длине около 4 км и максимальной ширине 2.5 км. Площадь выходов на поверхность около 7 кв. км. По оценкам Рудича (1967), уровень эрозионного среза составляет 400—500 м. Согласно геофизическим данным, массив является штоком, падающим на восток (60° —70°) и рвущим СВ крыло Безымянной синклинали. В 2 км к СВ от массива Водораздельный расположен Вангырский массив (рис. 2), подробно описанный в работе (Кузнецов, Удоратина, 2007). Однако родство этих двух гранитных массивов там не обсуждается.

Массив Водораздельный имеет концентрически-зональное строение, от периферии к центру кварцевые порфиры сменяются гранит-порфирами, а затем мелко- и среднезернистыми и далее крупнозернистыми порфировидными гранитами. На западе породы этого массива окружены отложениями хобеизской (R_3) и тельпосской (O_1) свит (старые фондовые данные) или отложениями хобеинской, мороинской (R_3), саблегорской (R_3 —V) свит в современной редакции карт (Душин и др., 2017). В приконтактовой зоне развиты бластомилониты, тектонические брекчии пород рамы в гранитоидном "матриксе". На севере, юге и востоке массива фиксируются ореолы ороговикования и скарнирования.

Восточная часть массива перекрыта валунными отложениями, в составе которых наблюдаются большей частью крупнозернистые порфировидные граниты. В северной части массива, по сравнению с южной, отсутствуют кварцевые порфиры и мелкозернистые разности гранитов. Южная часть имеет меньшую мощность, по сравнению с другими, что связано с развитием субширотных разломов и тектоническим смещением. Гранитоиды массива секутся маломощными дайками аплитов.

Основной объем массива Водораздельный (главная фаза) представлен биотитовыми гранитами, формировавшимися в гипабиссальных условиях. Это светло-серовато-розоватые породы порфировидной структуры (присутствуют фенокристы калиевого полевого шпата размером около 1 см). варьирующие от средне- до крупнозернистых разностей. Они состоят из микроклин-пертита, плагиоклаза, кварца, биотита; иногда встречается роговая обманка. Акцессории – ортит, сфен, циркон; вторичные минералы – мусковит, хлорит, альбит, серицит. В приконтактовых частях массива структура пород меняется до мелкозернистой, мусковит замещает биотит, появляются магнетит, турмалин, реже гранат, растет количество кварца. В краевой части массива присутствуют порфировидные лейкограниты светло-серовато-розоватые, мелкозернистые, порфировидные, по структуре имеюшие переходы к гранит-порфирам, вместе с которыми образуют зоны шириной до 30-300 м. Лейкограниты имеют переменный состав: кварц + + альбит + биотит, а в ряде случаев содержат реликты более основного плагиоклаза, который по краям замещен альбитом. В относительно крупнозернистых разностях лейкогранитов присутствует микроклин-пертит. В работе (Червяковский и др., 1992) указывается, что финальной стадией преобразований здесь является калишпатизация.

Кварцевые порфиры и гранит-порфиры — самые малоглубинные разности, отличаются лишь по степени раскристаллизации основной массы. Фенокристы представлены кварцем, изредка альбит-олигоклазом. Матрикс породы состоит из микролитов кварца, плагиоклаза, серицита, а акцессории представлены сфеном, цирконом, магнетитом.

МАТЕРИАЛ И МЕТОДИКИ ИССЛЕДОВАНИЯ

Все аналитические процедуры производились в Центре коллективного пользования (ЦКП) "Геоаналитик" Института геологии и геохимии УрО РАН, г. Екатеринбург. Содержания петрогенных элементов измерены на спектрометрах СРМ-18 и EDX-900 HS. Содержания Fe₂O₃, Na₂O определены рентгеноспектральным флюоресцентным методом, FeO, Na₂O, П.п.п. – методом "мокрой" химии. Анализы на элементы-примеси выполнены методом масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS) на квадрупольном спектрометре ELAN-9000 (PerkinElmer) с использованием аргона. Погрешность анализа составляет 0.1–1 отн. % (для разных уровней содержаний элементов).

Зерна циркона для исследования отобраны из порфировидного биотитового микроклинового гранита главной фазы (проба В-10; табл. 1, 2). Цирконы выделены из протолочек по удельному весу в тяжелых жидкостях с последующей ручной разборкой под бинокуляром, затем помещены в шайбы из эпоксидной смолы и путем полировки выведены на поверхность на 1/2 толщины зерна. Перед измерениями препараты были очищены спиртом и азотной кислотой (3%).

Анализ элементов-примесей в цирконах проводился на ICP-MS NexION 300S (PerkinElmer) с приставкой для лазерной абляции NWR 213. Методика анализа описана в работе (Червяковская и др., 2022). Диаметр кратера 25 мкм, частота повторения импульсов 10 Гц, плотность энергии 10.5-11.5 Дж/см². Обработка результатов проводилась в программе GLITTER V4.4. с использованием внутреннего стандарта SiO₂, в качестве внешнего первичного стандарта использовали стандартное стекло NIST SRM 610 (в качестве вторичного – стандартное стекло NIST SRM 612), измерения велись методом "взятия в вилку" через 10-12 измерений. Погрешность измерения NIST 610 для измеренных элементов варьирует от 3 до 20% (1 σ), для NIST 612 – от 3 до 25% (1 σ).

Изучение Lu-Hf изотопной системы выполнено на многоколлекторном масс-спектрометре ICP-MS Neptune Plus (Thermo Fisher Scientific) c приставкой для лазерной абляции NWR 213. Методика анализа приведена в работе (Червяковская и др., 2021). Параметры приставки: диаметр кратера 25 мкм, частота повторения импульсов 20 Гц, плотность энергии 11.5-12.5 Дж/см². В качестве первичного стандарта использовался циркон GJ-1; в качестве вторичных стандартов – ширконы 91500, Plesovice и Mud Tank; процедура проводилась методом "взятия в вилку" через пять измерений. Средневзвешенное значение отношения ¹⁷⁶Hf/¹⁷⁷Hf составило 0.282042 ± 0.000017 (N = 8; $\pm 2\sigma$) и 0.282496 ± 0.000020 (N = 4; $\pm 2\sigma$) для стандартов GJ-1 и Mud Tank соответственно, значения единичного измерения изотопного отношения ¹⁷⁶Hf/¹⁷⁷Hf для 91500 и Plesovice $-0.282465 \pm 0.000030 (\pm 2\sigma)$ и 0.282300 ± 0.000053 ($\pm 2\sigma$) в рамках данной сессии. Погрешность измерения (20) изотопного отношения ¹⁷⁶Hf/¹⁷⁷Hf для стандартов циркона изменялась от 0.011 до 0.020%.

том 31 № 3 2023

ШАРДАКОВА и др.

Таблица 1. Содержания петрогенных (мас. %) и редких (мкг/г) элементов в гранитоидах массива Водораздельный

Компоненты							Ном	ера про	об					
Romionembi	B-3	B-8	B-7	B-20	B-26	B-23	B-22	B-28	B-9	B-27	B-2	B-10	B-21	B-11
SiO ₂	65.21	70.16	70.6	72.29	72.51	73.33	73.44	73.5	73.51	73.92	74.02	74.46	75.07	76
TiO ₂	0.38	0.32	0.33	0.16	0.16	0.11	0.14	0.09	0.11	0.15	0.11	0.15	0.11	0.09
Al_2O_3	11.17	14.99	14.85	14.35	13.76	13.96	13.2	14.11	13.63	13.08	13.32	12.86	13.12	13.23
Fe ₂ O ₃	1.80	1.86	1.06	1.12	1.07	1.28	1.2	1.73	1.43	1.11	1.09	1.32	1.47	0.70
FeO	0.74	0.91	1.63	1.09	1.09	0.73	0.91	0.36	0.64	1.09	0.91	1.18	0.54	0.43
MnO	0.04	0.05	0.06	0.06	0.06	0.05	0.04	0.02	0.03	0.04	0.05	0.04	0.03	0.04
MgO	7.13	0.83	0.86	1.45	1.27	0.28	0.39	0.37	0.39	0.34	0.46	0.35	0.44	0.06
CaO	5.93	1.54	1.6	1.18	1.21	0.68	0.58	0.59	0.7	0.64	0.74	0.73	0.88	0.69
Na ₂ O	2.32	4.19	4.39	4.19	4.19	4.31	3.94	4.19	4.06	3.97	4.19	3.45	5.62	3.66
K ₂ O	3.69	4.47	4.14	2.13	2.06	4.26	4.63	4.19	4.43	4.28	3.48	4.41	1.24	4.10
P_2O_5	0.08	0.12	0.12	0.09	0.09	0.07	0.0.8	0.08	0.07	0.08	0.07	0.08	0.07	0.01
Ппп	1.38	0.74	1.39	1.91	1.91	0.6	0.61	0.82	0.67	0.56	0.63	0.55	1.02	0.67
Li	10.0	н.о.	н.о.	16.0	н.о.	13.0	н.о.	н.о.	14.0	н.о.	15.0	13.0	32.0	40.0
Be	0.9	4.0	3.5	5.1	4.5	2.8	3.8	7.7	3.6	7.3	3.3	3.1	4.6	3.0
Sc	7.0	5.0	5.0	7.0	8.0	4.4	7.0	6.0	7.0	8.0	6.0	6.0	7.5	5.0
V	40.0	22.0	9.0	6.5	9.0	6.5	7.0	0.0	8.0	15.0	7.5	7.5	6.5	3.1
Cr	40.0	н.о.	н.о.	0.8	н.о.	9.0	н.о.	н.о.	0.9	н.о.	1.1	1.0	0.9	0.9
Co	6.0	5.0	4.0	1.5	5.0	1.1	2.0	3.0	2.5	3.0	5.0	2.0	2.0	0.9
Ni	20.0	10.0	19.0	8.5	9.0	5.5	8.0	3.0	6.5	8.0	19.5	10.6	5.9	1.6
Cu	13.4	н.о.	н.о.	9.0	н.о.	6.0	н.о.	н.о.	4.1	н.о.	4.1	5.0	11.9	3.4
Zn	60.0	Н.О.	н.о.	14.0	н.о.	30.0	н.о.	н.о.	30.0	н.о.	30.0	30.0	30.0	30.0
Ga	14.0	н.о.	н.о.	22.0	н.о.	19.0	н.о.	н.о.	21.0	н.о.	21.0	21.0	22.0	22.0
As	5.3	Н.О.	н.о.	/.5	н.о.	5.8	н.о.	н.о.	6.0	н.о.	4.4	6.4 0.7	4.6	/./
Se	0.6	H.O.	H.O.	0.9	H.O.	0.4	H.O.	H.O.	0.6	н.о.	0.7	0.7	1.1	1.1
KD S.	90.0 270.0	217.0	225.0 126.0	118.0	21.0	221.0	288.0	100.0	210.0	228.0	55.0	180.0	200.5	240.0
SI V	17.0	22.0	20.0	47.0 59.5	20.0	40.0	37.0 72.0	15.0	27.5	40.0	25.0	28.0	45.5	40.0 50.0
I 7r	05.0	32.0 130.0	29.0 151.0	30.5 06.0	120.0	23.0	72.0	20.0	121.5	21.0	120.0	20.0	30.0 77.0	70.0
Nh	8.0	11.0	18.0	16.5	12 0	14.0	9.0	50.0	131.5	10.0	11.5	13.5	22.0	29.0
Mo	0.0	но	но	0.1	но	0.1	9.0 НО	но	0.3	но	0.2	0.1	1.2	0.2
Cs	1.1	н.о.	н.о.	5.2	н.о.	2.7	н.о.	н.о.	3.1	н.о.	4.9	2.4	6.0	7.7
Ba	800.0	н.о.	н.о.	60.0	н.о.	170.0	н.о.	н.о.	120.0	н.о.	130.0	130.0	140.0	80.0
La	22.0	н.о.	н.о.	15.0	н.о.	12.0	н.о.	н.о.	28.0	н.о.	27.0	15.0	16.0	10.0
Ce	44.0	н.о.	н.о.	37.0	н.о.	32.0	н.о.	н.о.	70.0	н.о.	60.0	50.0	39.0	29.0
Pr	5.4	н.о.	н.о.	4.0	н.о.	3.7	н.о.	н.о.	7.0	н.о.	7.0	4.0	5.0	3.1
Nd	20.0	н.о.	н.о.	17.0	н.о.	13.0	н.о.	н.о.	26.0	н.о.	24.0	16.0	18.0	12.0
Sm	4.1	н.о.	н.о.	5.0	н.о.	3.1	н.о.	н.о.	6.0	н.о.	5.0	4.1	6.0	4.4
Eu	1.1	н.о.	н.о.	0.2	н.о.	0.2	н.о.	н.о.	0.4	н.о.	0.4	0.4	0.3	0.3
Gd	4.0	н.о.	н.о.	7.0	н.о.	3.1	н.о.	н.о.	5.0	н.о.	5.0	4.0	7.0	6.0
Tb	0.6	н.о.	н.о.	1.2	н.о.	0.5	н.о.	н.о.	0.8	н.о.	0.8	0.7	1.3	1.3
Dy	3.3	н.о.	н.о.	8.0	н.о.	2.9	н.о.	н.о.	4.6	н.о.	5.0	5.0	9.0	9.0
Но	0.7	н.о.	н.о.	1.7	н.о.	0.6	н.о.	н.о.	0.9	н.о.	0.9	1.0	1.8	2.0
Er	2.0	н.о.	н.о.	5.0	н.о.	1.6	н.о.	н.о.	2.7	н.о.	2.8	2.9	5.0	6.0

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 31 № 3

2023

Компоненты							Ном	ера про	об					
Компоненты	B-3	B-8	B-7	B-20	B-26	B-23	B-22	B-28	B-9	B-27	B-2	B-10	B-21	B-11
Tm	0.3	н.о.	н.о.	0.8	н.о.	0.3	н.о.	н.о.	0.4	н.о.	0.4	0.5	0.8	0.9
Yb	1.9	н.о.	н.о.	5.0	н.о.	1.7	н.о.	н.о.	2.8	н.о.	2.8	3.1	5.0	6.0
Lu	0.3	н.о.	н.о.	0.8	н.о.	0.2	н.о.	н.о.	0.4	н.о.	0.4	0.5	0.8	0.8
Hf	2.9	н.о.	н.о.	4.0	н.о.	3.0	н.о.	н.о.	4.0	н.о.	3.0	4.0	4.0	3.0
Та	0.6	н.о.	н.о.	2.7	н.о.	2.3	н.о.	н.о.	1.7	н.о.	1.4	1.8	2.8	1.6
W	0.7	н.о.	н.о.	0.4	н.о.	0.6	н.о.	н.о.	0.3	н.о.	0.3	0.3	0.6	0.5
Pb	3.0	н.о.	н.о.	2.5	н.о.	15.0	н.о.	н.о.	14.0	н.о.	16.0	14.0	10.0	24.0
Th	6.0	н.о.	н.о.	19.8	н.о.	7.0	н.о.	н.о.	25.8	н.о.	24.0	20.7	23.1	21.8
U	1.5	н.о.	н.о.	4.0	н.о.	1.7	н.о.	н.о.	3.4	н.о.	4.0	3.6	4.2	5.0

Таблица 1. Окончание

Примечание. н.о. – не определялось.

Определение U-Pb возраста цирконов проводилось на квадрупольном ICP-MS NexION 300S (PerkinElmer) с приставкой для лазерной абляции NWR 213 (ESI). Процедура измерения Pb/U изотопных отношений и алгоритм расчета возраста представлены в работе (Зайцева и др., 2016). Параметры приставки для лазерной абляции: диаметр кратера 25 мкм, частота повторения импульсов 10 Гц, плотность энергии 10-11 Дж/см². Обработка результатов проводилась в программе GLITTER V4.4. В качестве первичного стандарта использовали циркон GJ-1 (в качестве вторичных – цирконы 91500 и Plesovice), измеренный через 10 неизвестных. U-Pb возраст для стандартов GJ-1, 91500 и Plesovice равен 600.5 ± 1.9 млн лет (N = 24; MSWD = 0.17; 1 σ), 1065 ± 11 млн лет (N = 4; MSWD = 0.001; 1 σ) и 338 ± 2 млн лет (N = 6; MSWD = 0.014; 1 σ) соответственно, в рамках данной измерительной сессии. Погрешность измерения изотопного отношения ²⁰⁶Pb/²³⁸U для стандартов варьирует от 1.3 до 2.6%, для ²⁰⁷Pb/²³⁵U – от 2.7 до 5.3% (1σ). Аналитики М.В. Червяковская и В.С. Червяковский.

ПЕТРОГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ГРАНИТОИДОВ МАССИВА ВОДОРАЗДЕЛЬНЫЙ КАК КЛЮЧ К ГЕОДИНАМИЧЕСКИМ ПОСТРОЕНИЯМ

Химический состав проанализированных образцов массива Водораздельный (табл. 1) и позиция точек на TAS диаграмме (Шарпенок и др., 2013) показывают, что породы соответствуют умереннощелочным гранитам и лейкогранитами (рис. 2). Они относятся к известково-щелочному ряду, субщелочному типу серий, являются пералюминиевыми. Большинство гранитов — высококалиевые, ряд точек лежит в поле среднекалиевых разностей. Сумма щелочей составляет в большинстве проб 7.6–8.7 мас. %. Отношение Na₂O/K₂O около 1, в ряде измененных разностей происходит сдвиг в сторону Na₂O. В породах массива при повышении SiO₂ наблюдается понижение концентраций петрогенных компонентов (CaO, TiO₂, Al₂O₃, FeO*, Р₂О₅), что свидетельствует о процессе дифференциации расплава. Наибольший разброс величин фиксируется для К₂О и MgO, указывая на слабые постмагматические (калишпатизация, альбитизация, хлоритизация) преобразования некоторых проб. Повышение роли акцессорных минералов в балансе редких элементов вызывает увеличение концентраций Nb, Ta, U, Hf, Y, P3Э в породах при росте содержания SiO₂ в них. Анализ Ab-Q-Or котектики показывает, что становление пород массива происходило при давлении от 0.5 до 3 кбар.

Содержание Rb для большинства проб составляет 200—280 мкг/г, в альбитизированных, обогащенных Na₂O разностях оно понижается до 113 мкг/г. Содержание Sr равно 30—58 мкг/г, в разностях с наиболее основным плагиоклазом оно возрастает до 150 мкг/г. По преобладающим величинам этих параметров, породы массива Водораздельный можно отнести к адамеллит-гранитному формационному типу, по Г.Б. Ферштатеру (1987).

Положение точек гранитов массива Водораздельный в поле QPMN на диаграмме Rb—Sr (Ферштатер, 1987) отвечает производным толеитовой континентальной и островодужной магм. Позиция точек на ряде диаграмм (рис. 3) не позволяет относить граниты изученного массива к А-типу, так как их точки четко ложатся в поля I-гранитов.

На диаграмму Пирса, характеризующую геодинамические условия формирования (рис. 4), помимо гранитов массива Водораздельный нанесены точки близлежащих интрузий — Вангырской, Кожимской, сальнеро-маньхамбовского комплекса. Точки гранитов массива Водораздельный лежат на границах полей VAG–WPG–SynCOLG.

№/элем.	88	90	90_2	91	95	96	97	100	113	114	115
Sc	351	351	368	297	370	337	262	406	390	474	428
Ti	11.9	34.9	44.7	12.5	11.5	79.7	13.9	40.6	14.7	70.0	34.5
Y	1338	1947	1882	1201	1527	7999	1443	2841	4105	1530	1086
Nb	1.79	1.97	1.10	1.26	5.2	4.31	15.9	3.87	2.22	7.72	5.44
Hf	12557	12284	13062	11 330	11216	9919	14084	13 180	15165	16049	13852
Та	0.27	1.43	1.45	0.77	0.35	1.32	5.92	0.83	1.36	2.36	н/о
Pb	31.2	37.6	38.9	29.1	50.0	82.2	147	64.4	74.9	53.5	63.9
Th	46	85	92	53	75	186	95	137	156	85.9	56.9
U	79.7	91.5	101	68.4	98.9	161	202	150	169	128	139
La	0.088	1.94	0.010	0.165	0.010	271	3.32	0.130	0.220	0.010	2.4
Ce	3.13	9.45	5.75	4.13	5.20	588	17.4	7.71	8.82	6.49	5.63
Pr	0.137	0.980	0.114	0.290	0.310	75.5	1.48	0.410	0.170	0.160	0.460
Nd	0.440	6.90	1.84	0.93	0.85	369	7.10	1.34	5.47	2.08	6.04
Sm	2.94	9.56	7.35	2.06	1.89	169	7.36	8.91	18.2	2.30	8.93
Eu	0.870	0.650	1.04	0.260	0.480	29.5	0.320	0.670	3.09	0.290	1.14
Gd	29.1	38.8	39.2	37.8	18.7	625	40.7	62.6	97.8	26.2	36.0
Tb	9.04	11.0	13.2	5.94	7.58	157	10.1	18.1	30.5	9.41	8.94
Dy	116	170	191	104	142	1275	154	244	386	114	94
Но	48.5	59.0	73.2	40.8	53.4	330	53.5	82.7	150	48.3	50.5
Er	197	298	294	195	267	955	241	426	584	228	180
Tm	44.3	56.7	66.0	45.6	47.3	198	47.8	79.4	114	48.3	45.4
Yb	387	508	563	384	473	1355	412	650	964	440	477
Lu	73.4	91.0	92.5	76.1	88.9	236	75.9	131.4	205.6	80.5	74.5
Возраст	_	_	_	_	543	_	1599	_	_	552	_
REE t	911	1262	1347	896	1106	6633	1071	1714	2567	1006	990
Zr/Hf	53.0	58.7	57.6	51.9	67.5	66.3	51.7	59.9	58.2	54.9	65.1
Th/U	0.580	0.920	0.920	0.770	0.750	1.160	0.470	0.910	0.920	0.670	0.410
U/Yb	0.206	0.180	0.179	0.178	0.209	0.119	0.490	0.231	0.175	0.291	0.290
Yb/Sm	132	53.2	76.6	187	250	8.02	55.9	73.0	53.0	191	53.4
Eu/Eu*	0.290	0.100	0.190	0.090	0.250	0.280	0.060	0.090	0.220	0.110	0.190
Ce/Ce*	6.86	1.65	41.0	4.62	22.7	0.990	1.88	8.04	11.0	39.1	1.31
(Sm/La) _n	53.1	7.83	1167	19.8	300	0.990	3.52	109	131	365	5.9

Таблица 2. Концентрации элементов-примесей (мкг/г) и индикаторные отношения для цирконов массива Водораздельный

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 31 № 3 2023

Таблица 2. Окончание

		1	1		1				1	1	1	
№/элем.	116	117	120	121	134	135	136	138	139	143	145	146
Sc	444	458	470	440	534	431	390	435	399	447	414	376
Ti	22.0	н/о	н/о	15.0	34.4	н/о	н/о	12.68	16.77	н/о	98.4	6.57
Y	1981	3068	1482	1494	4554	2633	1210	1854	1924	1703	2384	3875
Nb	1.81	5.46	2.98	4.58	1.48	3.18	3.35	0.760	1.74	3.77	1.90	2.64
Hf	15286	15934	11833	13 370	9955	14666	13385	12556	12619	12633	12361	14493
Та	1.35	1.67	0.360	0.84	0.760	2.87	1.38	0.390	0.430	1.15	0.930	1.41
Pb	45.0	75.2	31.5	40.1	40.4	73.3	55.5	33.3	34.3	38.0	44.3	105
Th	97.0	163	51.1	56.3	119	157	76.2	71.7	68.0	65.6	78.0	134
U	122	176	69.4	72.0	99.5	191	121	69.4	87.0	90.3	107	272
La	2.97	0.960	0.010	0.010	0.580	5.58	0.010	0.010	0.010	0.085	0.500	0.010
Ce	13.4	12.3	2.46	3.27	4.32	25.4	8.77	2.23	4.64	3.81	6.28	8.51
Pr	1.15	0.530	0.320	0.330	0.450	2.47	0.390	0.116	0.128	0.066	0.520	0.150
Nd	9.80	4.04	3.08	2.71	10.2	16.7	0.830	3.39	2.49	1.72	7.30	1.95
Sm	9.18	8.06	1.95	3.01	29.9	12.6	3.23	7.51	7.82	2.85	6.85	5.41
Eu	1.18	0.910	0.500	н/о	7.21	1.50	0.240	1.49	0.590	0.480	0.790	0.550
Gd	31.9	61.1	28.6	24.2	144	63.6	25.4	43.74	44.16	28.60	40.17	47.57
Tb	9.86	24.8	10.7	11.6	36.2	23.5	6.66	13.10	12.96	9.83	15.36	19.75
Dy	160	261	130	146	534	265	110	162	163	157	231	331
Но	64.6	113.5	51.1	46.4	181.4	102.4	44.5	67.8	63.6	59.3	79.7	125
Er	312	455	227	221	627	417	193	258	274	251	351	599
Tm	64.3	99.2	48.0	51.9	127	80.6	39.3	59.0	55.3	53.2	73.1	104
Yb	566	845	433	388	1028	691	355	461	491	444	683	956
Lu	116	165	90.2	86.4	184	131	67.3	96.7	91.7	93.3	116	196
Возраст	852	525	560	_	615	551	523	573	608	_	_	530
REE t	1362	2050	1027	985	2914	1838	855	1176	1212	1106	1613	2394
Zr/Hf	55.2	56.3	69.4	57.7	83.5	51.4	56.8	64.6	65.8	62.7	62.1	53.3
Th/U	0.790	0.930	0.740	0.780	1.190	0.820	0.630	1.03	0.780	0.730	0.730	0.490
U/Yb	0.216	0.208	0.160	0.185	0.097	0.277	0.341	0.151	0.177	0.203	0.157	0.285
Yb/Sm	61.6	105	222	129	34	54.8	110	61.4	62.8	156	99.8	177
Eu/Eu*	0.210	0.130	0.200	н/о	0.340	0.160	0.080	0.250	0.100	0.160	0.150	0.100
Ce/Ce*	1.75	4.23	10.6	14.0	2.04	1.65	34.3	15.8	31.2	12.2	3.0	52.9
(Sm/La) _n	4.9	13.3	310	478	82.0	3.59	513	1193	1242	53.3	21.8	859

<u>Примечание. В первом столбце "Возраст" означает ²³⁸U-²⁰⁶Pb возраст цирконов (млн лет); н/о – не обнаружено, "прочерк" – не определялось.</u>

Рис. 3. Диаграмма Вейлина (Whalen et al., 1979) (а) для различных типов гранитов и зависимость уровня насыщения пород Zr от температуры кристаллизации (б), по (Hanchar, Watson, 2003; Kostitsyn et al., 2015). FG – фракционированные граниты; OGT – нефракционированные граниты I-, S-, М-типов. Условные обозначения см. рис. 2.

Рис. 4. Диаграмма Пирса (Pearce et al., 1984) для уточнения геодинамической обстановки формирования гранитоидов. Условные обозначения см. рис. 2.

Суммарные содержания РЗЭ в гранитах массива Водораздельный 90–140 мкг/г, тренды распределения относительно хондритов слабо дифференцированы, La/Yb = 2–10, имеется глубокая отрицательная аномалия Eu (рис. 5а). Отметим, что одной из черт, характерных для карбоновых раннеорогенных гранитов Уральского орогена (расположенных восточнее зоны Главного Уральского разлома), является отсутствие аномалии Eu (Ферштатер, 2013). В более ранних (ордовикскосилурийских) надсубдукционных образованиях наблюдается отрицательная аномалия Eu (Петров и др., 2017 и др.). Практически во всех верхнерифейско-венд-кембрийских гранитоидах Приполярного Урала, независимо от геодинамической обстановки, отмечается негативная Eu-аномалия (Udoratina et al., 2021). На спайдерграмме составов, нормированных к N-MORB, в гранитах изу-

Рис. 5. Нормированное к хондриту (a) и N-MORB (6) (McDonough, Sun, 1995) распределение редких элементов в ряде гранитоидов Ляпинского антиклинория. Номера проб соответствуют таковым в табл. 2. Средний состав верхней континентальной коры приведен по (Rudnik, Gao, 2003).

чаемого массива фиксируются отрицательные аномалии Nb, Ti, Zr, что характерно для надсубдукционных образований (рис. 5б). С другой стороны, они довольно близки к среднему составу верхней континентальной коры. Такая двойственность может указывать на гетерогенность субстрата.

Итак, по совокупности параметров можно предположить надсубдукционную обстановку формирования гранитов массива Водораздельный. Чтобы уточнить это заключение, следует определить их возраст и изотопные параметры. Это осуществлено путем анализа химического состава (установление генетической природы), возраста и изучения изотопной Lu—Hf системы цирконов из гранита главной фазы массива.

МОРФОЛОГИЯ, ХИМИЧЕСКИЙ СОСТАВ И ГЕНЕТИЧЕСКИЕ ОСОБЕННОСТИ ЦИРКОНОВ

Микрофотографии ряда зерен циркона приведены на рис. 6. Цирконы полупрозрачные или мутные, розоватой или буровато-розоватой окраски, большая часть представлена обломочными формами, несколько затрудняющими установление морфологических типов. Отметим, что не так давно Ю.И. и А.М. Пыстиными (2017) было произведено описание типоморфных особенностей цирконов из разновозрастных гранитоидов Приполярного Урала: николайшорского (PR₁), кожимского (R₂₋₃?) и маньхамбовского комплексов (€₁), выделены разные типы кристаллов. Мы постарались увязать особенности изученных зерен с приведенными в указанной выше работе характеристиками.

На основе анализа оптических и CL-изображений цирконов массива Водораздельный, наименее фрагментированные зерна можно условно разделить на 2 типа. (1) Полупрозрачные, бледно окрашенные, идиоморфные кристаллы с отношением длины к ширине 4-5, имеющие грани (100), (110), (113), слабо корродированную внешнюю поверхность, нарушенную преимущественно поперечными трещинами. В CL-лучах такие зерна имеют концентрическую зональность роста (чередование тонких светлых и темных полос разной ширины); порой содержат включения и измененные ядра неправильной формы. В ряде случаев зональные зерна обрастают светлыми регенерационными каймами или содержат древние ядра. Это так называемый "торпедовидный" тип, по Ю.И. и А.М. Пыстиным (2017). (2) Более мутные, буроватые зерна неправильной формы, в явных разрезах – более широкие (коэффициент удлинения не более 1.5), разбитые сетью разнонаправленных, иногда ступенчатых трещин, с сильно корродированной поверхностью, содержащей каверны. Вероятно развитие граней (110), (111), (321). Соотношение относительных площадей призмы и пирамиды указывает на преобладание призматического пояса. На CL-изображениях такие зерна часто имеют темную ядерную часть, иногда выкрошенную; промежуточные зоны неравномерно-пятнистые (светлое-темное), иногда видна секториальность. В ряде участков сохраняется тонкая зональность. Каймы в основном грубо корродированы, некоторые зерна обрастают новым материалом, имеющим более светлую окраску. Это "цирконовый" тип зерен. Отдельные крупные фрагменты позволяют предполагать присутствие кристаллов "циртолитового" типа. Подобный набор морфотипов, как показано в (Пыстина, Пыстин, 2017), характерен для малоглубинных гранитов Кожимского массива. К сожалению,

том 31 № 3 2023

Рис. 6. Оптические микрофотографии (а) типичных цирконов из гранитов массива Водораздельный, CL-изображения (б) зерен цирконов, проанализированных на U–Рb возраст. Кружками обозначены точки замеров: серыми – U–Рb возрастов, белыми – изотопов Lu–Hf, черными – микроэлементного состава. Номера проб соответствуют таковым в табл. 3, 4.

вариации содержаний U, Th по разным зонам единых кристаллов не анализировались.

Первичный облик и строение многих цирконов из гранитов массива Водораздельный нарушены неоднократными тектоно-термальными процессами.

Содержания микроэлементов в цирконах из изучаемых гранитов приведены в табл. 2. Заметим, что из-за особенностей метода измерений (диаметр пучка 25 мкм) для части зерен в область замера, вероятно, попадали микровключения, по этой причине из таблицы исключен ряд элементов с высокими содержаниями Ti, Th, Ca, указывающими на присутствие в ореоле постороннего минерала. Всего было произведено около 25 анализов состава цирконов.

Традиционно считается, что информацию о генезисе цирконов может дать анализ поведения U и Th. Содержания их в цирконах изучаемого массива сравнительно невысокие: U = 60-270 мкг/г, Th = 46-190 мкг/г. Часть точек дает почти линейную прямую зависимость между концентрациями этих элементов, указывая на единство происхождения популяции зерен; имеется ряд измерений, дающих сильные отклонения от общей зависимости. Величины Th/U отношения для всех зерен лежат в интервале 0.41-1.2, в большинстве зерен 0.7-0.9.

Значение Zr/Hf отношения в гранитах изученного массива достаточно стабильно, 50-67, в отдельном случае до 80. Содержания Ті в большей части зерен не более 15 мкг/г, иногда достигают 70-98 мкг/г. Это указывает на различия в степени изменения, структурной упорядоченности и/или генезисе цирконов (магматический или гидротермальный). Повышенные содержания Ті в цирконах могут наблюдаться не только (и не столько) из-за микровключений. В частности, в статье (Harrison, Schmitt, 2007) показано, что Ті в цирконах может сорбироваться микропорами или трещинами, особенно в участках, где эффекты структурного разупорядочения и гидратации протекают интенсивно. Активность титана нами принята за единицу ввиду неопределенности парагенетических отношений циркона с минералами титана. Температуры были рассчитаны по (Ferry, Watson. 2007) для зерен со значимыми. но наименьшими содержаниями титана и составили 707-790°С, что вполне согласуется с расчетами по породам (рис. 3б). Полученные температуры являются минимально возможными.

Концентрации других HFSE в цирконах массива Водораздельный изменчивы (мкг/г): Y 1086–7999, Nb 0.76–15, Ta 0.27–6, Hf 12600–14500 (табл. 2). P3Э в породах и магматогенных минералах считаются относительно устойчивыми к воздействию наложенных процессов. Для изученных цирконов содержания суммы P3Э составляют 850–6600 мкг/г, а суммы легких P3Э – 7–1472 мкг/г. Величины ряда индикаторных отношений (рис. 7) также варьируют в широких пределах.

Согласно литературным данным, для большинства магматогенных цирконов величина отношения Th/U составляет 0.3–0.7, более низкие значения (0.3–0.1) указывают на рост из флюидной фазы (Rubatto, 2002; Hoskin, Schaltegger, 2003; Fu et al., 2009; Zhong et al., 2018 и др.). Часто низкое Th/U отношение указывает не на генезис, а на степень структурной упорядоченности, особенности состава цирконов и вмещающих их пород. В цирконах разной природы (ранне-, поздне-,

Рис. 7. Нормализованные к хондриту (McDonough, Sun, 1995) тренды распределения РЗЭ в цирконах из гранитов массива Водораздельный. Серым полем показана область составов "гидротермальных" цирконов (см. текст).

Рис. 8. Диаграммы Хоскина (Hoskin, 2005) для уточнения генезиса цирконов.

постмагматических, метаморфогенных) реально наблюдаются широкие диапазоны содержаний U и Th (Pelleter et al., 2007; Балашов, Скублов, 2011; Wang et al., 2013 и мн. др.). В цирконах массива Водораздельный величина Th/U > 0.4, но вид и строение многих зерен говорят о сильных преобразованиях структуры и, очевидно, состава. Тем не менее многие зерна явно сохраняют первичные геохимические характеристики.

Для заключений о генезисе цирконов использованы известные диаграммы (Hoskin, 2005; Fu et al., 2009) (рис. 8). Анализ современной базы литературных и оригинальных данных показывает, что поле магматических составов (М) следовало бы "удлинить вниз". Существенная часть точек цирконов массива Водораздельный лежит в поле М, далее облако тянется через промежуточные составы к полю "гидротермальных" (поле H) разностей, частично попадая в последнее. Как правило,

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

в цирконах из одной породы с ростом их структурной разупорядоченности, степени изменений или эволюции состава постмагматической флюидной фазы понижается величина отношения Ce/Ce*, повышается (Sm/La)_n, растут концентрации ЛРЗЭ, наиболее контрастно – La (Балашов, Скублов, 2011; Trail et al., 2012; Loucks et al., 2018 и др.). В нашем случае для La и Ce/Ce* также характерна обратная зависимость; ряд точек с наивысшими содержаниями La (очень высокая степень разупорядоченности) переводят зависимость в криволинейную.

В целом по совокупности параметров цирконам магматического происхождения отвечают зерна 91, 95, 100, 114, 120, 121, 136, 138, 139, 146 (рис. 7, 8). Заметим, что сходство параметров вовсе не означает их одновозрастность. По внешнему виду и внутреннему строению цирконы также не отно-

том 31 № 3 2023

Рис. 9. U–Pb диаграмма с конкордией (нанесены все зерна) (а) и участки (б–г), отвечающие разным возрастным кластерам в цирконах из гранитов массива Водораздельный.

сятся к одной группе. Позиция остальных цирконов образует тренды с существенно более высокой "легкой" ветвью спектра и нивелированной аномалией Ce/Ce* (это видно и на диаграммах Хоскина, поэтому тренды цирконов из поля H мы здесь приводим полем).

Согласно диаграмме и критериям, разработанным Белоусовой (Belousova et al., 2002), составы цирконов из гранитов массива Водораздельный попадают в область перекрытия полей производных расплавов гранитного и сиенитового составов.

U—РЬ ВОЗРАСТ ЦИРКОНОВ МАССИВА ВОДОРАЗДЕЛЬНЫЙ

U—Рь возраст определен в 119 зернах циркона из гранитов массива Водораздельный. Гистограмма

всех полученных возрастов приведена на рис. 10. Далеко не все точки ложатся на конкордию (при данном MSWD — на линию согласования) (рис. 9). Многие зерна, имеющие явно магматогенный состав, проявляют высокую дискордантность, поэтому мы вынуждены исключить из построений их параметры. Древние (в разной степени измененные) ядра имеют возраст 2189, 1660, 1471, 1354, 1176—927, 852, 780 млн лет.

Из измеренной совокупности были удалены зерна с высокими содержаниями U и Pb; отобраны 30 зерен с дискордантностью <4%, выдержанными уровнями концентрации U, Th (дающими прямую зависимость, близкую к линейной). По нашему мнению (опираясь на данные о геологической истории магматизма Ляпинского антиклинория), среди полученных датировок (табл. 3) можно выделить

Рис. 10. Гистограмма распределения возрастов цирконов из гранитов массива Водораздельный (все проанализированные зерна).

3 возрастных кластера: (1) 502 ± 7 млн лет, СКВО = = 0.015, вероятность = 0.90; (2) 548 ± 5 млн лет, СКВО = 0.018, вероятность = 0.89; (3) 593 ± 4 млн лет, СКВО = 0.0027, вероятность = 0.96.

Следует отметить, что зерна древних цирконов (852, 927, 1599 млн лет) обладают разными трендами распределения РЗЭ (рис. 9). Наибольшую степень изменения показывает т. 96, поэтому полученная датировка, скорее всего, омоложена. Зерно 114 имеет явно магматический тренд, зерно 115 показывает слабую степень изменений.

Lu—Hf СИСТЕМА В ЦИРКОНАХ ИЗ ГРАНИТОВ МАССИВА ВОДОРАЗДЕЛЬНЫЙ

Величины первичных отношений (¹⁷⁶Hf/¹⁷⁷Hf)_і и є_{нг} для отдельных зерен рассчитаны на возраст по измеренному отношению ²⁰⁷Pb/²⁰⁶Pb (табл. 4, рис. 11). Средние значения (176 Hf/ 177 Hf)_i и ε_{Hf} pacсчитаны на ²³⁸U-²⁰⁶Pb возраст, приведенный в табл. 2, 3. Как видно из предыдущего раздела, цирконы из гранитов массива Водораздельный относятся по меньшей мере к трем возрастным кластерам, которые, предположительно, различаются по происхождению и/или степени преобразования. Исходя из внешнего облика, внутреннего строения и возрастных датировок, цирконы условно разбиты нами по изотопным параметрам на три группы. І группа: цирконы с возрастом 2198, 1599, 1354 млн лет, а также 632 и 612 млн лет (поскольку они явно древнее цирконов главной возрастной популяции и, скорее всего, являются результатом преобразования еще более древних разностей). Эти зерна имеют положительную величину $\varepsilon_{Hf}(t)$, сильно варьирующую в диапазоне от 0.8 до 13 (21??). ІІ группа: цирконы с возрастом 608-573 млн лет, имеющие магматический облик и соответствующее генезису поведение редких элементов (состав определялся выборочно); они характеризуются близкими к нулевым величинами $\varepsilon_{Hf}(t)$ (от -1.1 до 1.4). Исключение составляет т. 77, само зерно имеет пятнистый облик, структуру "песочных часов" и, возможно, является продуктом изменения более древнего циркона. К тому же оно имеет высокую дискордантность. III группа: остальные зерна с возрастами 565-493 млн лет,

Рис. 11. Диаграмма возраст- $\varepsilon_{Hf}(t)$ для цирконов ряда массивов Приполярного Урала. Цирконы из гранитов: 1–3 – массива Водораздельный (1 – древние ядра; 2 – основная популяция, возраст которой характеризует возраст пород, 3 – молодые каймы); 4–6 – по литературным данным: 4 – Кожимского и 5 – Вангырско-го массивов; 6 – сальнерско-маньхамбовского комплекса (Кузнецов, Удоратина, 2007; Душин и др., 2017; Удоратина и др., 2020; Udoratina et al., 2021).

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 31 № 3 2023

Me Constructure. MRT/T Macronimise critometinis Res Me Th U $2mph/^{32}mb$ ± 16 $2mph/^{32}mb$ ± 16 $mbh/^{32}mb$ $mbh/^{32}mb$ ± 16	Таблица .	. Резули	статы изс	топного	анализа и вс	озраст цир	КОНОВ ИЗ Г	ранитов	массива Во	одораздел	тьный					
Th U $207P_{1}/20P_{1}/20P_{1}$ ± 16 $207P_{1}/20P_{1}/20P_{1}$ ± 16 $207P_{1}/20P_{1}/20P_{1}$ ± 16 $200P_{1}/20P_{1}/20P_{1}$ ± 16 $200P_{1}/20P_{1}/20P_{1}$ $\pm 16P_{1}/20P_{1}/20P_{1}$ $\pm 16P_{1}/20P_{1}/20P_{1}/20P_{1}$ $\pm 16P_{1}/20P_{1$	ي لا	Соде	ржание,	MKT/T		И3(отопные от	гношени	B1		R,	Ι	зозраст,	млн лет		20 C
2 41 74 109 0.0575 0.0044 0.648 0.0058 0.0014 0.32 587 8 62 87 147 0.0955 0.0043 0.774 0.085 0.0034 0.32 582 11 68 101 141 0.0583 0.0045 0.0035 0.774 0.085 0.0038 0.22 545 15 544 101 141 0.0583 0.0047 0.575 0.013 0.0746 0.33 545 23 84 88 0.0563 0.0044 0.864 0.003 0.33 579 549 33 146 206 0.0734 0.0036 0.074 0.038 0.0038 0.33 552 33 53 53 0.0109 0.0109 0.0109 0.033 0.756 0.033 0.756 0.033 552 33 54 97 0.058 0.0040 0.561 0.0039 0.33 552		Pb*	Th	Ŋ	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	±lσ	$^{206}Pb/^{238}U$	±lσ	отн. ед	²⁰⁷ Pb/ ²³⁵ U	$\pm 1\sigma$	$^{206} Pb/^{238} U$	±lσ	С, %
8 6.2 8.7 147 0.0055 0.0063 0.774 0.086 0.0045 0.073 0.33 583 14 56 103 147 0.0595 0.0045 0.073 0.073 0.033 0.033 0.033 0.33 584 15 54 101 147 0.0553 0.0077 0.0785 0.003 0.033 0.033 0.33 545 545 24 60 103 147 0.0583 0.0073 0.786 0.003 0.033 0.23 553 33 83 146 206 0.0033 0.786 0.003 0.013 0.786 0.033 0.23 553 33 83 147 0.0583 0.0053 0.0033 0.23 553 553 33 83 111 0.0583 0.0053 0.0033 0.033 0.033 0.33 553 57 61 118 165 0.0570 0.059	2	41	74	109	0.0575	0.0049	0.648	0.058	0.0818	0.0023	0.32	507	36	507	14	0.00
11 68 104 173 0.0375 0.0075	8	62	87	147	0.0595	0.0063	0.774	0.086	0.0945	0.0034	0.32	582	49	582	20	0.00
14 56 123 166 0.0579 0.0075 0.610 0.0885 0.0705 0.0023 0.23 545 19 28 40 131 0.0585 0.0077 0.575 0.103 0.0078 0.23 545 545 24 60 103 147 0.0585 0.0077 0.575 0.103 0.0074 0.23 545 545 23 46 75 105 0.0593 0.0073 0.576 0.003 0.0025 552 545 553 <td>11</td> <td>68</td> <td>104</td> <td>173</td> <td>0.0595</td> <td>0.0049</td> <td>0.732</td> <td>0.063</td> <td>0.0893</td> <td>0.0025</td> <td>0.32</td> <td>558</td> <td>37</td> <td>552</td> <td>15</td> <td>1.08</td>	11	68	104	173	0.0595	0.0049	0.732	0.063	0.0893	0.0025	0.32	558	37	552	15	1.08
15 54 101 141 0.0583 0.0005 0.710 0.071 0.0885 0.0028 0.23 545 24 66 103 147 0.05863 0.0097 0.575 0.103 0.0740 0.0038 0.23 559 461 7.3 553 559 558 559 559 559 559 559 559 559 559 559 559 559 559 559 559 559 559 <td< td=""><td>14</td><td>56</td><td>123</td><td>166</td><td>0.0579</td><td>0.0075</td><td>0.610</td><td>0.083</td><td>0.0765</td><td>0.0032</td><td>0.31</td><td>484</td><td>52</td><td>475</td><td>19</td><td>1.86</td></td<>	14	56	123	166	0.0579	0.0075	0.610	0.083	0.0765	0.0032	0.31	484	52	475	19	1.86
19 28 48 8.8 0.0563 0.0097 0.575 0.103 0.0074 0.26 589 23 46 75 105 0.0058 0.0073 0.56 589 535 533 533 533 533 553 533 553	15	54	101	141	0.0582	0.0055	0.710	0.071	0.0885	0.0028	0.32	545	42	547	17	-0.37
24 60 103 147 0.0595 0.0027 0.786 0.093 0.0017 0.36 589 28 46 75 105 0.0668 0.0033 0.584 0.0940 0.884 0.033 0.335 579 33 83 146 206 0.0039 0.0035 0.0039 0.031 5.35 579 33 53 63 139 0.0058 0.0075 0.722 0.014 0.0389 0.031 5.35 579 57 61 118 165 0.0578 0.0075 0.729 0.0141 0.088 0.0023 0.31 534 57 61 118 165 0.0577 0.0054 0.058 0.0073 0.31 534 57 61 118 165 0.0577 0.0663 0.0577 0.0032 0.31 534 56 37 84 0.777 0.081 0.0023 0.31 534	19	28	48	88	0.0563	0.0097	0.575	0.103	0.0740	0.0038	0.29	461	66	460	23	0.22
28 46 75 105 0.0608 0.0040 0.864 0.060 0.1030 0.1034 0.333 579 33 83 146 206 0.00583 0.758 0.044 0.0039 0.33 579 561 1018 1055 0.0057 0.722 0.018 0.0038 0.31 534 579 541 579 541 579 541 579 541 570 541 578 541 579 541 573 541 579 551 554 554 554 554 554 554 554 554 554 554 554 554 554 554	24	60	103	147	0.0595	0.0027	0.786	0.039	0.0958	0.0017	0.36	589	22	590	10	-0.17
33 83 146 206 0.0393 0.0033 0.768 0.046 0.0940 0.0019 0.35 579 39 48 82 111 0.0666 0.0057 0.702 0.101 0.0039 0.21 555 51 37 64 97 0.0584 0.0079 0.562 0.0038 0.31 552 57 61 118 165 0.0574 0.0054 0.651 0.055 0.0033 0.31 552 58 37 61 120 0.0574 0.0054 0.665 0.0557 0.0033 0.31 534 68 377 81 106 0.0574 0.0053 0.057 0.0054 0.61 0.0023 0.31 534 75 264 58 120 0.0057 0.0054 0.057 0.0023 0.33 576 67 37 201 205 0.0057 0.0054 0.057 0.0023 0.31	28	46	75	105	0.0608	0.0040	0.864	0.060	0.1030	0.0024	0.33	632	32	632	14	0.00
39 48 82 111 0.0606 0.0057 0.351 0.101 0.0039 0.32 6.25 43 53 63 139 0.0584 0.0057 0.074 0.0889 0.0038 0.31 552 6.55 57 64 118 165 0.0574 0.0079 0.665 0.0038 0.31 552 6.44 97 57 61 118 165 0.0574 0.0079 0.665 0.0038 0.31 532 534 59 69 69 120 169 0.0574 0.0078 0.659 0.0073 0.31 534 562 56 50 120 169 0.0574 0.0673 0.0673 0.037 0.0023 0.33 576 57 54 58 0.0574 0.0673 0.0673 0.073 0.33 576 57 54 57 0.0673 0.0761 0.0973 0.073 0.33 <td< td=""><td>33</td><td>83</td><td>146</td><td>206</td><td>0.0593</td><td>0.0033</td><td>0.768</td><td>0.046</td><td>0.0940</td><td>0.0019</td><td>0.35</td><td>579</td><td>26</td><td>579</td><td>11</td><td>0.00</td></td<>	33	83	146	206	0.0593	0.0033	0.768	0.046	0.0940	0.0019	0.35	579	26	579	11	0.00
43 53 63 139 0.0589 0.0057 0.722 0.079 0.011 0.0881 0.0028 0.31 554 57 64 97 0.0584 0.0079 0.709 0.101 0.0881 0.0038 0.31 554 57 64 97 0.0584 0.0079 0.665 0.0987 0.0039 0.31 554 56 92 201 252 0.0574 0.0083 0.077 0.0877 0.0987 0.037 0.0374 0.037 0.0374 0.0665 0.037 0.0377 0.0987 0.0377 0.0377 0.0987 0.037 0.037 0.037 0.037 0.037 0.0073 0.33 576 68 37 58 129 0.0579 0.0073 0.33 576 0.33 576 75 266 37 0.0679 0.0679 0.0673 0.0077 0.0933 0.037 0.033 0.33 576 75 244<	39	48	82	111	0.0606	0.0068	0.851	0.100	0.1018	0.0039	0.32	625	55	625	23	0.00
51 37 64 97 0.0584 0.0079 0.709 0.709 0.709 0.709 0.701 0.0039 0.311 534 57 61 118 165 0.0578 0.0079 0.682 0.098 0.0852 0.0338 0.31 534 59 38 63 102 0.0572 0.0054 0.665 0.0655 0.0377 0.0032 0.31 534 66 37 81 106 0.0552 0.0053 0.603 0.037 0.0033 0.31 534 67 37 81 106 0.0555 0.0075 0.057 0.0075 0.037 0.0073 0.31 534 74 54 58 120 0.0557 0.0075 0.777 0.0977 0.0073 0.33 576 75 26 37 59 0.0075 0.777 0.087 0.0073 0.33 576 75 54 190 0.660	43	53	63	139	0.0589	0.0057	0.722	0.074	0.0889	0.0028	0.31	552	43	549	17	0.54
57 61 118 165 0.00578 0.0075 0.6811 0.0685 0.0038 0.31 528 59 38 63 102 0.0582 0.0054 0.691 0.0682 0.0036 0.31 534 65 92 201 252 0.0577 0.0045 0.665 0.055 0.0387 0.033 0.31 534 68 37 81 106 0.0574 0.0083 0.679 0.0671 0.033 0.33 576 75 26 37 59 0.0053 0.0078 0.377 0.081 0.0033 0.33 576 75 26 37 59 0.0063 0.0053 0.017 0.0914 0.032 0.33 576 75 26 37 59 0.0063 0.0056 0.073 0.32 513 502 75 54 0.0053 0.0074 0.777 0.0997 0.0024 0.33 593 </td <td>51</td> <td>37</td> <td>64</td> <td>97</td> <td>0.0584</td> <td>0.0079</td> <td>0.709</td> <td>0.101</td> <td>0.0881</td> <td>0.0039</td> <td>0.31</td> <td>544</td> <td>60</td> <td>544</td> <td>23</td> <td>0.00</td>	51	37	64	97	0.0584	0.0079	0.709	0.101	0.0881	0.0039	0.31	544	60	544	23	0.00
59 38 63 102 0.0532 0.0054 0.665 0.068 0.0086 0.0337 0.0026 0.31 534 65 92 201 252 0.0577 0.0645 0.665 0.057 0.0337 0.033 0.31 502 518 532 68 37 81 106 0.0574 0.0083 0.659 0.037 0.0337 0.33 576 532 518 75 54 58 129 0.0595 0.0058 0.777 0.81 0.097 0.033 0.31 502 584 75 26 37 59 0.0679 0.0058 0.777 0.81 0.097 0.0032 0.31 502 584 75 26 37 59 0.0679 0.0058 0.777 0.0933 0.0122 0.31 532 584 76 190 196 0.0679 0.0678 0.777 0.081 0.0923 0.31	57	61	118	165	0.0578	0.0079	0.682	0.098	0.0856	0.0038	0.31	528	59	529	23	-0.19
65 92 201 252 0.0577 0.0645 0.665 0.0577 0.0033 0.0337 0.0022 0.33 576 68 37 81 106 0.0574 0.0083 0.6539 0.0977 0.0038 0.31 502 518 502 74 54 58 129 0.0595 0.0073 0.077 0.0033 0.33 576 502 503 503 504 502 503 506 503 506 503 506 503 506 503 500 503 0.033 0.33 576 502 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 506 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503	59	38	63	102	0.0582	0.0054	0.691	0.068	0.0862	0.0026	0.31	534	41	533	15	0.19
68 37 81 106 0.0574 0.0083 0.653 0.007 0.00807 0.0038 0.31 502 69 69 120 169 0.0555 0.0041 0.773 0.081 0.0033 0.33 576 74 54 58 129 0.0595 0.0058 0.777 0.081 0.0033 0.33 576 75 26 37 59 0.0056 0.777 0.081 0.0033 0.33 576 90 60 135 143 0.0679 0.0056 0.777 0.087 0.0033 0.33 576 93 60 135 143 0.0679 0.0056 0.873 0.077 0.0033 0.33 576 93 68 172 176 0.0588 0.0044 0.737 0.061 0.0033 0.33 556 123 56 172 176 0.0584 0.0663 0.0770 0.0033 0.33	65	92	201	252	0.0577	0.0045	0.665	0.055	0.0837	0.0022	0.32	518	33	518	13	0.00
69 69 120 169 0.0532 0.0041 0.763 0.057 0.0034 0.0032 0.33 576 74 54 58 129 0.0555 0.0058 0.777 0.081 0.0949 0.032 0.33 576 75 26 37 59 0.0603 0.0078 0.829 0.112 0.0949 0.032 0.33 554 55 70 41 62 97 0.0679 0.0056 0.873 0.077 0.0933 0.034 0.33 556 95 76 190 196 0.0649 0.0046 0.737 0.0673 0.388 0.34 637 123 88 210 220 0.0588 0.0044 0.737 0.0679 0.078 0.33 556 133 36 172 176 0.0588 0.0044 0.738 0.0797 0.033 0.31 551 133 36 18 0.74	68	37	81	106	0.0574	0.0083	0.639	0.097	0.0807	0.0038	0.31	502	60	500	22	0.40
74 54 58 129 0.0595 0.0058 0.777 0.081 0.0949 0.0032 0.32 584 75 26 37 59 0.0663 0.0078 0.829 0.112 0.0997 0.0042 0.31 613 6 79 41 62 97 0.0597 0.0062 0.779 0.0879 0.32 584 637 90 60 135 143 0.0649 0.0046 0.737 0.0979 0.0028 0.34 637 637 913 88 210 220 0.0649 0.0044 0.737 0.061 0.0939 0.33 637 637 123 88 210 220 0.0649 0.0044 0.737 0.061 0.0939 0.33 533 531 533 531 533 531 533 534 531 533 531 533 531 533 533 533 533 533 533 <td>69</td> <td>69</td> <td>120</td> <td>169</td> <td>0.0592</td> <td>0.0041</td> <td>0.763</td> <td>0.057</td> <td>0.0934</td> <td>0.0023</td> <td>0.33</td> <td>576</td> <td>33</td> <td>576</td> <td>14</td> <td>0.00</td>	69	69	120	169	0.0592	0.0041	0.763	0.057	0.0934	0.0023	0.33	576	33	576	14	0.00
75 26 37 59 0.0603 0.0078 0.829 0.112 0.0977 0.0042 0.31 613 613 79 41 62 97 0.0577 0.0056 0.779 0.0977 0.0034 0.32 596 537 95 76 190 196 0.0649 0.0046 0.776 0.0933 0.0228 0.34 637 113 88 210 220 0.0588 0.0046 0.776 0.0979 0.0025 0.33 589 123 68 172 176 0.0588 0.0046 0.773 0.0619 0.0025 0.33 589 133 36 105 95 0.0056 0.588 0.0799 0.0033 0.31 513 133 36 105 95 0.0055 0.831 0.0799 0.0033 0.31 513 133 36 182 219 0.0559 0.831 0.033 532	74	54	58	129	0.0595	0.0058	0.777	0.081	0.0949	0.0032	0.32	584	46	584	19	0.00
79 41 62 97 0.0597 0.0066 0.799 0.088 0.0970 0.0034 0.32 596 90 60 135 143 0.0679 0.0066 0.873 0.077 0.0933 0.0028 0.34 637 596 95 76 190 196 0.0649 0.0049 0.786 0.063 0.0024 0.33 589 589 113 88 210 220 0.0649 0.0046 0.737 0.061 0.0023 0.33 589 123 68 172 176 0.0584 0.0046 0.738 0.079 0.0023 0.32 533 133 36 105 95 0.0064 0.6684 0.786 0.0073 0.0023 0.31 533 133 36 105 95 0.0064 0.6684 0.786 0.0073 0.031 0.31 533 133 36 105 0.083 0.0793	75	26	37	59	0.0603	0.0078	0.829	0.112	0.0997	0.0042	0.31	613	62	612	25	0.16
90 60 135 143 0.0679 0.0056 0.873 0.077 0.0933 0.0028 0.34 637 95 76 190 196 0.0649 0.0049 0.736 0.0673 0.0879 0.033 589 113 88 210 220 0.0588 0.0046 0.737 0.061 0.0025 0.33 589 123 68 172 176 0.0588 0.0046 0.737 0.061 0.0025 0.32 543 133 36 105 95 0.0644 0.0045 0.588 0.079 0.0826 0.33 533 133 36 105 95 0.0643 0.0658 0.0658 0.0031 0.31 573 133 36 112 74 0.0532 0.831 0.0929 0.031 0.31 573 134 79 139 0.740 0.735 0.0939 0.31 573 141	62	41	62	97	0.0597	0.0062	0.799	0.088	0.0970	0.0034	0.32	596	50	597	20	-0.17
95 76 190 196 0.0649 0.0049 0.737 0.061 0.0025 0.33 589 113 88 210 220 0.0588 0.0046 0.737 0.061 0.0909 0.025 0.32 561 123 68 172 176 0.0584 0.0045 0.737 0.061 0.0909 0.0025 0.32 561 124 26 44 71 0.0580 0.0066 0.658 0.079 0.0827 0.31 513 513 133 36 105 95 0.0580 0.0064 0.658 0.079 0.0837 0.31 513 513 513 513 513 513 513 529 543 529 529 529 513 529 513 573 513 573 573 543 573 541 573 541 573 541 573 541 573 541 573 541 573	90	60	135	143	0.0679	0.0056	0.873	0.077	0.0933	0.0028	0.34	637	42	575	16	9.73
II3 88 210 220 0.0588 0.0046 0.737 0.061 0.0909 0.0025 0.32 561 I23 68 172 176 0.0584 0.0045 0.708 0.058 0.0023 0.32 543 I24 26 44 71 0.0577 0.0066 0.658 0.079 0.0827 0.0031 0.31 513 513 I33 36 105 95 0.0580 0.0064 0.658 0.079 0.0827 0.31 529 I33 36 182 219 0.0603 0.0055 0.831 0.080 0.0031 0.31 529 I33 30 61 74 0.0592 0.0047 0.758 0.0633 0.323 614 9 I33 35 61 83 0.0633 0.0758 0.0899 0.0031 0.31 573 I34 79 198 0.0591 0.0073 0.818 0.105	95	76	190	196	0.0649	0.0049	0.786	0.063	0.0879	0.0024	0.33	589	36	543	14	7.81
123 68 172 176 0.0584 0.0045 0.708 0.058 0.00827 0.031 0.32 543 513 124 26 44 71 0.0577 0.0066 0.658 0.079 0.0827 0.0031 0.31 513 513 513 133 36 105 95 0.0580 0.0064 0.684 0.079 0.0827 0.0031 0.31 513 529 134 96 182 219 0.00603 0.0055 0.831 0.080 0.1000 0.031 0.32 573 513 529 138 30 61 74 0.0592 0.0047 0.758 0.063 0.0023 0.31 573 614 573 141 79 139 198 0.0591 0.0039 0.740 0.051 0.0929 0.31 573 562 513 562 513 562 513 562 513 562 513 562 513 562 523 562 523 562 523 562	113	88	210	220	0.0588	0.0046	0.737	0.061	0.0909	0.0025	0.32	561	36	561	15	0.00
124 26 44 71 0.0577 0.0066 0.658 0.079 0.0827 0.0031 0.31 513 513 133 36 105 95 0.0580 0.0064 0.684 0.079 0.0856 0.0031 0.31 529 5 134 96 182 219 0.0603 0.0055 0.831 0.080 0.1000 0.031 0.32 614 4 138 30 61 74 0.0592 0.0047 0.758 0.063 0.0024 0.31 573 614 2 139 29 42 68 0.0600 0.0073 0.818 0.105 0.0039 0.31 573 <	123	68	172	176	0.0584	0.0045	0.708	0.058	0.0880	0.0023	0.32	543	34	543	14	0.00
133 36 105 95 0.0580 0.0064 0.684 0.079 0.0856 0.0030 0.31 529 6 134 96 182 219 0.0603 0.0055 0.831 0.080 0.1000 0.031 0.32 614 4 138 30 61 74 0.0592 0.0047 0.758 0.063 0.0029 0.0031 0.31 573 514 4 139 29 42 68 0.0600 0.0073 0.818 0.105 0.0929 0.013 607 573 563 573 <td>124</td> <td>26</td> <td>44</td> <td>71</td> <td>0.0577</td> <td>0.0066</td> <td>0.658</td> <td>0.079</td> <td>0.0827</td> <td>0.0031</td> <td>0.31</td> <td>513</td> <td>48</td> <td>512</td> <td>18</td> <td>0.19</td>	124	26	44	71	0.0577	0.0066	0.658	0.079	0.0827	0.0031	0.31	513	48	512	18	0.19
134 96 182 219 0.0603 0.0055 0.831 0.080 0.1000 0.0031 0.32 614 4 138 30 61 74 0.0592 0.0047 0.758 0.063 0.0029 0.031 0.31 573 573 139 29 42 68 0.0600 0.0073 0.818 0.105 0.0929 0.031 6.31 573 <t< td=""><td>133</td><td>36</td><td>105</td><td>95</td><td>0.0580</td><td>0.0064</td><td>0.684</td><td>0.079</td><td>0.0856</td><td>0.0030</td><td>0.31</td><td>529</td><td>47</td><td>530</td><td>18</td><td>-0.19</td></t<>	133	36	105	95	0.0580	0.0064	0.684	0.079	0.0856	0.0030	0.31	529	47	530	18	-0.19
138 30 61 74 0.0592 0.0047 0.758 0.063 0.0024 0.31 573 573 139 29 42 68 0.0600 0.0073 0.818 0.105 0.0989 0.0039 0.31 573	134	96	182	219	0.0603	0.0055	0.831	0.080	0.1000	0.0031	0.32	614	44	615	18	-0.16
139 29 42 68 0.0600 0.0073 0.818 0.105 0.0989 0.0039 0.31 607 33 141 79 139 198 0.0591 0.0039 0.740 0.051 0.0909 0.0021 0.33 562 33 143 35 61 83 0.0597 0.0048 0.792 0.067 0.0903 0.0026 0.31 592 32 148 35 52 82 0.0619 0.0115 0.770 0.150 0.0903 0.0054 0.31 580 3 148 35 52 82 0.0619 0.0115 0.770 0.150 0.0903 0.0054 0.31 580 3 Примезание. В прелставленных результатах не обнаружено присуствие нералиогенно свиниа. 206 Pb* - концентрация свиниа. расст 206 Pb* - концентрация свисст	138	30	61	74	0.0592	0.0047	0.758	0.063	0.0929	0.0024	0.31	573	37	573	14	0.00
141 79 139 198 0.0591 0.0039 0.740 0.051 0.0909 0.0021 0.33 562 3 143 35 61 83 0.0597 0.0048 0.792 0.067 0.0963 0.0026 0.31 592 3 148 35 52 82 0.0619 0.0115 0.770 0.150 0.0903 0.0054 0.31 580 3 Примечание. В представленных результатах не обнаружено присутствие нерадиогенного свинца. ²⁰⁶ Pb* – концентрация свинца. расст	139	29	42	68	0.0600	0.0073	0.818	0.105	0.0989	0.0039	0.31	607	59	608	23	-0.16
143 35 61 83 0.0597 0.0048 0.792 0.067 0.0963 0.0026 0.31 592 33 148 35 52 82 0.0619 0.0115 0.770 0.150 0.0903 0.0054 0.31 580 36 Примечание. В представленных результатах не обнаружено присутствие нералиогенного свиниа. ²⁰⁶ Pb* - концентрация свиниа. расст 280 28 20 <td>141</td> <td>79</td> <td>139</td> <td>198</td> <td>0.0591</td> <td>0.0039</td> <td>0.740</td> <td>0.051</td> <td>0.0909</td> <td>0.0021</td> <td>0.33</td> <td>562</td> <td>30</td> <td>561</td> <td>12</td> <td>0.18</td>	141	79	139	198	0.0591	0.0039	0.740	0.051	0.0909	0.0021	0.33	562	30	561	12	0.18
148 35 52 82 0.0619 0.0115 0.770 0.150 0.0903 0.0054 0.31 580 8 Примечание. В представленных результатах не обнаружено присутствие нерадиогенного свинца. ²⁰⁶ Pb* – концентрация свинца. ^{расст} 580 8	143	35	61	83	0.0597	0.0048	0.792	0.067	0.0963	0.0026	0.31	592	38	593	15	-0.17
Примечание. В представленных результатах не обнаружено присутствие нерадиогенного свинца. ²⁰⁶ Ро [*] – концентрация свинца, расс	148	35	52	82	0.0619	0.0115	0.770	0.150	0.0903	0.0054	0.31	580	86	557	32	3.97
фициент корреляции отношений ²⁰⁷ Pb/ ²³⁸ U. D – лискорлантность.	Примечан фициент к	ие. В пред	цставленн и отноше	ых резулы ний ²⁰⁷ Рb,	татах не обнар. /235U206pb/2	ужено прис ³⁸ U: D – ли	утствие нера скорлантно	адиогенно сть.	ого свинца. ² '	⁰⁶ Pb* – Ko	нцентрац	ия свинца, р	ассчитан	ная по изотс	лту ²⁰⁶ Рb	. R – коэф-

18

ШАРДАКОВА и др.

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 31 № 3 2023

№	Т, млн лет	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2σ	$\epsilon_{\rm Hf}(t)$	T(DM), млн лет	T(DM) ^C , млн лет	¹⁷⁶ Hf/ ¹⁷⁷ Hf _t
130	2189	0.02781	0.00085	0.282025	0.000093	21.4	1717	1418	0.281989
97	1599	0.04273	0.00101	0.282171	0.000051	13.3	1522	1474	0.282140
16	1354	0.03217	0.00076	0.281982	0.000050	0.8	1798	2080	0.281962
28	632	0.05977	0.00129	0.282455	0.000059	2.3	1129	1444	0.282440
75	612	0.03984	0.00094	0.282474	0.000078	2.6	1097	1403	0.282463
139	608	0.04106	0.00099	0.282352	0.000074	-2.1	1276	1699	0.282341
79	597	0.04384	0.00100	0.282389	0.000072	-1.1	1232	1634	0.282377
77	595	0.06072	0.00127	0.282541	0.000087	4.8	996	1251	0.282527
24	590	0.05887	0.00152	0.282391	0.000069	-0.6	1211	1602	0.282374
72	590	0.09273	0.00213	0.282405	0.000087	-0.04	1200	1586	0.282382
33	579	0.08599	0.00242	0.282432	0.000080	-0.04	1196	1586	0.282405
138	573	0.05208	0.00123	0.282480	0.000060	1.4	1112	1453	0.282467
121	565	0.05204	0.00125	0.282319	0.000093	-4.7	1349	1844	0.282305
145	563	0.09223	0.00199	0.282459	0.000087	0.6	1151	1522	0.282438
82	550	0.06448	0.00143	0.282486	0.000087	1.0	1112	1467	0.282471
12	543	0.08311	0.00180	0.282346	0.000065	-3.4	1289	1762	0.282328
133	530	0.04132	0.00105	0.282433	0.000098	-1.0	1169	1574	0.282423
38	514	0.04271	0.00096	0.282254	0.000079	-8.2	1437	2022	0.282244
2	507	0.06262	0.00129	0.282297	0.000083	-6.2	1360	1901	0.282285
13	493	0.07442	0.00160	0.282438	0.000087	-2.4	1202	1650	0.282423

Таблица 4. Результаты анализа Lu-Hf изотопной системы и модельный возраст цирконов из гранитов массива Водораздельный

Примечание. Номера зерен соответствуют таковым в табл. 2, 3. Т – ²⁰⁶Pb/²³⁸U возраст циркона. ¹⁷⁶Hf/¹⁷⁷Hf_t – первичное отношение изотопов, пересчитанное на U–Pb возраст. $\varepsilon_{\rm Hf}(t)$ – отклонение измеренного изотопного отношения ¹⁷⁶Hf/¹⁷⁷Hf от изотопного отношения ¹⁷⁶Hf/¹⁷⁷Hf в CHUR (хондритовый резервуар), выраженное в десятитысячных долях. T(DM), T(DM)^C – модельные Hf-возрасты источника, рассчитанные с учетом выплавления магмы из деплетированной мантии, и по двухстадийной модели, основанной на выплавлении магмы из континентальной коры.

имеющие в основном негативные величины $\varepsilon_{Hf}(t)$ от –1 до –8. Исключение составляют зерна 145 и 82, в которых значение $\varepsilon_{Hf}(t)$ слабо положительное.

На рис. 11 цирконы разных групп обозначены разными знаками. Большая часть их лежит ниже линии DM, приближаясь к CHUR, и чуть ниже последней. По мнению авторов, можно говорить о тенденции понижения величины $\varepsilon_{\rm Hf}(t)$ по мере омоложения цирконов.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Возрастные соотношения гранитных массивов Кожимского блока, эволюция геодинамических обстановок

Как было показано выше, в последних редакциях Государственной геологической карты 1 : 200000 (Иванов и др., 2013б) Кожимский, Вангырский и Водораздельный массивы отнесены к венднижнекембрийскому сальнерско-маньхамбовскому (II фаза) комплексу. В работе (Удоратина и др., 2020) отмечается, что при такой трактовке

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

возраст кожимских гранитов "коррелирует с рифтогенными геодинамическими условиями (520– 480 млн лет), при которых выплавлялись граниты с характеристиками А-типа гранитов, последовавшими за надсубдукционно-аккреционными, коллизионными, синколлизионными и постколлизионными процессами (640–520 млн лет), при которых происходило формирование гранитоидов различных типов S, I, A".

С другой стороны, в статье (Пыстин, Пыстина, 2011) приводится U–Pb датировка 598 ± 3 млн лет, которую данные авторы трактуют как возраст Кожимского массива. К сожалению, неясно, из одной ли части гранитного тела были отобраны пробы для датировок разными авторами; содержания же U, Pb, Th в цирконах обоих проб сильно различаются, а анализ литературных данных показывает, что в строении Кожимского массива могут участвовать тела разного состава и возраста.

Величины $\varepsilon_{\rm hf}(t)$ в цирконах Кожимского массива (комплекса) дают сильный разброс от -2 до 3.4, указывая на неоднородность субстрата. Не-

19

том 31 № 3 2023

Рис. 12. Обобщенная диаграмма Y–Nb для главных геодинамических типов гранитоидов Урала. Обобщенные поля приведены по (Kholodnov et al., 2021). 1 – внутриплитные рифтогенные плюм-зависимые серии, R₂₋₃ (западный склон Урала, край Восточно-Европейской платформы), 2 – плюм-зависимые серии "тиманского" этапа, V–€ (Ишеримский, Ляпинский антиклинории и др.), 3 – островодужные серии (O₃–D₂); 4 – надсубдукционные окраинно-континентальные серии габбро-тоналит-гранодиорит-гранитного типа (D₃–C₃), Средний Урал (Верхисетский, Шарташский, Каменский массивы и др.); 5 – коллизионные корово-анатектические гранитные серии, P₁₋₂ (Джабыкский, Мурзинский, Адуйский массивы и др.); 6 – N-MORB, 7 – Е-MORB, 8 – OIB, по (Sun, McDonough, 1989); 9, 10 – гранитоиды из массивов: 9 – Вангырского, 10 – Кожимского; 11, 12 – I и II фазы сальнерско-маньхамбовского комплекса; 13 – массива Водораздельный, 14 – риолиты саблегорского комплекса (Кузнецов, Удоратина, 2007; Душин и др., 2017; Удоратина и др., 2020). Серое поле объединяет главные плюм-зависимые разновозрастные гранитоидные серии Урала (Kholodnov et al., 2021).

которые авторы относят кожимские граниты к А-типу, что сближает их с гранитоидами II фазы сальнерско-маньхамбовского комплекса. Но есть и определенные различия: в породах сальнерскоманьхамбовского комплекса величина $\varepsilon_{\rm Hf}(t)$ более высокая (4–10); кроме того, существенная часть точек кожимских составов явно попадает в поле I-гранитов (рис. 3).

Датирование (U–Pb) гранитов Вангырского массива дало значение 598 ± 5 млн лет (Кузнецов, Удоратина, 2007), эти породы отвечают І-гранитам и по петрогеохимическим параметрам близки к надсубдукционным образованиям. В них зафиксированы существенно позитивные величины $\epsilon_{\rm Hf}(t)$ от 2 до 6, предполагающие присутствие мантийного вещества в субстрате. Некоторые особенности составов и наличие древних ядер в цирконах (1224 млн лет) указывают на определенную роль осадочного компонента в субстрате. По мнению О.В. Удоратиной, граниты Вангырского массива образовались в обстановке активной окраины или энсиалической островной дуги (Кузнецов, Удоратина, 2007).

Отметим, что в перечисленном наборе объектов наибольшей неоднородностью параметров характеризуются граниты II фазы сальнерско-маньхамбовского комплекса, которые проявляют определенную конвергентность геохимических характеристик (границы полей, переменный субстрат). В работе (Холоднов и др., 2022) показано, что они образованы из гетерогенных источников, с участием вещества E-MORB + OIB-типов, то есть при высокой степени плюм-литосферного взаимодействия. Одним из важных показателей последнего является низкая величина Y/Nb отношения (1.2 и ниже) (рис. 12). По мнению ряда авторов (Udoratina et al., 2021), граниты этого комплекса внедрялись на этапе постколлизионного растяжения, предшествующего началу развития Протоуральского палеоокеана; есть также точка зрения о том, что около 520 млн лет назад в Маньхамбовском блоке (юг Ляпинского антиклинория) существовали условия трансформной окраины дивергентного типа, что по типу движений не противоречит первой точке зрения. Начинают же данный этап, возможно, кислые (суб)вулканиты в составе саблегорской свиты, геохимические параметры которых частично отвечают А-гранитам. Их появление могло быть связано с началом влияния плюма (Y/Nb около 1; позиция, близкая к OIB) при сохранении некоторой роли субдукционного вклада и коровой контаминации (Холоднов и др., 2022).

Какова же позиция гранитов массива Водораздельный в данном ряду образований? Для сравнения на различные диаграммы, кроме точек пород этого массива, были нанесены точки Кожимского, Вангырского массивов, составы двух фаз сальнерско-маньхамбовского комплекса, а также субвулканических риолитов, по которым определялся возраст саблегорской свиты (494—583 млн лет) (Кузнецов, Удоратина, 2007; Душин и др., 2017; Удоратина и др., 2020), о них речь пойдет ниже.

Как нами было показано выше, в цирконах из гранитов массива Водораздельный фиксируется 3 возрастных кластера (502 ± 7 млн лет, 548 ± 5 млн лет, 593 ± 5 млн лет). По нашему мнению, исходя из анализа особенностей химического состава, степени сохранности и внутреннего строения зерен циркона, возраст породы составляет 593 ± 5 млн лет. Он практически совпадает с возрастом гранитов Вангырского массива, расположенного в том же сегменте Ляпинского антиклинория (Иванов и др., 2013а) и относимого также к сальнерско-маньхамбовскому комплексу.

По содержаниям SiO₂ граниты массива Водораздельный наиболее близки к породам I фазы сальнерско-маньхамбовского комплекса. В Вангырском и Кожимском массивах преобладают несколько более кремнекислые разности, но это может говорить и о разной степени эрозионного среза или недостаточном наборе анализов. В пределах общего интервала по SiO₂ (70-77 мас. %) граниты указанных трех массивов (включая массив Водораздельный) и пород I фазы сальнерскоманьхамбовского комплекса имеют близкие уровни содержаний ряда элементов-примесей (Rb, Sr, Hf, Ta, Th). Однако по ключевым элементам Y, Nb и их соотношению наиболее сходны между собой составы гранитов массивов Вангырского и Водораздельного: в большей части их проб Y/Nb = 2-5, что близко к позиции источника E-MORB и характерно для надсубдукционных образований, как было показано в работе (Холоднов и др., 2022). Отметим, что среди пород массива Водораздельный имеются пробы с повышенными содержаниями Y, Nb, а для единичной точки Y/Nb < 1. Все эти факты могут говорить о неоднородности субстрата или проявлениях процесса контаминации.

Породы II фазы сальнерско-маньхамбовского комплекса существенно отличаются от указанных гранитов по концентрациям всех упомянутых выше элементов, по величине Y/Nb они близки к OIB и отвечают плюм-зависимым образованиям. Точки пород Кожимского массива по величине Y/Nb занимают промежуточную позицию (Y/Nb = 1-2), что может говорить о смешанном типе источника (OIB + E-MORB). С точки зрения некоторых исследователей (Пучков, 2000; Холоднов и др., 2022), рост доли OIB-компонента в источнике может указывать на влияние плюмового фактора (вещество + энергия?) в генерации гранитоидов.

Считается (Фор, 1989; Мартынов, 2010 и др.), что главными источниками магм надсублукционных серий могут быть породы мантийного клина, "субдукционный компонент", представленный флюидами, возникшими при дегидратации вещества слэба, и расплавы, образовавшиеся при плавлении базитов и осадков субдуцирующей океанической плиты. Состав мантийного компонента, не модифицированного действием субдукционного флюида, позволяют охарактеризовать отношения ряда элементов, инертных во флюидной фазе: Nb/Yb, Ta/Yb и др. Значения Nb/Yb в породах массива Водораздельный составляют 4–8, что существенно выше, чем в MORB (Nb/Yb = 0.76; McDonough, Sun, 1995), то есть мог плавиться исходно более обогащенный мантийный субстрат, а не деплетированная мантия. Высокие значения отношения Th/Yb = 3-9 косвенно указывают на вклад в формирование гранитов массива Водораздельный субдукционного компонента. Распределение редких элементов в гранитах может быть вызвано и другими факторами. Например, обогащение их Th (по сравнению с океаническими базальтами) может быть вызвано присутствием осадочных пород или более древних гранитоидов (гнейсов) в коровом очаге плавления. Влияние мантийных процессов на состав коровых гранитов может быть опосредованным, через частичное плавление мантийных базитов или смешивание мантийных магм и флюидов с коровым веществом во вторичных очагах плавления. По соотношениям (La/Yb)_n-Yb (Martin, 1993) большая часть составов гранитов массива Водораздельный попадает в поле "классических островодужных пород", что также косвенно может указывать на базитовую составляющую в субстрате.

На рис. 13 приведены также некоторые другие соотношения, позволяющие уточнить роль субдукционного и плюмового факторов. Помимо фигуративных точек гранитов Приполярного Урала, нанесены поля типичных надсубдукционных палеозойских гранитов Уральского орогена, а также плюм-зависимых гранитоидов из его различных секторов (авторская база данных). Здесь также прослеживается близость точек гранитов массивов Водораздельного и Вангырского и их сходство с породами надсубдукционных серий, тогда как граниты обеих фаз сальнерско-маньхамбовского комплекса лежат в полях плюм-зависимых образований, а кожимские граниты

Рис. 13. Диаграммы отношений редких элементов, характеризующие вклад различных источников и процессов в петрогенезис кислых пород массива Водораздельный и его возможных аналогов. Диаграмма на рис. 13а взята из работы (Kepezhinskas et al., 1997), диаграммы на рис. 13б, 13в – авторские варианты комбинаций индикаторных элементов, также отражающие вклад различных источников в петрогенезис гранитов (Холоднов и др., 2022). Используя собственную базу данных, мы нанесли на эти диаграммы поля составов гранитоидов Уральского орогена – типичных представителей надсубдукционных (Верхисетский, Шабровский, Суховязовский, Краснинский и мн. др. массивы, всего 148 образцов, темно-серое поле) и плюм-зависимых образований (Степнинский, Увильдинский, Козлиногорский массивы и др., 50 образцов, светло-серое поле). Условные обозначения см. рис. 2.

занимают промежуточное положение. Отметим, однако, что в гранитах массива Водораздельный относительно невысоки содержания Ва, связанные либо с постмагматическими изменениями, либо, как вариант, с тем, что вовлекаемые в качестве компонента субстрата базальты океанической коры подвергались изменениям, приведшим к выносу Ва (Yan et al., 2019). За счет этого одна из важных характеристик надсубдукционных образований — высокая величина Ва/La (>30;-Ферштатер, 2013) — в гранитах массива Водораздельный несколько понижена (в среднем 8). Отметим, что на всех диаграммах в позиции точек гранитов массива Водораздельный можно также проследить неоднородность, сходство ряда составов с плюмзависимыми гранитами. С другой стороны, по соотношению ряда элементов они близки к составу верхней континентальной коры (рис. 5б) и коллизионным образованиям (рис. 4), что указывает на важную долю сиалического вещества в их генезисе.

По нашему мнению, комплекс геохронологических, петрогеохимических и изотопных данных не позволяет относить гранитоиды массивов Водораздельный и Вангырский ко II фазе сальнерско-маньхамбовского комплекса. Как показано выше, по некоторым параметрам граниты массива Водораздельный близки к породам I фазы этого комплекса, но по другим — существенно отличаются от него. Возраст этих массивов более древний, субстрат гетерогенный, петрогеохимия явно "надсубдукционная", в составах почти не отражается влияние плюмового фактора (см. соотношения компонентов на рис. 12, 13). Вероятно, это еще не коллизионные или постколлизионные образования; они были генерированы на заключительных стадиях эволюции континентальной окраины (возможно, при переходе субдукции во внутриплитовую форму (Аплонов, 2001)) и представляют отдельный эпизод гранитообразования на Приполярном Урале.

Граниты Кожимского массива, по крайней мере те из них, составы которых на многих петрохимических диаграммах лежат ближе к точкам гранитов Вангырского и Водораздельного массивов, нежели к породам II фазы сальнеро-маньхамбовского комплекса, правомернее соотносить с первыми двумя образованиями. Поэтому, принимая за возраст массивов датировки 598 млн лет, авторы поддерживают точку зрения (Пыстин, Пыстина. 2011) о правомерности выделения при геокартировании комплекса гранитоидов с возрастом около 598 млн лет, которые следует относить к концу неопротерозоя (эдиакарию, интервал 635-541 млн лет; Cohen et al., 2013) или венду, согласно уральским подразделениям (Семихатов и др., 2015). Стоит ли такой комплекс именовать "кожимским" вопрос спорный, поскольку гранитоидные тела в рамках Кожимского массива могут оказаться разнородными.

По мнению авторов, пока остается открытым вопрос о взаимоотношениях гранитов массива Водораздельный с породами саблегорской свиты, а также о составе, ореоле развития и возрасте последней. При съемке 1982 г. (Дашкевич, Гессе, 1982) на карте отрисован интрузивный контакт массива Водораздельный (запад) с породами этой свиты. В последней редакции Государственной геологической карты (Иванов и др., 2013а) западный контакт массива срезан разрывным нарушением, саблегорская свита в контакте с массивом Водораздельный не показана (хотя в тексте упомянуто, что контакт есть); с севера наблюдается взаимоотношение гранитов этого массива с арьяншорской толшей (содержащей вендские микрофоссилии). "В юго-западном углу территории листа (Q-40-XXX – прим. авт.) отложения арьяншорской толщи согласно перекрывают кислые вулканиты саблегорской свиты; в остальных случаях "пестроцветы" залегают с размывом на сланцах мороинской, либо на кварцитах хобеинской свиты..." (Иванов и др., 2013а). Относительно контактов массива Водораздельный с вмещающими породами отмечается только то, что "контакты извилистые, неровные, резкие". Датировки же пород саблегорской свиты следующие. В цирконах из метариолитов и метабазальтов ареала развития вулканитов саблегорской свиты в верховья р. Печора фиксируются 2 возрастные группы:

 583 ± 4 и 495 ± 5 млн лет. Нижнее пересечение дискордии с конкордией дало 478 ± 150 млн лет и верхнее -591 ± 150 млн лет (SHRIMP-2) (Ильясова и др., 2017). Поэтому авторы данной карты считают, что кристаллизация риолитов происходила в венде, а позднее, в связи с тектоно-термальным воздействием, образовались более молодые зерна. Точки метабазальтов не лежат на линии согласования, что свидетельствует о нарушении изотопных отношений. "Построение линии дискордии дало оценку возраста 547 \pm 25 млн лет (n = 12, CKBO = 0.75), которая может соответствовать возрасту кристаллизации базальтов" (Ильясова и др., 2017). Имеются более ранние датировки цирконов из пород, относимых к саблегорской свите: из кислых эффузивов Малопатокского района - 642 млн лет (Червяковский и др., 1992), из вулканитов хребта Малды-Нырд – 586 ± 12 млн лет (Волчек, 2004); методом TIMS из риолитов этого хребта — 519 \pm ± 17 млн лет (Соболева, 2004). Возраст (LA ICP-MS) метариолитов горы Нейлентумп составляет 568.3 ± 4.3 млн лет (Ильясова и др., 2017).

Широкий набор датировок позволяет авторам карты листа Q-40-XXX предполагать, что в состав саблегорской свиты включены разновозрастные (вендские и позднекембрийские) вулканические породы, либо все значения около 494 млн лет отражают возраст метаморфизма. По их мнению, вопрос о возрасте метавулканитов, относимых к саблегорской свите, требует дальнейшего изучения.

Заметим, что значения около 494 млн лет встречаются в зонах цирконов из разных объектов: из метабазальтов южного ареала развития саблегорской свиты, из гранитоидов сальнерско-маньхамбовского комплекса (Душин и др., 2017). Близкие (с учетом погрешности) возрастные кластеры обнаружены и в цирконах массивов Кожимский и Водораздельный. Поэтому мы склонны присоединиться к заключению об этапе метаморфизма, проявленном в породах саблегорской свиты (и изучаемых нами массивов) в указанном интервале. Напомним, что в измененных цирконах массива Водораздельный существует также популяция 548 ± 5 млн лет, возраст которой почти идентичен "гипотетическому" возрасту кристаллизации базальтов саблегорской свиты (см. выше). Поэтому, скорее всего, это также возраст метаморфического события, наложенного на более древние образования.

Петрогеохимические особенности субвулканитов саблегорской свиты тем не менее не позволяют сопоставлять их (по источнику и геодинамическому режиму) с гранитами массивов Водораздельный и Вангырский, а также принять точку зрения о том, что саблегорские вулканиты секутся этими гранитами. По нашему мнению, породы саблегорской свиты изучены недостаточно и вполне могут объединять образования разного возраста и даже генезиса. Об этом свидетельству-

ет неоднородность их состава (Холоднов и др., 2022), подобная таковой в гранитах, объединяемых в I и II фазу сальнерско-маньхамбовского комплекса, где в близкое время плюмовая компонента и коровая составляющая, по-видимому, взаимодействовали на разных уровнях и в разных соотношениях. Сходство параметров, в частности показательная величина отношения Y/Nb, указывает на присутствие в протолите саблегорских риолитов компоненты OIB-типа, характерной для плюм-зависимых магматитов, и в частности для гранитов сальнерско-маньхамбовского комплекса. Последний же существенно моложе (около 520 млн лет), чем граниты массивов Водораздельный и Вангырский, которые, как показано выше, характеризуются "надсубдукционными" геохимическими параметрами. И два последних утверждения хорошо увязываются между собой, поскольку процесс Тиманского орогенеза в этом секторе непосредственно следовал за субдукцией. Таким образом, реальные датировки саблегорской свиты, по нашему мнению, могут быть моложе возраста гранитов массива Водораздельный (598 млн лет) и лежать в интервале 583-568 млн лет (ранний венд), а состав образований, объединяемых в данную свиту, нуждается в более подробном рассмотрении. U-Pb возраст цирконов из субвулканических трахириолитов залегающей (несогласно?) выше по разрезу лаптопайской свиты составляет 554 ± 4 и 556 ± 11 млн лет (Душин и др., 2017).

Если принимать во внимание точку зрения Н.Б. Кузнецова (Кузнецов и др., 2007; Кузнецов, 2009) о том, что в начале кембрия имела место коллизия континентов Балтики (часть остова современной Восточно-Европейской платформы) и Арктиды, то надсубдукционные гранитоиды условно "кожимского комплекса" (указанные три массива: Водораздельный. Вангырский. Кожимский. в частности), относимые к протоуралидам, "являются вещественным выражением субдукции под Большеземельскую активную окраину Арктиды, а... породы І-типа с возрастом 560-515 млн. лет маркируют собой этап коллизии Тиманской пассивной окраины Балтики и Большеземельской активной окраины Арктиды" (Кузнецов и др., 2007). Затем имело место внедрение А- и S-гранитоидов (в том числе и саблегорских риолитов), связанных с коллизией, постколлизионными дивергентными процессами и, возможно, с плюмовой активностью. Полученные в нашей работе данные не противоречат этой точке зрения, исключая (в случае массива Водораздельный) влияние плюмового фактора.

О составе субстрата для выплавления гранитоидов Кожимского блока

Рассмотрим косвенные данные, позволяющие сделать некоторые предположения о субстрате

для выплавления гранитов данного блока. Точки состава пород массива Водораздельный (и Вангырского массива) образуют поле, сдвинутое из области метапелитов в поле метаграувакк (рис. 14в), ряд точек лежит близко к зоне влияния метабазитового субстрата; по соотношениям Rb, Ba, Sr (рис. 14г) точки составов рассматриваемых пород находятся в области базальтоидного источника. Индикаторные отношения в цирконах (рис. 14а, 14б) также указывают на существенно океанический тип субстрата для гранитов массива Водораздельный. Скудные данные по содержанию микроэлементов в нескольких зернах циркона Кожимского массива показывают, что точки их состава лежат в поле континентальных цирконов. Но, как показано выше, этот массив (или часть его гранитов) может быть более молодым и мог генерироваться при смене геодинамического режима и, соответственно, из иного источника.

Интерпретации составов субстрата для многих гранитоидов Приполярного Урала, в частности для распространенных в контурах Ляпинского антиклинория (Udoratina et al., 2021; Холоднов и др., 2022), неоднозначны. В работах (Kholodnov et al., 2021; Холоднов и др., 2022) показана применимость диаграммы Y-Nb для установления различий между гранитами разных геодинамических обстановок и предварительных оценок состава субстрата, в том числе и для кислых пород. Гетерогенность субстрата массива Водораздельный подчеркивается рядом фактов. С одной стороны, на диаграммах, связывающих химический состав цирконов с составом субстрата, большая часть точек массива Водораздельный попадает в поле океанических образований, указывая на влияние мафической составляющей в субстрате. Величина Y/Nb в гранитах изученного массива невысока, близка к таковой E-MORB, но уровни содержаний этих элементов сильно варьируют. Величина отношения составляет $Na_2O/K_2O > 0.5$, что, согласно представлениям Чаппела и Уайта (Chappell, White, 1992), указывает на магматогенный характер протолита. С другой стороны, цирконы массива Водораздельный содержат много древних ядер с U–Pb возрастом от 2190 до 780 млн лет, что подразумевает участие в их генерации вещества фундамента континента. При этом важно отметить, что обломки магматогенных цирконов с такими возрастами (2060-900 млн лет) широко распространены в позднерифейских и раннепалеозойских песчаниках Полярного Урала, Южного и Среднего Тимана, формировавшихся за счет длительного разрушения северо-восточной окраины Восточно-Европейского кратона (Kuznetsov et al., 2010; Андреичев и др., 2013; Красоткина и др., 2020).

Граниты массива Водораздельный являются пералюминиевыми, что тоже косвенно указывает на присутствие метаосадочного материала в субстрате.

Рис. 14. Диаграммы для определения состава субстрата для выплавления гранитоидов. (а, б) – по параметрам состава пород (Sylvester, 1998; Altherr et al., 2000), (в, г) – по параметрам состава цирконов (Grimes et al., 2007). Условные обозначения см. рис. 2.

Lu-Hf изотопные данные должны служить наиболее достоверными индикаторами состава субстрата, поскольку в цирконах эта система устойчива к воздействию наложенных процессов. Анализ данных по поведению изотопов Lu и Hf в цирконах из гранитов массива Водораздельный позволяет сделать следующие заключения. Здесь показателем вклада ювенильного материала служат ядра с высокими положительными значениями $\varepsilon_{Hf}(t)$, эти ядра имеют палео- и мезопротерозойский возраст 2189 и 1599 млн лет (табл. 4). Положение точек этих цирконов существенно выше линии DM, что встречается крайне редко, и высокие значения (13, 21) $\epsilon_{\rm Hf}(t)$ для пород такого возрастного уровня могут являться аналитическим артефактом. Перечень ошибок, возможных при использовании данного метода на близком по классу оборудовании, хорошо описан в работе (Лохов и др., 2009) и был учтен при анализе наших образцов. По нашему мнению, они не должны иметь место. Поэтому мы оставили результаты измерений в табл. 4, в дальнейшем планируется провести дополнительные исследования по цирконам сходного облика и морфологического типа и подтвердить либо опровергнуть эти данные.

Весьма экзотический вариант объяснения экстремального поведения Hf приводится в работе (Лохов и др., 2009); правда, данные ($\epsilon_{Hf}(t) = 87$) были получены для кальцифиров Охотского массива. Предполагается, что протовещество древнего материала планеты (Enrich Hadean Impact Differentiates) претерпело термическую дифференциацию, подвергалось воздействию флюидов с высокими Lu–Hf отношением, затем ассимилировалось древнейшими вулканитами, частично было ими погребено и вошло в состав литосферной мантии, не участвовало в глубинной конвекции и поэтому могло сохраниться (Лохов и др., 2009).

Для мезопротерозойского циркона (1354 млн лет) из гранитов массива Водораздельный величина $\varepsilon_{\rm Hf}(t)$ резко понижена (0.8), что указывает на близкий к CHUR, более коровый источник, из которого заимствовано зерно. Это могли быть породы фундамента континентального блока, впоследствии вошедшего в состав Восточно-Европейской платформы. Данное значение совпадает с возрастом машакского рифтогенного события, которое сопровождалось формированием существенного объема магматических пород разной глубинности (базальты и риолиты машакской, кувашской, шатакской свит, габброиды и граниты Кусинско-Копанской интрузии и т.п.) около 1389-1350 млн лет назад и имело место на Южном Урале (в современных координатах). Ксеногенные ядра с такими датировками фиксируются и в палеозойских гранитах Башкирского мегантиклинория (Шардакова, 2016).

Каймы циркона с неопротерозойским возрастом (632, 612 млн лет), по нашему мнению, являются продуктами преобразования и, вероятно, сформированы под действием флюида (или из эволюционировавшего расплава), имевшего менее "мантийные" характеристики, поэтому значения $\varepsilon_{\rm Hf}(t)$ в них слабо положительные (около +2). Известно, что изотопный состав Hf метаморфических цирконов либо наследуется от магматических цирконов, либо может быть более радиогенным за счет обмена с сосуществующими минеральными фазами или расплавом (Gerdes, Zeh, 2009; Chen et al., 2010). Заметим, что в гранитах Кожимского массива (485 млн лет) также имеется кластер цирконов с возрастами 619 ± 9.1 млн лет, который рассматривается авторами "как унаследованный от предыдущего этапа" (Удоратина и др., 2020).

Колебания изотопного состава Hf между отдельными зернами магматического циркона, маркирующего возраст гранитов массива Водораздельный, отражают вклад корового вещества в магмообразование. Все они, за исключением зерна 77 (см. выше), имеют близкие к нулю (-2...0...+1) величины $\varepsilon_{\rm Hf}(t)$, лежащие близко к линии CHUR.

Зерна (зоны) циркона, имеющие возраст более молодой, чем тот, что отвечает возрасту породы (табл. 3), судя по изотопным характеристикам, в различной мере подверглись тектоно-термальному воздействию. Часть из них (565–530 млн лет) наследует характеристики магматических цирконов, слабо варьируя по степени "коровости"; более молодые зерна (514–593 млн лет) характеризуются накоплением радиогенного Hf, давая более высокие отрицательные величины $\varepsilon_{\rm Hf}(t)$ (-6, -8). Эти два типа цирконов, по-видимому, генерированы в ходе отдельных эпизодов тектоно-термальной активности, по нашему мнению совпадающих с импульсами деятельности мантийного плюма ("маньхамбовский плюм"; Пучков, 2018), который, поднимаясь с нижних горизонтов, в данном случае мог служить источником энергии, инициирующим плавление в коре и/или отделение флюидной фазы, влияющей на Lu—Hf изотопию цирконов. Связь генерации гранитов Ляпинского антиклинория с возрастами 540—480 млн лет обоснована в ряде работ (Пучков, 2018; Холоднов и др., 2022). В любом случае, для данной структуры наличие нескольких импульсов гранитообразования, проявленных позже 598 млн лет и не относящихся уже к обстановке активной конвергентной окраины, никем не оспаривается.

Таким образом, участвующий в генерации гранитов массива Водораздельный субстрат имел смешанный характер, в нем важную роль играло вещество в разной степени деплетированной мантии и древней коры. Двухстадийные модельные возрасты для магматогенных цирконов варьируют в интервале 1699-1251 млн лет (рис. 12б), в этом интервале лежит часть возрастов древних зерен, имеющих разные величины $\varepsilon_{Hf}(t)$ (см. выше). Молельные возрасты для самых древних цирконов с "мафическими" метками субстрата, даже рассчитанные по одностадийной модели (T_{нf}(DM), для т. 130, 97), не могут быть корректно оценены. Полученные величины много ниже возраста цирконов, что говорит о нарушенности изотопной системы (?). В то же время модельный возраст для циркона массива Водораздельный, имеющего датировку "машакского" (1354 млн лет, т. 16, табл. 3) уровня и величину $\varepsilon_{\rm Hf}(t) = 0.8$, дает вполне "реальные" древние цифры $T_{Hf}(DM^c) = 2080$ млн лет, подтверждая, что вещество с таким возрастом имело место в процессе рециклинга.

Анализ петрогеохимических, геохронологических и изотопных данных по магматитам всего Ляпинского антиклинория показывает, что в породах комплексов, образованных в период от 620 до 480 млн лет, изотопные характеристики сильно изменчивы (Udoratina et al., 2021). Проследим это на примере массивов, с которыми в разное время сравнивался массив Водораздельный: Вангырского, Кожимского, Маньхамбовского (в составе сальнерско-маньхамбовского комплекса). Отметим, что, несмотря на различную интерпретацию тех или иных данных по возрасту кристаллизации пород, практически во всех этих гранитах имеются ширконы с позднерифейско-вендскими возрастами, как и в массиве Водораздельный. И во всех объектах (кроме Водораздельного) относительно молодые значения (Кожимский – 485 млн лет, Вангырский – 598 млн лет, Маньхамбовский – 522 млн лет) считаются возрастом пород, а те, что древнее — унаследованными от предыдущего этапа (то есть сохранились цирконы субстрата или

зерна были захвачены из вмещающих пород). При этом древние цирконы (1224 млн лет) фиксируются в Вангырском массиве, и Нf-модельные возрасты для гранитов здесь составляют T_{Hf}(DM^c) = = 1.76-1.32 млн лет. Следует вспомнить также приводимый в работе (Душин и др., 2012) U-Pb возраст циркона 1390 млн лет, который Душилин ранее принимал за возраст пород I фазы массива, поскольку Nd-модельный возраст гранитов (1.42 млн лет) с ним почти совпадал. Согласно более новым данным (Udoratina et al., 2021), для пород Кожимского массива и II фазы Маньхамбовского массива $T_{Hf}(DM^c) = 1.41 - 1.07$ млн лет; для лейкогранитов II фазы последнего - 2.05-1.31 млн лет. Кроме того, помимо "утвержденной" в настоящее время датировки 522 млн лет, для гранитов массива Маньхамбо приводятся (Душин и др., 2017) кембрийские конкордантные значения в кластерах цирконов – 510, 501, 489 млн лет и даже палеозойские – 253.3 млн лет. Все это, по-видимому, обусловлено влиянием этапов более поздней тектоно-термальной активности.

Важно напомнить, что среди трех ранее указанных объектов (Вангырский, Кожимский, Маньхамбовский массивы) четко "надсубдукционные" геохимические параметры имеют только вангырские граниты; два других более молодых массива отнесены к следующему этапу эволюции пояса тиманид (Udoratina et al., 2021). Тем не менее положительные величины $\varepsilon_{Hf}(t)$, встречающиеся в цирконах из всех этих гранитоидов, как и в массиве Водораздельный, указывают на наличие мафического компонента в субстрате для выплавления гранитоидов. Природа этого субстрата может быть не всегда идентичной: в случае с Вангырским и Водораздельным массивами это частично древнее ювенильное мафическое вещество (если принимать во внимание высокие $\varepsilon_{Hf}(t)$ для древних цирконов) + участие базитов (и осадков) слэба и флюида, отделяемого при дегидратации пород слэба, + коровый компонент. Для Кожимского массива и I фазы Маньхамбовского массива можно предполагать опосредованное участие в плавлении вещества ранее оторвавшегося слэба, погруженного глубоко в мантию. Он мог плавиться, давая базальтовые, пикритовые или андезитовые магмы, подъем которых на уровень коры обусловил формирование магматических очагов, в которых формировались граниты. Дополнительными источниками могли быть вещество (и энергия) мантийного плюма и флюида, отделяющегося от слэба.

На основании наших новых данных, дополняющихся имеющуюся изотопно-геохимическую информацию по гранитам Приполярного Урала, можно заключить, что гранитоиды близкого возраста, но относящиеся к разным этапам геодинамического развития этого сектора, несмотря на черты сходства и различия ряда геохимических параметров, имеют "преемственность" в составе субстрата. Она выражается в варьирующей, но, безусловно, имеющейся доле мафического компонента в источнике. Это в очередной раз опровергает существовавшую несколько ранее точку зрения об их чисто коровой, анатектической природе. Например, исследование изотопного состава Sr кембрийских гранитов Приполярного Урала (Довжикова, 2007) показало очень высокие величины первичных отношений $({}^{87}\text{Sr}/{}^{88}\text{Sr})_i = 0.71 - 0.75$. Считалось также, что существенные объемы А-гранитов не могут выплавляться в случае, когда ниже по разрезу отсутствуют массы более основных пород. Многие петрогенетические модели предполагают происхождение А-гранитов только из сиалического материала, но экспериментальных доказательств существования выплавок, близких по составу к А-гранитам, из корового вещества не получено (Bonin, 2007).

Эпизоды гранитного магматизма в Ляпинском антиклинории неоднократно повторялись в интервале средний рифей—венд—ранний кембрий в ходе становления Приполярноуральского сегмента земной коры. С ними были сопряжены процессы многоэтапного высокотемпературного метаморфизма (Пыстин, Пыстина, 2008), которые развивались и позже, в ходе тиманских орогенных событий, и выразились, помимо общегеологических признаков, в формировании нескольких генераций цирконов (или их зон) в гранитоидах указанного возраста. На роль древнего материала в их субстрате указывают возрасты реликтовых цирконов (для массива Водораздельный — 2100, 1599, 1354 млн лет и др.).

В целом же появляющиеся новые данные (Udoratina et al., 2021; Холоднов и др., 2022 и др.) по разным изотопным системам для гранитов разных частей современной структуры Уральского подвижного пояса и его северо-восточного обрамления указывают на то, что гранитов, имеющих чисто сиалический субстрат, значительно меньше, чем считалось ранее.

выводы

1. По петрогеохимическим характеристикам граниты массива Водораздельный (и близлежащего Вангырского массива) близки к надсубдукционным образованиям. Соотношения ряда ключевых элементов показывают, что в составе субстрата очага плавления присутствовало вещество базитов плавящегося слэба, а также высокоглиноземистый сиалический материал.

2. На основании определений U–Pb возраста главной популяции цирконов из гранитов обоснован вендский (эдиакарский) возраст массива Водораздельный, составляющий 593 ± 4.3 млн лет. Это значение с учетом погрешности совпадает с возрастом гранитов близлежащего Вангырского массива (598 ± 5 млн лет), а также с возрастами ядер-

том 31 № 3 2023

ных зон цирконов, присутствующих в ряде кембрийских массивов Ляпинского антиклинория (Кожимский, Кефталыкский и др.).

3. В цирконах массива Водораздельный обнаружены древние ядра палео- и неопротерозойского возраста. Одни из них (1599 млн лет) имеют высокие $\varepsilon_{Hf}(t) = 13$, что может указывать на участие в выплавлении или захвате зерен из древнего мафического материала (?); в других, несколько более молодых (1354 млн лет) зернах важную роль играет коровая ($\varepsilon_{Hf}(t) = 0.8$) компонента (вещество фундамента древней платформы).

4. Величины $\varepsilon_{\rm Hf}(t)$ в цирконах, датировки которых принимаются нами за возраст гранитов массива Водораздельный, варьируют около нуля, что указывает на гетерогенный источник (мантийный и коровый материал) расплавов. В гранитах сходного по составу Вангырского массива $\varepsilon_{\rm Hf}(t)$ существенно выше (2–6). Краевые зоны цирконов из гранитов массива Водораздельный, образованные при более поздних тектоно-термальных процессах, возраст которых совпадает с эпизодами раннекембрийского гранитообразования в Ляпинском антиклинории, частично наследуют изотопные параметры гранитов, затем, по мере омоложения, их метки сдвигаются в сторону более корового источника ($\varepsilon_{\rm Hf}(t) > -8$).

5. Возраст и петрогеохимические особенности гранитов (и содержащихся в них цирконов) не подтверждают правомерность отнесения массива Водораздельный (и его аналогов — Вангырского массива и части пород Кожимского массива) к сальнерско-маньхамбовскому комплексу и в очередной раз указывают на возможность выделения при геологической съемке собственного подразделения с возрастом около 598 млн лет, как ранее было предложено в работе (Пыстин, Пыстина, 2011).

 Состав и возраст образований, объединяемых в саблегорскую свиту, нуждаются в более детальном исследовании.

7. Наличие нескольких этапов гранитообразования (средний рифей—венд—кембрий), сопряженного метаморфизма и сложный состав древних метаморфизованных образований, сосредоточенных в фундаменте Ляпинского антиклинория, приводят к вариациям изотопных параметров, характеризующим гетерогенность источника расплавов, с одной стороны, и конвергентность ряда геохимических признаков, с другой.

Благодарности. Первые маршруты по массиву Водораздельный проводились в составе отряда С.Г. Червяковского, известного геолога и знатока Приполярного Урала.

Источники финансирования. Исследования выполнены в рамках Государственного задания ИГГ УрО РАН, темы №№ 123011800009-9 и АААА-А19-119072990020-6. Дооснащение и комплексное развитие ЦКП "Геоаналитик" ИГГ УрО РАН осуществляется при финансовой поддержке гранта Министерства науки и высшего образования Российской Федерации, Соглашение № 075-15-2021-680.

СПИСОК ЛИТЕРАТУРЫ

Андреичев В.Л. Геохронология гранитоидного магматизма Приполярного Урала // Вестник ИГ Коми НЦ УрО РАН. 2010. № 11. С. 7–12.

Андреичев В.Л., Соболева А.А., Герелс Дж. U–Pb-возраст детритовых цирконов из верхнедокембрийских терригенных отложений Северного Тимана // Докл. АН. 2013. Т. 450. № 5. С. 562–566.

Аплонов С.В. Геодинамика. СПб.: Изд-во СПбГУ, 2001. 360 с.

Балашов Ю.А., Скублов С.Г. Контрастность геохимии магматических и вторичных цирконов // Геохимия. 2011. № 6. С. 622–633.

Волчек Е.Н. Геодинамические обстановки кислого вулканизма западного сектора севера Урала. Екатеринбург: Изд-во УрО РАН, 2004. 145 с.

Дашкевич Г.И., Гессе В.Н. Государственная геологическая карта СССР. Масштаб 1:200 000. Серия Северо-Уральская. Лист Q-40-XXX (Манарага). Л.: ВСЕГЕИ, 1982.

Довжикова Е.Г. Позднедокембрийский магматизм Припечорской зоны разломов (центральной части Печорской плиты). Автореф. дисс. ... канд. геол.-мин. наук. Сыктывкар, 2007. 18 с.

Душин В.А., Ронкин Ю.Л., Лепихина О.П. Возраст и геодинамическая позиция гранитоидов Маньхамбовского блока (Северный Урал): U–Pb и Sm–Nd изотопная систематика и геохимические ограничения // Изотопные системы и время геологических процессов. Материалы IV Российской конференции по изотопной геохронологии. Санкт-Петербург, 2009. Т. 1. С. 125–127.

Душин В.А., Козьмин В.С., Сердюкова О.П., Никулина И.А., Колганов Е.Р. Геология и комплексное редкометалльно-уран-ториевое оруденение Маньхамбовского блока (Приполярный Урал) // Литосфера. 2012. № 2. С. 166–172.

Душин В.А., Сердюкова О.П., Малюгин А.А. и др. Государственная геологическая карта Российской Федерации. Масштаб 1:200 000. Издание второе. Серия Северо-Уральская. Лист Р-40-XII (г. Кожим-Из). Объяснительная записка. М.: Московский филиал ВСЕГЕИ, 2017. 263 с.

Зайцева М.В., Пулышев А.А., Щапова Ю.В., Вотяков С.Л. U–Pb датирование цирконов с помощью квадрупольного масс-спектрометра с индуктивно-связанной плазмой NexION 300S и приставки для лазерной абляции NWR 213 // Аналитика и контроль. 2016. Т. 20. № 4. С. 294–306.

Иванов В.Н., Жаркова Т.Б., Курзанов И.Ю. и др. Государственная геологическая карта Российской Федерации. Масштаб 1:200 000. Серия Северо-Уральская. Лист Q-40-XXX. (Манарага). Объяснительная записка. М.: Московский филиал ВСЕГЕИ, 2013а. 195 с.

Иванов В.Н., Жаркова Т.Б., Курзанов И.Ю. и др. Государственная геологическая карта Российской Федерации. Масштаб 1 : 200 000. Серия Северо-Уральская. Лист Q-41-XXV. (Народная). Объяснительная записка. М.: Московский филиал ВСЕГЕИ, 20136. 262 с. Ильясова Г.А., Останин С.Ю., Михалева Е.Н. и др. Государственная геологическая карта Российской Федерации. Масштаб 1:200 000. Издание второе. Серия Северо-Уральская. Лист Р-40-XVIII (Лопсия). Объяснительная записка. М.: Московский филиал ВСЕГЕИ, 2017. 148 с.

Красоткина А.О., Скублов С.Г., Кузнецов А.Б., Макеев А.Б., Астафьев Б.Ю., Воинова О.А. Первые данные о возрасте (U–Pb, SHRIMP-II) и составе циркона из уникального нефтетитанового месторождения Ярегское, Южный Тиман // Докл. АН. 2020. Т. 495. № 2. С. 9–17.

Кузнецов Н.Б. Кембрийская коллизия Балтики и Арктиды — начальный этап "собирания" северной части позднепалеозойско-раннемезозойской Пангеи // Бюлл. МОИП. Отд. геол. 2009. Т. 84. Вып. 1. С. 18–38.

Кузнецов Н.Б., Удоратина О.В. Возраст и геодинамические условия формирования позднедокембрийских гранитоидов Вангырского массива, Приполярный Урал // Бюлл. МОИП. 2007. Т. 82. Вып. 2. С. 3–12.

Кузнецов Н.Б., Соболева А.А., Удоратина О.В., Герцева М.В., Андреичев В.Л., Дорохов Н.С. Доуральская тектоническая эволюция северо-восточного и восточного обрамления Восточно-Европейской платформы. Ст. 2. Позднедокембрийско-кембрийская коллизия Балтики и Арктиды // Литосфера. 2007. № 1. С. 32–45.

Лохов К.И., Капитонов И.Н., Прасолов Э.М., Сергеев С.А. Экстремально радиогенный гафний в цирконах из докембрийских кальцифиров // Докл. АН. 2009. Т. 425. № 5. С. 660–663.

Мартынов Ю.А. Основы магматической геохимии. Владивосток: Дальнаука, 2010. 228 с.

Махлаев Л.В. Гранитоиды севера Центрально-Уральского поднятия: Полярный и Приполярный Урал. Екатеринбург: УрО РАН, 1996. 149 с.

Петров Г.А., Холоднов В.В., Останин С.Ю., Шагалов Е.С., Коновалова Е.В. Флюидный режим формирования и особенности металлогении гранитоидов Южно-Помурского массива (Северный Урал) // Литосфера. 2017. Т. 17. № 5. С. 103–112.

Пучков В.Н. Палеогеодинамика Южного и Среднего Урала. Уфа: ГИЛЕМ, 2000. 146 с.

Пучков В.Н. Плюм-зависимый гранит-риолитовый магматизм // Литосфера. 2018. № 5. С. 692–705.

Пыстин А.И., Пыстина Ю.И. Метаморфизм и гранитообразование в протерозойско-раннепалеозойской истории формирования Приполярноуральского сегмента земной коры // Литосфера. 2008. № 6. С. 25–38.

Пыстин А.И., Пыстина Ю.И. Новые данные о возрасте гранитоидов Приполярного Урала в связи с проблемой выделения кожимской среднерифейской гранит-риолитовой формации // Известия Коми НЦ УрО РАН. 2011. Вып. 4(8). С. 73–78.

Пыстина Ю.И., Пыстин А.И. Типоморфные признаки цирконов как критерий для расчленения и корреляции гранитоидов (на примере северной части Приполярного Урала) // Вестник ИГ Коми НЦ УрО РАН. 2017. № 12. С. 3–15.

Рудич К.Н. Магма малоглубинных камер. М: Наука, 1967. 165 с.

Семихатов М.А., Кузнецов А.Б., Чумаков Н.М. Изотопный возраст границ общих стратиграфических подразделений верхнего протерозоя (рифея и венда) России: эволюция взглядов и современная оценка // Стратиграфия. Геол. корреляция. 2015. Т. 23. № 6. С. 16–27. Соболева А.А. Проблема гетерогенности сальнерскоманьхамбовского гранитоидного комплекса // Геология и полезные ископаемые Западного Урала. Материалы региональной научно-практической конференции. Пермь: ПГУ, 2001. С. 34–37.

Соболева А.А. Вулканиты и ассоциирующие с ними гранитоиды Приполярного Урала. Екатеринбург: УрО РАН, 2004. 147 с.

Удоратина О.В., Соболева А.А., Кузенков Н.А., Родионов Н.В., Пресняков С.Л. Возраст гранитоидов Маньхамбовского и Ильяизского массивов (Северный Урал): U–Pb-данные // Докл. АН. 2006. Т. 406. № 6. С. 810–815. Удоратина О.В., Шуйский А.С., Капитанова В.А. Гранитоиды Кожимского массива (Приполярный Урал): U–Pb, Lu–Hf данные // Известия Коми НЦ УрО РАН. 2020. № 1(41). С. 96–105.

Ферштатер Г.Б. Петрология главных интрузивных ассоциаций. М.: Наука, 1987. 232 с.

Ферштатер Г.Б. Палеозойский интрузивный магматизм Среднего и Южного Урала. Екатеринбург: РИО УрО РАН, 2013. 368 с.

Фишман М.В., Голдин Б.А. Гранитоиды центральной части Приполярного Урала. М.–Л.: Изд-во АН СССР, 1963. 107 с.

Фор Г. Основы изотопной геологии. М.: Мир, 1989. 590 с. Холоднов В.В., Шардакова Г.Ю., Душин В.А., Коровко А.В., Шагалов Е.С. Рифей-венд-кембрийский магматизм Маньхамбовского блока (Приполярный Урал): геохимическая типизация, корректировка геодинамических представлений, роль плюм-литосферного взаимодействия // Петрология. 2022. Т. 30. № 4. С. 404–431.

Червяковский С.Г., Иванов В.Н., Курзанов И.Ю., Кузенков Н.А., Ронкин Ю.Л. О возрастной позиции Малопатокского массива гранитоидов на Приполярном Урале и его формационной принадлежности // Ежегодник-91. Информ. сб. научн. тр. ИГГ УрО РАН. Екатеринбург: ИГГ УрО РАН, 1992. С. 71–74.

Червяковская М.В., Вотяков С.Л., Червяковский В.С. Изучение Lu/Hf изотопного состава цирконов с помощью многоколлекторного масс-спектрометра с индуктивно-связанной плазмой Neptune Plus и приставки для лазерной абляции NWR 213 // Аналитика и контроль. 2021. Т. 25. № 3. С. 212–221.

Червяковская М.В., Червяковский В.С., Вотяков С.Л. Локальный анализ микроэлементного состава силикатных минералов на масс-спектрометре NexION 300S с ЛА приставкой NWR 213: методические аспекты // Геодинамика и тектонофизика. 2022. Т. 13. № 2s. С. 1–8.

Шардакова Г.Ю. Геохимические особенности и изотопный возраст гранитоидов Башкирского мегантиклинория – свидетельства импульсов эндогенной активности в зоне сочленения Уральского орогена с Восточно-Европейской платформой // Геохимия. 2016. № 7. С. 607–622.

Шарпенок Л.В., Костин А.Е., Кухаренко Е.А. ТАS-диаграмма сумма щелочей-кремнезем для химической классификации и диагностики плутонических пород // Региональная геология и металлогения. 2013. № 56. С. 40–50.

Altherr R., Holl A., Hegner E., Langer C., Kreuzer H. Highpotassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany) // Lithos. 2000. V. 50. P. 51–73.

Belousova E.A., Griffin W.L., O'Reilly S., Fisher N.I. Igneous zircon: trace element composition as an indicator of source rock type // Contrib. Mineral. Petrol. 2002. V. 143. P. 602–622.

Bonin B. A-type granites and related rocks: evolution of a concept, problems and prospects // Lithos. 2007. V. 97. P. 1–29.

Chappell B.W., White A.J.R. I- and S-type granites in the Lachlan Fold Belt // Trans. R. Soc. Edinb. Earth Sci. 1992. V. 83. P. 1–26.

Chen R.-X., Zheng Y.-F., Zie L. Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-sity analyses of trace elements, U–Th–Pb and Lu–Hf isotopes in zircon from eclogite-facies rocks in the Sulu orogen // Lithos. 2010. V. 114. P. 132–154.

Cohen K.M., Finney S.C., Gibbard P.L., Fa J.-X. The ICS International Chronostratigraphic Chart // Episodes. 2013. V. 36. P. 199–204.

Ferry J.M., Watson E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers // Contrib. Mineral. Petrol. 2007. V. 154. P. 429–437.

Fu B., Mernagh T.P., Kita N.T., Kemp A.I.S., Valley J.W. Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au– Ag–(Cu) deposit, SE Australia // Chem. Geol. 2009. V. 259. P. 131–142.

Gerdes A., Zeh A. Zircon formation versus zircon alteration – new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt // Chem. Geol. 2009. V. 261. P. 230–243.

Grimes C.B., Joh B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance // Geology. 2007. V. 35. P. 643–646.

Hanchar J.M., Watson E.B. Zircon saturation thermometry // Rev. Mineral. Geochem. 2003. V. 53 (1). P. 89–112.

Harrison T.M., Schmitt A.K. High sensitivity mapping of Ti distributions in Hadean zircons // Earth Planet. Sci. Lett. 2007. V. 261. P. 9–19.

Hoskin P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia // Geochim. Cosmochim. Acta. 2005. V. 69(3). P. 637–648.

Hoskin P.W.O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Zircon. Eds. Hanchar J.M., Hoskin P.W.O. Rev. Mineral. Geochem. 2003. V. 53. P. 7–62.

Kepezhinskas P., McDermott F., Defant M.J., Hawkesworth C.J., Hochstaedter A., Drummond M.S., Koloskov A., Maury R.C., Bellon H. Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis // Geochim. Cosmochim. Acta. 1997. V. 61. P. 577–600.

Kholodnov V.V., Shardakova G.Yu., Puchkov V.N., Petrov G.A., Shagalov E.S., Salikhov D.N., Korovko A.V., Pribavkin S.V., Rakhimov I.R., Borodina N.S. Paleozoic granitoid magmatism of the Urals: the reflection of the stages of geodynamic and geochemical evolution of a collisional orogen // Geodynam. Tectonophys. 2021. V. 12(2). P. 225–245.

Kostitsyn Y.A., Belousova E A., Silant'ev S.A., Bortnikov N.S., Anosova M.O. Modern problems of geochemical and U–Pb geochronological studies of zircon in oceanic rocks // Geochemistry Int. 2015. V. 53(9). P. 759–785. *Kuznetsov N.B., Natapov L.M., Belousova E.A., O'Reilly S.Y., Griffin W.L.* Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models // Gondwana Res. 2010. V. 17. \mathbb{N} 2/3. P. 583–601.

Loucks R.R., Fiorentini M.L., Rohrlach B.D. Divergent Ti–HO₂ paths during crystallisation of H₂O-rich and H₂O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry // Contrib. Mineral. Petrol. 2018. V. 173(12). P. 1–21.

Martin H. The mechanisms of petrogenesis of the Archaean continental crust – comparison with modern processes // Lithos. 1993. V. 30(3–4). P. 373–388.

McDonough W.F., Sun S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.

Pearce J.A., Harris N.B., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. V. 25. № 4. P. 956–983.

Pelleter E., Cheilletz A., Gasquet D., Mouttaqi A., Annich M., Hakour A.E., Deloule E., Feraud G. Hydrothermal zircons: a tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit – Morocco) // Chem. Geol. 2007. V. 245. P. 135–161.

Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism // Chem. Geol. 2002. V. 184(1–2). P. 123–138.

Rudnik R.L., Gao S. Composition of the Continental Crust // Treatise of Geochemistry. 2003. V. 3. P. 1–64.

Sun S.-S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geol. Soc. London Spec. Publ. 1989. V. 42(1). P. 313–345.

Sylvester P.J. Post-collisional strongly peraluminous granites // Lithos. 1998. V. 45. P. 29–31.

Trail D., Watson E.B., Tailby N.D. Ce- and Eu-anomalies in zircon as proxies for the oxidation state of magmas // Geo-chim. Cosmochim. Acta. 2012. V. 97(1). P. 70–87.

Udoratina O.V., Kulikova K.V., Shuyskiy A.S., Soboleva A.A., Andreichev V.L., Golubeva I.I., Kapitanova V.A. Granitoid magmatism in the north of the Urals: U–Pb age, evolution, sources // Geodynam. Tectonophys. 2021. V. 12. № 2. P. 287–309.

Wang F.Y., Liu S.A., Li S.G., Yongsheng H. Contrasting zircon Hf–O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in Central-Eastern China: implications for genetic relation to Cu–Au mineralization // Lithos. 2013. V. 156–159. P. 97–111.

Whalen J.B., Currle K.L., Chappell B.W. A-type granites: geochemical characteristics, discrimination and petrogenesis // Geol. Soc. Am. Abstract with Programs. 1979. P. 539. Yan Q., Zhang P., Metcalfe I., Liu Y., Wu Sh., Shi X. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes // Miner. Petrol. 2019. V. 113. P. 803–820.

Zhong S., Feng C., Seltmann R., Li D., Qu H. Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition // Lithos. 2018. V. 314–315. P. 646–657.

Рецензенты А.Б. Кузнецов, Г.А. Петров

Vodorazdelny Granite Massif (Subpolar Urals) and Correlation Problems of the Pre-Ordovician Granitoids and Volcanic Rocks from the Northern Part of the Lyapinsky Anticlinorium

G. Yu. Shardakova^{*a*, #}, E. N. Volchek^{*a*}, V. S. Chervyakovskiy^{*a*}, M. V. Chervyakovskaya^{*a*}, and V. V. Kholodnov^{*a*}

^aThe Zavaritsky Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia [#]e-mail: shardakovagalina@mail.ru

Petrogeochemical features of the Vodorazdelny massif granites (Subpolar Urals, Lyapinsky anticlinorium) indicate these rocks are close to I-granites and were formed in suprasubduction environment. The ratios of the key elements (Rb, Ba, Th, Sr, Y, Nb) suggest that the basites of the melting slab and the fluid separated during their dehydration could participate in the granite generation. The U-Pb age of the main population of magmatogenic zircons is 593 ± 4 Ma and corresponds to the Vendian (Ediacarian). It coincides with the age of the granites from the nearby Vangyr massif (598 ± 5 Ma), as well as with the age of zircon cores from the granites of the Kozhim massif located to the north. Values of $\varepsilon_{Hf}(t)$ from -2 to 0 in magmatogenic zircons with an age corresponding to the age of Vodorazdelny granites indicate a heterogeneous source of melts. The zircons of these granites also contain ancient cores with U–Pb ages from 2200 to 700 Ma, where the values of $\varepsilon_{\rm Hf}(t)$ from +0.8 to +13 indicate the presence of a crust component in the substrate (the substance of the ancient platform basement). Petrogeochemical and isotope-geochronological parameters of granites (and their zircons) do not confirm the validity of attributing of Vodorazdelny granite massif (and its analogues the Vangyr and Kozhim massifs) to the Cambrian Salner-Mankhambo complex. We consider there are the possibility of separating of independent complex (about 598 Ma, Vendian?) during geological mapping. The presence in the Lyapinsky anticlinorium of several stages of granite generation (Middle Riphean–Vendian– Cambrian), accompanied by metamorphism, and complicate composition of ancient metamorphic strata from this structure basement led to varying isotopic parameters characterizing the heterogeneity of the source of melts, on the one hand, and the convergence of a number of geochemical features, on the other,

Keywords: Subpolar Urals, Vendian, granites, zircons, isotopic parameters, accretion, subduction, plume