УДК 550.93:552.5

ИСТОЧНИКИ ВЕРХНЕПРОТЕРОЗОЙСКИХ ТЕРРИГЕННЫХ ОТЛОЖЕНИЙ СЕВЕРО-ЗАПАДНОЙ ЧАСТИ АРГУНСКОГО МАССИВА, ЦЕНТРАЛЬНО-АЗИАТСКИЙ СКЛАДЧАТЫЙ ПОЯС: РЕЗУЛЬТАТЫ U-Th-Pb ГЕОХРОНОЛОГИЧЕСКИХ И Sm-Nd ИЗОТОПНО-ГЕОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ

© 2024 г. Ю. Н. Смирнова^{1, *}, А. В. Куриленко^{2,3}, С. И. Дриль⁴, В. Б. Хубанов²

¹Институт геологии и природопользования ДВО РАН, Благовещенск, Россия ²Геологический институт им. Н.Л. Добрецова СО РАН, Улан-Удэ, Россия ³Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского, Санкт-Петербург, Россия ⁴Институт геохимии им. А.П. Виноградова СО РАН, Иркутск, Россия

> *e-mail: smirnova@ascnet.ru Поступила в редакцию 08.06.2023 г. После доработки 27.07.2023 г. Принята к публикации 21.08.2023 г.

Представлены результаты геохимических, изотопно-геохимических (Sm–Nd) и изотопно-геохронологических (U–Th–Pb) исследований терригенных пород среднерифейской(?) надаровской свиты и верхнерифейской(?) нортуйской свиты северо-западной части Аргунского континентального массива. Особенности вещественного состава отложений свидетельствуют о присутствии в области сноса различных по кремнекислотности образований. По Sm–Nd данным осадочные породы надаровской и нортуйской свит характеризуются отрицательными величинами $\varepsilon_{Nd(t)} = -6.6...-3.5$ при раннепротерозойских значениях неодимового модельного возраста ($t_{Nd(DM)} = 2.0-1.8$ млрд лет). Согласно U–Th–Pb датированию зерен детритового циркона выявлено, что нижняя возрастная граница накопления терригенных отложений надаровской и нортуйской свит приходится на поздний рифей (~775 и ~744 млн лет соответственно). Главными источниками сноса для них, наиболее вероятно, послужили позднерифейские магматические породы при участии образований раннепротерозойского возраста, распространенные в структуре Аргунского массива.

Ключевые слова: Аргунский массив, надаровская и нортуйская свиты, геохимия, U-Th-Pb данные

DOI: 10.31857/S0869592X24030017, EDN: CWRBBH

введение

Аргунский континентальный массив является одним из крупных массивов, расположенных в восточной части Центрально-Азиатского складчатого пояса (рис. 1, врезка). Наиболее древние образования в восточной части массива представлены условно архейскими кислыми и средними магматическими породами бекетского и гонжинского комплексов, а также метаморфизованными осадочными и вулканическими породами гонжинской серии. Геохронологические и изотопно-геохимические исследования позволили уточнить, что протолиты метаосадочных и метавулканических пород гонжинской серии и наложенные на них структурно-метаморфические преобразования имеют мезозойский возраст (Котов и др., 2009, 2013; Сальникова и др., 2012). К наиболее ранним относятся

рифейские слабометаморфизованные вулканогенно-осадочные породы чаловской серии и гранитоиды чаловского комплекса (Петрук, Козлов, 2009). В то же время проведенные в последние годы U— Рb геохронологические исследования метавулканитов исагачинской толщи (Сорокин и др., 2014) и U—Pb (LA-ICP-MS) датирование зерен детритового циркона из метаосадочных пород гребневской и магдагачинской толщ (Смирнова, Сорокин, 2019) свидетельствуют об ордовикском возрасте чаловской серии.

На государственной геологической карте масштаба 1 : 1 000 000 (Шивохин и др., 2010) в северо-западной части Аргунского массива выделяются ишагинский метаморфический, чонгульский габбровый, урюмканский гранодиорит-гранитовый и урульгинский метаморфический комплексы

Рис. 1. Геологические схемы северо-западной части Аргунского массива. Составлены по (Павлова и др., 2001; Озерский, Винниченко, 2002), с изменениями авторов.

1 – кайнозойские рыхлые отложения; 2 – меловые вулканогенные и осадочные комплексы; 3 – юрские терригенные отложения; 4 – триасовые и позднеюрские гранитоиды; 5 – пермские гранитоиды ундинского и кадаинского комплексов; 6 — вендские метагаббро быркинского комплекса; 7 — вендские(?) осадочные породы быркинской серии; 8–10 — верхнерифейские(?) терригенные и терригенно-карбонатные отложения даурской серии: 8 — нортуйской свиты, 9 — дырбылкейской свиты, 10 – урулюнгуйской свиты; 11 – средне-позднерифейские гранитоиды урулюнгуйского комплекса; 12 – среднерифейские(?) осадочные породы надаровской свиты; 13 – раннепротерозойские(?) метаморфические породы; 14 – разломы; 15 — места отбора образцов для геохимических. Sm-Nd изотопно-геохимических и U-Th-Pb изотопно-геохронологических исследований и их номера. На врезке: 16 – положение объекта исследований; 17 – супертеррейны (континентальные массивы): AP – Аргунский, БЦ – Бурея-Цзямусинский, в том числе террейны: Буреинский (БЦ(Б)), Малохинганский (БЦ(М)), Ханкайский (БЦ(Х)); 18 – палеозойские-раннемезозойские складчатые пояса (ЮМ – Южно-Монгольско-Хинганский, МО – Монголо-Охотский, СЛ – Солонкерский, ВД – Вундурмиао); 19 – позднеюрско-раннемеловые орогенные пояса.

раннепротерозойского возраста. Однако по дан- лет (U-Pb геохронологические исследования, ным изотопно-геохимических (Sm–Nd) исследований выявлено, что протолиты гнейсов ишагинского комплекса и гранитогнейсов урюмканского комплекса характеризуются среднерифейским Nd-модельным возрастом (Гордиенко и др., 2019). Возраст габбро Цугольского массива чонгульского комплекса, согласно U-Pb (SIMS) геохронологическим исследованиям, позднеордовикский (448 \pm 9 млн лет; Лыхин и др., 2007). По существующим представлениям рифейские магматические образования рассматриваются в составе урулюнгуйского гранитового, уртуйского базальт-риолитового и бухотуйского гранитового комплексов (Шивохин и др., 2010). Установлено, что возраст гранитов Уртуйского массива урулюнгуйского комплекса равен 804 ± 7 и 784 ± 7 млн

ID-TIMS метод; Голубев и др., 2010). Nd-модельный возраст гранитов урулюнгуйского комплекса 1720-1550 млн лет (Голубев и др., 2010). Возраст гранитов бухотуйского комплекса составляет 765 \pm 20 млн лет (Rb–Sr изохрона по породе в целом; Шивохин и др., 2010). К рифейскому структурному этажу также отнесены осадочные породы надаровской, урулюнгуйской, дырбылкейской и нортуйской свит (Шивохин и др., 2010). В последние годы нами были выполнены комплексные геологические, геохимические, изотопно-геохимические исследования осадочных пород урулюнгуйской и дырбылкейской свит даурской серии, а также U-Th-Pb и Lu-Hf изотопные исследования зерен детритового циркона, которые позволили реконструировать обстановки их накопления и выявить

основные источники сноса кластического материала (Смирнова и др., 2022). В то же время осадочные породы среднерифейской(?) надаровской свиты и верхнерифейской(?) нортуйской свиты оставались не изученными. Однако они несут в себе важную информацию о докембрийской истории формирования Аргунского массива. Главной целью настоящей работы является выявление основных источников сноса кластического материала для терригенных пород этого массива на основе результатов геохимических, изотопно-геохимических (Sm-Nd) и изотопно-геохронологических (U-Th-Pb, LA-ICP-MS) исследований, а также уточнение нижней возрастной границы накопления осадочных толщ надаровской и нортуйской свит с помощью U–Th–Pb датирования циркона.

КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТОВ ИССЛЕДОВАНИЙ

Среди рифейских отложений в пределах северо-западной части Аргунского массива выделяются надаровская, урулюнгуйская, дырбылкейская и нортуйская свиты (рис. 2).

Надаровская свита мощностью 1200–1900 м сложена чередованием филлитизированных алевролитов, алевропелитов и кварцевых песчаников. В составе свиты установлены горизонты мраморизованных известняков и доломитов. Возраст свиты принят условно среднерифейским (Шивохин и др., 2010).

С угловым несогласием на породах надаровской свиты залегают отложения условно верхнерифейской урулюнгуйской свиты, которая сложена осадочными и вулканогенно-осадочными породами. В нижней части свиты наблюдаются дресвяники, осадочные брекчии, конгломератобрекчии, туфы кислого и основного состава, сменяющиеся вверх по разрезу конгломератами, гравелитами, кварцевыми и аркозовыми песчаниками. В ряде выходов урулюнгуйской свиты выявлены более тонкообломочные породы (алевролиты, алевропесчаники) с горизонтами доломитов, известняков и мергелей. Мощность свиты до 2670 м. Возраст принят условно позднерифейским на основании налегания урулюнгуйской свиты на гранитоиды позднерифейского урулюнгуйского комплекса (Шивохин и др., 2010). Наиболее молодая группа зерен циркона из песчаника урулюнгуйской свиты имеет позднерифейский возраст с пиком на кривой относительной вероятности возрастов ~899 млн лет (Смирнова и др., 2022).

На породах урулюнгуйской свиты согласно залегают карбонатные и терригенно-карбонатные отложения *дырбылкейской свиты*, среди которых преобладают доломиты и известняки с пачками мощностью до 400–450 м гравелитов, песчаников, филлитизированных алевролитов

Рис. 2. Сводная стратиграфическая колонка средне-верхнерифейских(?) осадочных пород северо-западной части Аргунского континентального массива. Составлена по (Павлова и др., 2001; Озерский, Винниченко, 2002).

известняки; 2 – доломиты; 3 – алевролиты, алевропесчаники; 4 – песчаники; 5 – гравелиты; 6 – конгломераты;
7 – сланцы; 8 – туфы кислого и основного состава; 9 – места отбора образцов для U–Th–Pb датирования зерен детритового циркона и их номера.

и алевропелитов (Шивохин и др., 2010). Общая мощность свиты достигает 3000 м. В свите обнаружены единичные находки водорослевых остатков Girvanella (?), Panomnienella, Shanganella, строматолитов Conophyton metula Kir. и микрофитолитов Osagia grandis Z. Zhur., Vesicularites consuetus Yak., Volvatella vadosa Z. Zhur., V. horridus Z. Zhur., Ambigolamellatus horridus Z. Zhur. (Шивохин и др., 2010). Возраст дырбылкейской свиты принят условно позднерифейским. Наиболее молодая группа циркона из песчаника дырбылкейской свиты имеет позднерифейский возраст ~771 млн лет (Смирнова и др., 2022).

Нортуйская свита сложена в нижней части разреза кварцевыми и аркозовыми песчаниками, переслаивающимися с алевролитами, выше сменяющимися толщей известняков и известковистых доломитов (Шивохин и др., 2010). В основании свиты установлены седиментационные брекчии, дресвяники, песчаники и алевропелиты. Общая мощность свиты до 2000 м. Среди органических остатков в свите выявлены единичные находки водорослей Renalcis? sp., Subtifloria sp. и микрофитолитов Ambigolamellatus horridus Z. Zhur., Volvatella zonalis Nar., Osagia nimia Z. Zhur., O. minuta Z. Zhur., O. tenuilamellata Reitl., Vesicularites flexuosus Reitl. Возраст свиты принят условно позднерифейским. Контакты с нижележащими отложениями дырбылкейской свиты согласные.

Для уточнения позднедокембрийской истории формирования Аргунского континентального массива, в его северо-западной части нами были проведены исследования вещественного состава осадочных пород среднерифейской(?) надаровской свиты и верхнерифейской(?) нортуйской свиты. Образцы пород надаровской свиты отобраны в районе г. Гут-Халтуй (50°07'58.4" с.ш., 117°52'58.8" в.д.) и в бассейне р. Урулюнгуй (50°24'18.2" с.ш., 118°48'32.3" в.д.), а нортуйской свиты – вблизи пос. Талман-Борзя (50°29'35.3" с.ш., 118°46'52.4" в.д.) (рис. 1).

АНАЛИТИЧЕСКИЕ МЕТОДИКИ

Содержания породообразующих компонентов в породах определены рентгенофлуоресцентным методом в Институте геологии и природопользования ДВО РАН (г. Благовещенск) на рентгеновском спектрометре Lab Center XRF-180. На стадии пробоподготовки проводилось взвешивание навески пробы на аналитических весах AUW220D фирмы Shimadzu, просушивание навески при температуре 105°С в сушильном шкафу SNOL 58/350 в течение двух часов, определение потерь при прокаливании при температуре 950°С в муфельной печи Nabertherm в течение двух часов. Далее производилось смешивание пробы со смесью тетрабората и метабората лития с последующей гомогенизацией и сплавлением. Концентрации микроэлементов определены методом ICP-MS на квадрупольном ICP масс-спектрометре NexION300D в Центре коллективного пользования (ЦКП) "Изотопно-геохимические исследования" Института геохимии им. А.П. Виноградова СО РАН (ИГХ СО РАН, г. Иркутск). Сплавление образцов (навеска 100 мг) с безводным метаборатом лития (400 мг) проводилось в стеклоуглеродных тиглях марки СУ-2000 при температуре 1150°С (3 мин) в высокочастотной индукционной печи ВЧГ-4, с последующим разложением плавня смесью перегнанных кислот HF и HNO₃ и отгонкой SiF₄, окончательный фактор разведения основного раствора пробы составил 1000. Двойную и тройную перегонку кислот осуществляли последовательно в системах глубокой очистки кислот: subPUR/duo PUR Milestone microwave laboratory systems, затем в Savillex DST-1000 sub-boiling Distillation System

User's Manual. Кислотность всех готовых к анализу растворов составила 2-3% HNO₃. Перед началом измерений проводилась настройка прибора и оптимизация инструментальных параметров с целью получения максимального значения аналитического сигнала и его стабильности при минимальном вкладе в сигнал оксидных и двухзарядных ионов, низком фоновом уровне. Для расчета концентраций применялась градуировка по сертифицированным растворам CLMS-1-4 фирмы SPEX (США) с концентрациями элементов 0.1, 1.0, 5.0 нг/мл с контролем дрейфа сигнала по внутреннему стандарту, в качестве которого выбран ¹⁰³Rh. Нивелирование матричного эффекта достигалось путем разбавления готовых растворов проб для анализа в 10000 раз. Переведение анализируемого раствора в аэрозоль проводилось с помощью концентрического низкопотокового распылителя Meinhard (0.1 мл/мин). Для оценки правильности результатов анализа применялись хорошо охарактеризованные стандартные образцы горных пород различного состава Геологических служб США. Японии. Китая и России. Относительная погрешность определения содержаний петрогенных и малых элементов составила 3-10%.

Sm-Nd изотопно-геохимические исследования пород проводились в ЦКП "Изотопно-геохимические исследования" ИГХ СО РАН (г. Иркутск). Около 100 мг истертого образца разлагали в смеси кислот HF, HNO₃ и HCLO₄. Перед разложением к образцу добавляли смешанный изотопный индикатор ¹⁴⁹Sm-¹⁵⁰Nd. Сумму редкоземельных элементов выделяли с использованием ионообменной смолы BioRad AGW50-X8 (200-400 меш) по традиционным методикам (Richard et al., 1976; Pin et al., 1994; Makishima et al., 2008). Чистые фракции Sm и Nd выделяли из суммы редких земель при помощи ионообменной смолы LN-Spec (100–150 меш) согласно (Yang et al., 2011). Измерения изотопного состава Sm и Nd проводили на 9-коллекторном масс-спектрометре с индуктивно связанной плазмой MC-ICP-MS Neptune Plus в статическом режиме. В течение проведения измерений бланк составил 0.1-0.2 нг для Sm и 0.2-0.5 нг для Nd. Погрешности определения отношений ¹⁴³Nd/¹⁴⁴Nd и ¹⁴⁷Sm/¹⁴⁴Nd – не более 0.003 и 0.4% соответственно. Полученные данные были нормализованы к отношению 146 Nd/ 144 Nd = 0.7219. Результаты измерений международного изотопного стандарта JNdi-1 (n = 40): ¹⁴³Nd/¹⁴⁴Nd = 0.512107 ± 4 при рекомендованном значении 143 Nd/ 144 Nd = 0.512115 ± 7 (Tanaka et al., 2000). Для изотопного состава Nd и концентраций Nd и Sm в международных породных стандартах получены следующие значения: 1) BCR-2 (n = 28), ¹⁴³Nd/¹⁴⁴Nd = 0.512630 ± 14; Nd = 28.8 ± 0.1 MKF/F; Sm = 6.52 ± 0.03 MKF/F; 2) AGV-2 (n = 8), 143 Nd/ 144 Nd = 0.512769 ± 16; Nd = 30.3 ± 0.1 MKr/r; $Sm = 5.42 \pm 0.03 \text{ MKT/r.}$

Исследование изотопного состава Nd в международном образце BCR-2, подготовленном к анализу по описанной выше методике, проводилось также с использованием 7-коллекторного термоионизационного масс-спектрометра Finnigan МАТ-262 (ЦКП "Геодинамика и геохронология" Института земной коры СО РАН). Измерения изотопного состава неодима выполнялись с использованием двухленточного источника ионов с рениевыми катодами в статическом режиме. Количество наносимого образца составляло в среднем 100-200 нг. Ионный ток ¹⁴⁶Nd обычно был равен $0.5-1.0 \times 10$ (-11) А. Присутствие в спектре неодима следов самария контролировалось по величине отношения 147 Sm/ 144 Nd, которое всегда было ниже 0.00005. Правильность результатов определения изотопного состава оценивалась по результатам измерения стандартных образцов JNdi-1 и BCR-2, которые в процессе проведения аналитических работ составили: 143 Nd/ 144 Nd = 0.512107 ± 4 (2SD, n = 35) μ^{143} Nd/¹⁴⁴Nd = 0.512629 ± 8 (2SD, n = 18) соответственно. Полученные результаты свидетельствуют о полной сопоставимости Sm-Nd изотопных данных, полученных с использованием как высокоточной масс-спектрометрии с индуктивно связанной плазмой, так и классического термоионизационного изотопного анализа. При расчете величин $\varepsilon_{Nd(t)}$ и модельных возрастов $t_{Nd(DM)}$ использованы современные значения однородного хондритового резервуара (CHUR) по (Jacobsen. Wasserburg, 1984) и деплетированной мантии (DM) по (Goldstein, Jacobsen, 1988).

Выделение детритового циркона произведено в минералогической лаборатории Института геологии и природопользования ДВО РАН с применением тяжелых жидкостей. Непосредственно U-Th-Рь датирование детритового циркона выполнено в ЦКП "Геоспектр" Геологического института им. Н.Л. Добрецова СО РАН (г. Улан-Удэ) на одноколлекторном магнитно-секторном масс-спектрометре с индуктивно связанной плазмой Element XR (Termo Scientific), оснащенном устройством лазерной абляции UP-213 (New Wave Research). Детальное описание аналитических процедур приведено в публикации (Хубанов и др., 2016). Диаметр лазерного пучка составлял 30 мкм при плотности потока энергии ~4.5 Дж/см². Масс-спектрометром измеряли сигналы следующих изотопов: в режиме счета "Counting" – ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb; в аналоговом режиме – 232 Th, 238 U. Сигнал 235 U рассчитывали из сигнала ²³⁸U, основываясь на постоянстве современного значения их отношения $(^{238}U/^{235}U = 137.88)$. Съемку осуществляли в скоростном режиме электростатического сканирования (E-scan). В течение одного измерения проводили 800 сканирований. В качестве внешнего стандарта измеряли эталонные зерна циркона 91500 (1065 млн лет; Wiedenbeck et al., 1995), в качестве

контрольного образца — эталоны Plešovice (337 млн лет; Sláma et al., 2008) и GJ-1 (608 млн лет; Jackson et al., 2004).

Обработку первичных сигналов и расчет изотопных отношений проводили с помощью программы Glitter (Griffin et al., 2008), конвертацию в excel-формат и расчет значений концентраций U. Th и U/Th – с помощью программы Gtail (автор М.Д. Буянтуев, ГИН СО РАН), построение графиков, расчет конкордантного возраста циркона и показателя лискорлантности – с помошью excel-макроса Isoplot (Ludwig, 2008). Поправка на нерадиогенный свинец не проводилась. Относительные погрешности измерения изотопных отношений в контрольных образцах варьировали в пределах: 1.0-3.7% для ²⁰⁷Pb/²³⁵U и ²⁰⁷Pb/²⁰⁶Pb, 0.7-1.3% для ²⁰⁶Pb/²³⁸U. При этом значения средневзвешенных конкордантных возрастов цирконов Plešovice и GJ-1, определенных LA-ICP-MS методом (по 12 измерений каждого контрольного эталона), составили 338 ± 2 и 601 ± 3 млн лет соответственно. Для стандартов GJ-1 и Plešovice средневзвешенные значения возраста по отношениям ²⁰⁷Pb/²⁰⁶Pb, ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U составляют $630\pm23,\,599\pm3,\,605\pm4$ млн лет и 366 \pm 24, 337 \pm 2. 340 \pm 3 млн лет соответственно. Для анализа выбирались зерна циркона без микротрещин и включений. Для построения кривых относительной вероятности возраста зерен детритового циркона использовали только конкорлантные оценки возрастов. Пики кривой относительной вероятности возрастов зерен циркона рассчитывали с помощью программы AgePick (Gehrels, 2007).

МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИЕ ОСОБЕННОСТИ ПОРОД

Среди отложений надаровской свиты были изучены песчаники и алевролиты. Песчаники темно-серого цвета, с мелкозернистой псаммитовой структурой и массивной текстурой. Обломочный материал (0.10–0.20 мм) слабоокатанной формы представлен преимущественно кварцем (до 75%) и полевыми шпатами (до 5%). Реже встречаются чешуйки мусковита, серицита и биотита (до 10%). Единичны обломки слюдистых и слюдисто-кварцевых сланцев. Цемент контактовый, слюдисто-кварцевого состава. В песчаниках наблюдается углеродистое вещество (до 10%). Акцессорные минералы представлены цирконом, апатитом, гранатом, гидроксидами железа и магнетитом.

Алевролиты бурого цвета, с грубой бластоалевритовой структурой и массивной текстурой. Обломочный материал характеризуется слабоокатанной формой и представлен кварцем (до 30%), слюдистыми, слюдисто-кремнистыми и углеродисто-слюдистыми сланцами (до 10%) и полевыми шпатами (до 7%). Среди слюд (до 8%) наблюдаются мусковит и биотит (часто эпидотизирован и хлоритизирован). Цемент базальный, слюдисто-кварцевого состава. Акцессорные минералы: циркон, апатит, гранат, магнетит, гидроксиды железа.

В коллекции образцов, отобранных из нортуйской свиты, присутствуют алевролиты песчанистые, темно-серого цвета, с бластоалевропсаммитовой структурой и массивной текстурой. Обломочный материал имеет слабоокатанную форму. В составе алевролитов преобладают кварц (20-25%), полевые шпаты (до 10%), обломки слюдистых и слюдисто-кварцевых сланцев (5–10%). Среди слюд присутствуют мусковит, хлоритизированный и эпидотизированный биотит (10-15%). Единичны обломки вулканических пород кислого состава. Цемент базальный, слюдисто-кварцевого состава. В алевролитах отмечается тонкораспыленное углеродистое вещество (до 10%). Акцессорные минералы представлены цирконом, апатитом, гранатом, магнетитом и гидроксидами железа.

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПОРОД

Осадочные породы надаровской свиты характеризуются значительными вариациями содержаний породообразующих компонентов. В песчаниках надаровской свиты установлены более высокие концентрации SiO₂ (от 82.59 до 94.54 мас.%) по сравнению с таковыми в алевролитах (от 53.26 до 61.08 мас.%; табл. 1). При этом в алевролитах надаровской свиты отмечаются более высокие содержания Al₂O₃ (17.22–18.48 мас.%), Fe₂O₃* (10.77–17.85 мас.%), TiO₂ (0.97-1.10 мас.%), чем в песчаниках $(Al_2O_3 = 1.83 - 10.97 \text{ mac.}\%, Fe_2O_3^* = 0.31 - 1.99 \text{ mac.}\%,$ $TiO_2 = 0.23 - 0.90$ мас.%) (табл. 1). Подобные особенности геохимического состава, вероятно, связаны с возрастанием в составе алевролитов надаровской свиты слюдистого материала и полевых шпатов и со снижением количества обломков кварца. Несмотря на эти различия, для осадочных пород надаровской свиты, за исключением одного образца песчаника, характерно преобладание K₂O над Na₂O (K₂O/ $Na_2O = 3.6 - 8.1$).

					Надаровс	кая свита				
Компоненты		Алев	ролиты				Песч	аники		
	Ю-117	Ю-117-1	Ю-117-2	Ю-117-5	Ю-117-3	Ю-117-4	Ю-120	Ю-120-1	Ю-120-2	Ю-120-4
SiO ₂	57.41	53.26	59.98	61.08	83.77	82.59	92.06	93.64	91.59	94.54
TiO ₂	1.01	0.97	1.09	1.10	0.82	0.90	0.43	0.42	0.53	0.23
Al_2O_3	17.87	17.22	18.48	18.35	9.67	10.97	4.51	3.06	5.59	1.83
Fe ₂ O ₃ *	13.35	17.85	10.77	10.78	1.99	1.00	0.38	0.77	0.31	1.35
MnO	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
MgO	0.20	0.22	0.24	0.23	0.17	0.16	0.15	0.09	0.16	0.07
CaO	0.01	0.03	0.01	0.01	0.01	0.05	0.03	0.02	0.02	0.07
Na ₂ O	0.40	0.41	0.45	0.43	0.31	0.29	0.18	0.14	0.17	0.04
K ₂ O	3.25	3.15	3.52	3.43	1.83	1.79	0.81	0.07	0.62	0.26
P_2O_5	0.11	0.09	0.08	0.07	0.03	0.04	0.03	0.03	0.03	0.05
П.п.п.	5.63	5.98	5.01	4.41	2.22	2.82	1.34	1.49	1.73	1.02
Сумма	99.24	99.19	99.64	99.89	100.82	100.62	99.93	99.74	100.76	99.47
Rb	144	147	171	167	73	62	23	1	18	222
Sr	92	92	106	71	39	39	17	12	13	18
Ba	429	421	485	464	226	217	151	34	95	357
La	48.18	28.78	37.49	19.52	2.56	2.68	8.40	13.38	4.99	6.18
Ce	101.42	61.27	73.68	46.37	8.14	6.83	20.35	29.64	13.65	14.29
Pr	18.42	8.32	11.36	6.33	1.29	1.47	2.72	3.66	1.93	2.24
Nd	67.33	31.59	43.36	25.07	5.30	5.70	11.55	14.30	7.82	9.38

Таблица 1. Содержания основных петрогенных компонентов и микроэлементов в осадочных породах надаровской и нортуйской свит Аргунского континентального массива

					Надаровс	кая свита				
Компоненты		Алев	ролиты				Песч	аники		
	Ю-117	Ю-117-1	Ю-117-2	Ю-117-5	Ю-117-3	Ю-117-4	Ю-120	Ю-120-1	Ю-120-2	Ю-120-4
Sm	12.44	6.98	8.73	5.46	1.34	1.26	2.54	3.07	1.64	2.10
Eu	2.09	1.46	1.55	1.10	0.27	0.26	0.49	0.59	0.34	0.34
Gd	9.03	7.13	7.92	5.10	1.34	1.05	2.64	2.83	1.68	2.52
Tb	1.26	1.16	1.24	0.87	0.26	0.20	0.42	0.44	0.27	0.51
Dy	7.41	7.74	7.29	5.94	1.82	1.56	2.71	2.65	1.80	4.02
Но	1.35	1.59	1.40	1.17	0.39	0.36	0.57	0.50	0.39	0.90
Er	3.95	4.59	4.18	3.27	1.36	1.08	1.71	1.57	1.14	2.81
Tm	0.60	0.65	0.62	0.48	0.22	0.18	0.25	0.22	0.19	0.42
Yb	3.85	4.45	4.17	3.62	1.54	1.22	1.64	1.56	1.28	2.74
Lu	0.63	0.65	0.66	0.58	0.22	0.20	0.26	0.23	0.20	0.40
Y	28	34	31	25	7	5	11	13	6	19
Th	15.40	14.80	17.49	16.02	5.81	5.39	5.26	6.21	4.38	5.89
U	3.56	3.56	3.75	3.81	2.06	2.36	2.20	1.41	1.64	5.11
Zr	192	474	223	235	399	434	287	305	329	189
Hf	7.51	7.12	8.80	8.61	10.08	10.38	6.42	6.91	7.69	4.10
Nb	17	16	19	19	14	16	7	6	9	14
Та	1.34	1.26	1.45	1.44	1.04	1.21	0.53	0.48	0.66	1.02
Zn	218	408	194	104	30	13	не опр.	2	2	25
Co	10	17	23	7	4	2	1	1	1	3
Ni	28	50	45	25	12	17	26	9	18	21
Sc	25	23	23	19	12	16	7	5	7	5
V	149	144	143	136	66	71	51	54	61	730
Cr	94	87	108	100	84	88	146	106	111	128
Pb	12	13	11	8	8	7	2	7	2	7

Таблица 1. Продолжение

Примечание. Оксиды приведены в мас.%, микроэлементы – в мкг/г. Fe₂O₃* – общее железо в форме Fe₂O₃.

Таблица 1.	Продолжение
------------	-------------

			Нортуйс	кая свита		
Компоненты			Алевролиты	песчанистые		
	Ю-123	Ю-123-1	Ю-123-2	Ю-123-3	Ю-123-4	Ю-123-5
SiO ₂	73.77	76.51	77.16	73.66	72.26	69.89
TiO ₂	0.80	0.66	0.66	0.82	0.91	0.96
Al ₂ O ₃	13.21	11.78	12.35	13.93	12.26	13.95
Fe ₂ O ₃ *	2.40	2.84	2.62	3.05	5.45	4.78
MnO	0.01	0.01	0.01	0.01	0.01	0.01
MgO	0.82	0.83	0.73	0.82	0.87	1.01
CaO	0.02	0.09	0.28	0.06	0.19	0.16
Na ₂ O	0.21	0.18	0.18	0.23	0.16	0.21

СМИРНОВА и др.

			Нортуйс	кая свита		
Компоненты			Алевролиты	песчанистые		
	Ю-123	Ю-123-1	Ю-123-2	Ю-123-3	Ю-123-4	Ю-123-5
K ₂ O	3.79	3.13	2.71	3.85	3.21	4.10
P_2O_5	0.12	0.11	0.13	0.09	0.17	0.16
П.п.п.	3.82	2.95	3.29	3.44	4.08	4.05
Сумма	98.97	99.09	100.12	99.96	99.57	99.28
Rb	163	138	151	166	184	188
Sr	150	11	11	156	14	10
Ba	615	452	284	517	284	701
La	18.60	19.53	24.05	20.89	29.14	31.43
Ce	44.41	48.28	56.25	51.87	64.62	69.91
Pr	6.00	6.53	7.41	7.05	8.70	8.88
Nd	24.70	26.74	29.06	28.65	33.71	34.62
Sm	5.68	5.75	6.20	6.16	7.23	7.19
Eu	0.89	0.80	0.82	0.80	1.10	1.23
Gd	5.92	5.08	6.11	5.96	6.82	6.96
Tb	1.10	0.84	0.97	0.99	1.06	1.14
Dy	7.13	5.17	6.48	6.53	6.86	7.27
Но	1.49	1.06	1.33	1.31	1.34	1.44
Er	4.52	3.12	4.05	3.98	4.04	4.34
Tm	0.70	0.47	0.61	0.59	0.60	0.61
Yb	4.39	3.08	3.98	3.98	4.01	4.14
Lu	0.69	0.44	0.61	0.58	0.61	0.64
Y	34	18	31	27	32	35
Th	13.83	9.50	14.53	14.72	13.88	14.04
U	2.80	2.29	2.32	2.61	2.64	3.04
Zr	259	202	233	246	228	255
Hf	7.23	6.02	6.54	7.13	6.83	8.01
Nb	15	14	14	16	16	17
Та	1.37	1.06	1.18	1.33	1.29	1.44
Zn	19	24	23	8	37	71
Со	10	10	12	5	13	16
Ni	26	26	24	19	35	44
Sc	14	14	12	17	12	20
V	159	103	89	162	197	137
Cr	92	90	74	94	92	102
Pb	8	7	8	13	24	32

Таблица 1. Окончание

В песчанистых алевролитах нортуйской свиты отмечаются незначительные вариации 57.16 мас.%), Al_2O_3 (11.78–13.95 мас.%), $Fe_2O_3^*$

Рис. 3. Диаграммы $\log(SiO_2/Al_2O_3) - \log(Na_2O/K_2O)$ (Петтиджон и др., 1976) (а), $\log(SiO_2/Al_2O_3) - \log(Fe_2O_3/K_2O)$ (Herron, 1988) (б) для осадочных пород надаровской и нортуйской свит Аргунского континентального массива. 1 – алевролиты надаровской свиты; 2 – песчаники надаровской свиты; 3 – песчанистые алевролиты нортуйской свиты.

Рис. 4. Графики распределения редкоземельных элементов для осадочных пород надаровской (а) и нортуйской (б) свит Аргунского континентального массива. Состав хондрита по (McDonough, Sun, 1995).

Рис. 5. Спайдер-диаграммы для осадочных пород надаровской (а) и нортуйской (б) свит Аргунского континентального массива. Состав верхней континентальной коры по (Тейлор, Мак-Леннан, 1988).

Таблица 2. Результаты Sm–Nd изотопно-геохимических исследований осадочных пород надаровской и нортуйской свит Аргунского континентального массива

Свита	Номер образца	Возраст, млн лет	Sm, мгк/г	Nd, мгк/г	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd
Надаровская	Ю-117-2	775	8.73	43.36	0.11882	0.511906
Нортуйская	Ю-123	744	5.68	24.70	0.12787	0.512124
Свита	±2σ изм.	ε _{Nd(0)}	$\epsilon_{Nd(t)}$	t _{Nd(DM)} , млн лет	t _{Nd(DM2)} , млн лет	
Надаровская	13	-14.3	-6.6	1993	2009	
Нортуйская	14	-10.0	-3.5	1819	1729	

(2.40–5.45 мас.%), TiO₂ (0.66–0.96 мас.%), Na₂O (0.16–0.23 мас.%), K₂O (2.71–4.10 мас.%) (табл. 1). Значения отношения K₂O/Na₂O в них изменяются от 15.1 до 20.1.

По значениям логарифмических соотношений SiO_2/Al_2O_3 и Na_2O/K_2O (Петтиджон и др., 1976) алевролиты надаровской и нортуйской свит соответствуют породам аркозового состава (рис. 3а). Песчаники надаровской свиты из-за значительных вариаций соотношения SiO_2/Al_2O_3 сосредоточены в поле аркозов, субаркозов и сублитоидных аренитов (рис. 3а).

На классификационной диаграмме $log(SiO_2/Al_2O_3)-log(Fe_2O_3/K_2O)$ (Неггоп, 1988) точки состава алевролитов надаровской свиты расположены в поле сланцев, а песчаников надаровской свиты – в поле аркозов, субаркозов и Fe-песчаников (рис. 36). Фигуративные точки состава песчанистых алевролитов нортуйской свиты на диаграмме $log(SiO_2/Al_2O_3)-log(Fe_2O_3/K_2O)$ (Неггоп, 1988) попадают в поля аркозов и вакк (рис. 36).

В алевролитах надаровской свиты отмечаются вариации суммарных концентраций редкоземельных элементов ($\Sigma REE = 125$ до 278 мкг/г) при слабодифференцированном распределении лантаноидов ($[La/Yb]_n = 3.7-8.5$) и отрицательной европиевой аномалии (Eu/Eu* = 0.56-0.62) (рис. 4а). Для песчаников надаровской свиты характерны более низкие содержания редкоземельных элементов ($\Sigma REE = 24-75$ мкг/г) при их слабодифференцированном распределении ($[La/Yb]_n = 1.1-5.8$) и отрицательной европиевой аномалии (Eu/Eu* = 0.45-0.66) (рис. 4а).

В песчанистых алевролитах нортуйской свиты сумма лантаноидов варьирует от 126 до 180 мкг/г при четко проявленной отрицательной европиевой аномалии (Eu/Eu* = 0.40–0.52) и слабодифференцированном распределении редкоземельных элементов ([La/Yb]_n = 2.9–5.2) (рис. 46).

В алевролитах надаровской свиты содержания большинства элементов-примесей находятся на уровне таковых в верхней континентальной коре при незначительном дефиците Pb (8–13 мкг/г), Nb (16–19 мкг/г), Ta (1.26–1.45 мкг/г), Ba (421– 485 мкг/г) и Sr (71–106 мкг/г) (рис. 5а). В песчаниках надаровской свиты отмечается дефицит концентраций практически всех микроэлементов, кроме Zr (189–434 мкг/г) (рис. 5а), относительно таковых в верхней континентальной коре. Песчанистые алевролиты нортуйской свиты в сравнении с составом верхней континентальной коры деплетированы в отношении Nb (14–17 мкг/г), Ta (1.06– 1.44 мкг/г) и Sr (10–156 мкг/г) (рис. 56).

Рис. 6. Диаграмма возраст— ε_{Nd} для осадочных пород надаровской и нортуйской свит Аргунского континентального массива.

1-4 – линии Nd-изотопного состава осадочных пород: 1 – надаровской свиты, 2 – урулюнгуйской свиты (Смирнова и др., 2022), 3 – дырбылкейской свиты (Смирнова и др., 2022), 4 – нортуйской свиты; 5 – поле эволюции изотопного состава Nd позднепротерозойских гранитогнейсов массива Ухусишань (Wuhuxishan) (Liu et al., 2020).

ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ (Sm–Nd) ОСОБЕННОСТИ ПОРОД

Результаты Sm-Nd изотопно-геохимических исследований осадочных пород надаровской и нортуйской свит представлены в табл. 2. Для алевролитов надаровской свиты и песчанистых алевролитов нортуйской свиты характерны отрицательные значения величины $\varepsilon_{Nd(t)}$ (-6.6 и -3.5 соответственно) (рис. 6). Осадочные породы надаровской и нортуйской свит характеризуются раннепротерозойскими значениями неодимового модельного возраста ($t_{Nd(DM)} = 2.0 - 1.8$ млрд лет).

РЕЗУЛЬТАТЫ U–Th–Рb ИЗОТОПНО-ГЕОХРОНОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ ДЕТРИТОВОГО ЦИРКОНА

Из алевролита надаровской свиты (обр. Ю-117) было выделено 120 зерен детритового циркона. Конкордантные оценки возраста получены для 81 зерна (рис. 7а, табл. 3). Наиболее молодые позднерифейские значения возраста (953– 762 млн лет) установлены для 33 зерен циркона

2024

Рис. 7. Кривые относительной вероятности возрастов зерен детритового циркона (а) из алевролита надаровской свиты (обр. Ю-117) и (б) из песчанистого алевролита нортуйской свиты (обр. Ю-123) Аргунского континентального массива.

с пиками на диаграмме относительной вероятности возрастов ~ 887 и ~775 млн лет (рис. 7а). В значительном количестве присутствуют среднеи раннерифейские зерна циркона (1303–1043 млн лет, 7 зерен и 1650–1353 млн лет, 12 зерен соответственно) с пиками на кривой относительной вероятности возрастов ~1401, ~1369 и ~1167 млн лет. Раннепротерозойский возраст установлен для 23 зерен циркона (2485–1664 млн лет) с пиками на кривой относительной вероятности возрастов ~2009, ~1807 и ~1652 млн лет. Для шести зерен циркона характерны позднеархейские значения возраста (2982-2586 млн лет).

Из песчанистого алевролита нортуйской свиты (обр. Ю-123) было проанализировано 120 зерен циркона, конкордантные оценки возраста получены для 74 зерен (рис. 76, табл. 4). Доминирующая часть циркона имеет позднерифейский возраст (992–719 млн лет, 70 зерен) с пиками на кривой относительной вероятности возрастов ~859 и ~744 млн лет. Четыре зерна имеют раннеархейский возраст (~3893, ~3802, ~3622 и ~3495 млн лет). Таблица 3. U–Th–Pb (LA-ICP-MS) данные для зерен детритового циркона из алевролита надаровской свиты (обр. Ю-117) Аргунского континентального массива

	* *	22	*					*	*	*		* *	*	*	* *				* *	* *		* *			* *		* *	*
	D	21	-0.3	6.0	16.3	1.6	1.9	0.3	0.8	-0.4	1.9	-0.4	0.4	1.6	-0.5	11.9	2.3	8.4	1.2	-0.8	10.5	0.8	2.6	2.5	-0.7	1.9	1.0	-0.1
	±2σ	20	19					15	18	15		15	15	12	17				11	12		18			19		19	19
	CA	19	2740	Discordant	Discordant	Discordant	Discordant	1444	2718	1805	Discordant	1170	1370	886	2009	Discordant	Discordant	Discordant	906	910	Discordant	1813	Discordant	Discordant	1999	Discordant	2023	1781
IeT	±1σ	18	20	26	21	20	22	23	20	21	23	30	24	29	21	19	26	26	26	27	22	23	28	33	23	24	23	25
C HICM ,	²⁰⁶ Pb/ ²⁰⁷ Pb	17	2736	1024	1507	2082	1490	1452	2731	1798	1061	1160	1382	931	2000	2853	934	1079	938	890	2046	1833	960	1899	1986	1868	2048	1780
зраст	+1α	16	10	9	9	×	2	٢	6	8	9	6	×	7	8	6	9	9	9	9	6	6	2	14	6	6	10	10
Bo	⁰⁷ Pb/	15	2742	895	1188	2048	1448	1445	2714	1806	1018	1167	1372	896	2010	2629	883	901	911	906	1840	1815	902	1846	1998	1827	2026	1780
	10 ²	4	17	9	9	12	6	6	9	11	9	8	6	9	12	4	9	9	9	9	11	11	9	4	[]	12	13	12
	⁶ Pb/ ±	13	2751	844	021	2017	420	441	692	814	666	171	366	882	2021	350	863	831	901	913	999	800	879	801	2011	792	005	782
	ho 20	5	76 2	99	82 1	80	78 1	73 1	76 2	78 1	76	57 1	69 1	61	75 2	76 2	68	67	70	67	70 1	70 1	64	54 1	68	66 1	67 2	64 1
	±lσ R	11	.0041 0.	.0010 0.	0011 0.	.0025 0.	.0017 0.	.0018 0.	.0039 0.	.0023 0.	.0012 0.	.0015 0.	.0017 0.	0.0011 0.	.0026 0.	0031 0.	.0010 0.	.0010 0.	0011 0.	.0011 0.	0021 0.	.0023 0.	0011 0.	.0029 0.	.0027 0.	.0024 0.	.0027 0.	.0024 0.
вин	⁰⁶ Pb/ ²³⁸ U	10	5322 0	.1399 0	.1717 0	.3673 0	.2465 0	.2505 0	5183 0	.3249 0	.1676 0	.1992 0	.2361 0	.1466 0	.3683 0	.4397 0	.1433 0	.1375 0	.1500 0	.1521 0	2949 0	.3222 0	.1461 0	.3222 0	.3661 0	.3205 0	.3648 0	.3184 0
тноше	.1σ	6	1406 0	0151 0	0 0	0 264 0	0 278 0	0 303 0	1336 0	0 441 0	0 0	0 287 0	0 0	0 0	0 0	1136 0	0147 0	0 154 0	0 148 0	0 156 0)525 0	0220 0	0 0	0 0)664 0	0 0	0 6690	0 256 0
Hble 0	+		34 0.1	3 0.0	3 0.0	0 0.0	4 0.0	6 0.0	0.0	2 0.0	8 0.0	0 0.0	5 0.0	6 0.0	8 0.0	92 0.1	9 0.(3 0.0	5 0.0	0 0.0	3 0.0	0 0.0	7 0.0	4 0.0	4 0.0	9 0.0	2 0.0	6 0.0
30TOILI	²⁰⁷ Pb ²³⁵ U	~	13.888	1.414	2.222	6.519	3.162	3.150	13.470	4.922	1.725	2.156	2.862	1.415	6.240	12.319	1.385	1.428	1.453	1.440	5.126	4.974	1.430	5.159	6.153	5.043	6.352	4.772
И	±lσ	7	0.0024	0.0010	0.0010	0.0015	0.0011	0.0011	0.0023	0.0013	0.0009	0.0012	0.0011	0.0010	0.0015	0.0024	0.0009	0.0010	0.0009	0.0009	0.0016	0.0014	0.0010	0.0021	0.0016	0.0015	0.0017	0.0015
	²⁰⁶ Pb/ ²⁰⁷ Pb	9	5.2816	3.6328	0.6464	7.7649	0.7422	0.9578	5.3007	9.0975	3.3845	2.7368	1.3660	4.2680	8.1328	4.9195	4.2478	3.2686	4.2205	4.5568	7.9271	8.9261	4.0712	8.6071	8.2003	8.7561	7.9158	9.1938
	- dT	S	0.8	0.9	0.9	3.4	7.1	1.9 1	0.8	0.8	5.7	2.1	1.4	0.9	1.5	.0	1.7	1.8	2.7	0.9	1:1	1.7	1.1	2.7	0.7	1.3	1.2	3.1
5	U, MKT/T	4	27	172	1533	233	609	161	37	250	660	72	160	156	318	374	379	294	606	339	373	184	351	31	315	266	386	171
Ē	111, MKT/T	ю	34	178	1638	69	87	82	46	332	116	34	113	178	209	420	219	162	221	372	328	110	336	12	444	212	311	56
11	помер анализа	2	HO-117/001	HO-117/002	HO-117/003	HO-117/004	HO-117/005	HO-117/006	HO-117/007	HO-117/008	HO-117/009	HO-117/010	HO-117/011	HO-117/012	HO-117/013	HO-117/014	HO-117/015	HO-117/016	HO-117/017	HO-117/018	HO-117/019	HO-117/020	HO-117/021	HO-117/022	HO-117/023	HO-117/024	HO-117/025	HO-117/026
	υ/π	-	-	2	З	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Ta6.	пица 3. Продч	нэжго	Ис															
4	Howen	Ę	Ē	11/		Из	отопны	е отноп	пения					B	oapac	L, MJH	тет	
ц/ц	анализа	MKT/T	U, MKT/T) Th	²⁰⁶ Pb/ ²⁰⁷ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁶ Pb/ ²³⁸ U	⊢1σ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²⁰⁷ Pb	±lσ	CA
	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19
27	HO-117/027	253	541	2.1	14.2269	0.0010	1.4182	0.0168	0.1464	0.0011	0.63	881	9	897	7	938	28	886
28	HO-117/028	179	207	1.2	6.0719	0.0022	10.5796	0.1215	0.4661	0.0035	0.65	2466	15	2487	11	2505	23	2485
29	HO-117/029	265	437	1.6	8.3322	0.0017	3.9982	0.0476	0.2417	0.0018	0.63	1396	6	1634	10	1957	25	Discordant
30	HO-117/030	80	122	1.5	14.5418	0.0011	1.4054	0.0207	0.1483	0.0012	0.54	891	9	891	6	893	34	891
31	HO-117/031	199	297	1.5	15.1926	0.0010	1.1651	0.0158	0.1284	0.0010	0.57	<i>617</i>	9	784	7	802	32	780
32	HO-117/032	68	181	2.7	7.9159	0.0019	6.4275	0.0819	0.3692	0.0028	0.60	2026	13	2036	11	2048	26	2033
33	HO-117/033	102	173	1.7	6.0081	0.0025	9.6747	0.1242	0.4218	0.0033	0.60	2268	15	2404	12	2523	25	Discordant
34	HO-117/034	594	392	0.7	14.6225	0.0011	1.3567	0.0184	0.1440	0.0011	0.57	867	9	870	8	881	32	868
35	HO-117/035	78	82	1.1	12.8856	0.0015	1.4020	0.0255	0.1311	0.0011	0.47	794	9	890	11	1138	39	Discordant
36	HO-117/036	86	227	2.6	11.4180	0.0014	2.9468	0.0405	0.2441	0.0019	0.57	1408	10	1394	10	1374	30	1402
37	HO-117/037	102	147	1.4	8.6286	0.0018	5.1558	0.0724	0.3228	0.0026	0.57	1803	12	1845	12	1895	28	Discordant
38	HO-117/038	566	857	1.5	6.1171	0.0025	5.5363	0.0749	0.2457	0.0019	0.58	1416	10	1906	12	2493	26	Discordant
39	HO-117/039	7	38	5.7	8.6046	0.0021	4.8809	0.0784	0.3047	0.0026	0.54	1715	13	1799	14	1900	32	Discordant
40	HO-117/040	208	707	3.4	9.0118	0.0018	3.8304	0.0536	0.2505	0.0020	0.56	1441	10	1599	11	1816	28	Discordant
41	HO-117/041	476	538	1.1	14.0314	0.0012	1.2858	0.0195	0.1309	0.0011	0.53	793	9	839	6	996	34	Discordant

	п/п	анализа	MKT/T	MKT/T	Th	²⁰⁷ Pb	±lσ	235U	$\pm 1\sigma$	238U	±1σ	Rho
		2	3	4	S	9	7	~	6	10	11	12
	27	HO-117/027	253	541	2.1	14.2269	0.0010	1.4182	0.0168	0.1464	0.0011	0.63
	28	HO-117/028	179	207	1.2	6.0719	0.0022	10.5796	0.1215	0.4661	0.0035	0.65
	29	HO-117/029	265	437	1.6	8.3322	0.0017	3.9982	0.0476	0.2417	0.0018	0.63
	30	HO-117/030	80	122	1.5	14.5418	0.0011	1.4054	0.0207	0.1483	0.0012	0.54
	31	HO-117/031	199	297	1.5	15.1926	0.0010	1.1651	0.0158	0.1284	0.0010	0.57
C	32	HO-117/032	68	181	2.7	7.9159	0.0019	6.4275	0.0819	0.3692	0.0028	0.60
CTPA	33	HO-117/033	102	173	1.7	6.0081	0.0025	9.6747	0.1242	0.4218	0.0033	0.60
ΑТИ	34	HO-117/034	594	392	0.7	14.6225	0.0011	1.3567	0.0184	0.1440	0.0011	0.57
ГРА	35	HO-117/035	78	82	1.1	12.8856	0.0015	1.4020	0.0255	0.1311	0.0011	0.47
ФИ	36	HO-117/036	86	227	2.6	11.4180	0.0014	2.9468	0.0405	0.2441	0.0019	0.57
Я. Г	37	HO-117/037	102	147	1.4	8.6286	0.0018	5.1558	0.0724	0.3228	0.0026	0.57
ЕОЈ	38	HO-117/038	566	857	1.5	6.1171	0.0025	5.5363	0.0749	0.2457	0.0019	0.58
ΙΟΓΙ	39	HO-117/039	7	38	5.7	8.6046	0.0021	4.8809	0.0784	0.3047	0.0026	0.54
ИЧЕ	40	HO-117/040	208	707	3.4	9.0118	0.0018	3.8304	0.0536	0.2505	0.0020	0.56
ECK	41	HO-117/041	476	538	1.1	14.0314	0.0012	1.2858	0.0195	0.1309	0.0011	0.53
АЯ	42	HO-117/042	309	447	1.4	9.6146	0.0017	4.1506	0.0624	0.2896	0.0023	0.54
KOF	43	HO-117/043	117	247	2.1	14.0718	0.0013	1.5229	0.0247	0.1555	0.0013	0.51
PEJ	44	HO-117/044	274	317	1.2	8.0406	0.0021	5.9797	0.0926	0.3489	0.0029	0.53
іяц	45	HO-117/045	18	50	2.8	7.7012	0.0024	5.8905	0.0989	0.3292	0.0028	0.52
ия	46	HO-117/046	1205	727	0.6	5.7045	0.0030	8.6732	0.1365	0.3590	0.0030	0.52
1	47	HO-117/047	35	60	1.7	12.1881	0.0016	2.5122	0.0465	0.2222	0.0020	0.48
гом	48	HO-117/048	656	712	1.1	7.9239	0.0023	2.7799	0.0454	0.1598	0.0013	0.51
32	49	HO-117/049	17	40	2.4	4.5841	0.0040	17.7733	0.3043	0.5912	0.0053	0.52
Nº	50	HO-117/050	266	247	0.9	8.0288	0.0023	6.2144	0.1049	0.3620	0.0031	0.50
23	51	HO-117/051	44	36	0.8	6.3950	0.0032	9.9723	0.1878	0.4627	0.0043	0.49
20	52	HO-117/052	0	1	ı	1.6199	0.1710	10.5828	3.7458	0.1244	0.0553	1.26

СМИРНОВА и др.

2.3 34.6

* * *

21

1650

1698

12 10 13 14 14 13 12 16

1664

1639

 $\frac{14}{24}$

933 1951

30 36 30

960

940

932

12

11.0

5.8 1.5 0.8 2.3 6.8

4.9

*

-1.4

20

1288

38

1276

16.5

Discordant Discordant

32 29

2097 2610 1248

14 14

2021

1973 1960 2304

14

1929 1834 1977 1293 * * *

-0.6 0.7

2982

30 32 34

2968

2978 2006 2432

21

2994 1992 -0.8

2440

32 26 31

1999

2023 2418

15 17

14

2452

229.]

351 Discordant

4550

328

2487

317 19

756

- | 1.6199 | 0.1710 | 10.5828 | 3.7458 | 0.1244 | 0.0553 | 1.26 | 0.0553

HO-117/052

2024

41.2

Discordant

31

2046

1350

956

ح 10

*

18

*

12

22 *

21

20

*

0.817.1

1.8

12 22 * * *

-0.1

13

0.7 0.5 6.0 0.412.1 -1.0

11

22

*

Ω

±2σ

0
3. Прод
аблица З

	*	22			* *	*	* *	* *	* *	*	*			*	*	*	* *	*	*	*	*	* *		*	* *	*		*
	D	21	3.5	51.8	2.6	0.9	0.1	0.2	0.4	2.0	0.3	49.4	14.5	1.0	2.6	2.0	2.1	0.3	2.6	1.2	2.6	3.3	10.7	0.3	2.7	0.2	9.4	1.9
	±2σ	20			14	15	20	15	16	15	30			28	31	28	27	24	16	29	20	16		40	18	40		17
	CA	19	Discordant	Discordant	852	939	1303	886	953	869	2029	Discordant	Discordant	1826	2019	1781	1664	1396	850	1768	1108	857	Discordant	2648	911	2586	Discordant	851
ют	±lσ	18	35	36	41	42	40	4	43	45	39	41	37	41	40	42	43	46	50	44	50	53	46	43	56	45	45	58
, MJH J	²⁰⁶ Pb/ ²⁰⁷ Pb	17	1914	1717	931	968	1308	894	967	928	2040	1686	2698	1861	2110	1848	1735	1408	928	1811	1190	957	1989	2660	992	2595	2507	908
зраст	±lσ	16	16	11	11	12	14	12	12	12	19	12	20	19	20	19	19	18	14	20	17	15	22	24	17	25	24	16
Bo	$\left \frac{17}{235} \text{U} \right ^{-2}$	15	842	857	871	946	1304	888	956	884	2033	858	2428	1839	2055	1806	0691	1400	870	1784	1133	883	1780	2653	933	2589	2326	865
	1σ ²	4	4	5	7	8	=	8	8	8	9	5	2	5	2	5	4	2	8	9	0	8	5	33	6	53	6	9
	⁸⁸ U ±	13	780	.65	49	38	303	86	52	867	027	74	120	821	002	171	555	395	48	762	105	55	508	645	60	584	126	49
	0 23		8	5	12 8	6 94	H6 1.	15 8	5	4	12	4	4	4	13 20	1	10	1.	5	1	H I	11 8	11	H 2	6	11	0 2	9 8
	5 Rh	12	28 0.4	0.4 0.4	12 0.4	14 0.4	20 0.4	14 0.4	14 0.4	13 0.4	35 0.4	20 0.4	37 0.4	31 0.4	35 0.4	31 0.4	29 0.4	24 0.4	14 0.4	32 0.4	19 0.4	15 0.4	30 0.4	54 0.4	16 0.3	54 0.4	42 0.4	16 0.3
	+16	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
винэ	²⁰⁶ Pb/ ²³⁸ U	10	0.3181	0.0915	0.1407	0.1565	0.2240	0.1473	0.1592	0.1439	0.3695	0.0932	0.3894	0.3264	0.3641	0.3163	0.2927	0.2417	0.1406	0.3144	0.1869	0.1418	0.2834	0.5072	0.1515	0.4931	0.3907	0.1408
с отноп	±lσ	6	0.0946	0.0245	0.0258	0.0303	0.0510	0.0289	0.0316	0.0292	0.1368	0.0284	0.2149	0.1121	0.1463	0.1122	0.0977	0.0706	0.0326	0.1154	0.0512	0.0354	0.1237	0.3284	0.0416	0.3160	0.2377	0.0378
отопны	²⁰⁷ Pb/ ²³⁵ U	8	5.1349	1.3261	1.3587	1.5394	2.6127	1.3969	1.5648	1.3878	6.4022	1.3272	9.9226	5.1153	6.5657	4.9240	4.2809	2.9692	1.3562	4.7945	2.0524	1.3867	4.7726	12.6336	1.5071	1.8090	8.8779	1.3445
Изе	±lσ	7	0.0023	0.0021	0.0014	0.0015	0.0018	0.0015	0.0015	0.0016	0.0028	0.0023	0.0042	0.0026	0.0030	0.0027	0.0025	0.0022	0.0017	0.0028	0.0020	0.0019	0.0032	0.0048	0.0020	0.0048	0.0045	0.0020
	⁰⁷ Pb/	9	5366 (5133	.2762 0	.0149 (.8180	.5325 (.0238 (.2908 0	9549 (6730 0	4083 (.7931 (.6431 (.8518	.4231 (.2172 0	.2909	.0366 (.5508 0	.0951 (.1840 (5330 (.8502 0	7544 0	.0646 (.4334 (
/1		5	.6 8	6 6.	.2 14	.7 14	.1 11	.8 14	.0 14	.2 14	.6 7	4.	.7 5	.1 8	.5 7	.7 8	9 2.3	.1111	.8 14	6 9.	.4 12	.7 14	.4 8	.9 5.	.2 13	.1 5	.2 6	.8 14
1	2, XT/T	4	76 1	377 C	60 1	83 1	33	03 C	03 1	27 1	27 3	571 1	19 1	87 1	22	62 (82	38	03 0	04 3	99 1	90 1	24 1	94 0	30 2	50 1	69 1	94 0
	", [/r] MI		0	64 2.	5 5	0	<u></u>	5	3	4	5	59 10	0	6	9	9 1	5	6 1	<u>6</u>	9 1	9 6	3	6 1	0	0 1		3	1 1
ĺ	MK	<u></u>	3 11	4 24	5 45	6 17	7 16	8 24	9 39	0 19	<u>-1</u>	2 11:	3 25	4 33	5 14	6 22	7 50	8	9 39	0	1 51	2 29	3	4 10	5 6	6 5.	7 32	8 23
Howen	анализа	2	0-117/05	0-117/05	0-117/05	O-117/05	0-117/05	O-117/05	0-117/05	0-117/06	0-117/06	O-117/06	O-117/06	O-117/06	0-117/06	0-117/06	0-117/06	O- 117/06	0-117/06	0-117/07	0-117/07	O-117/07	O-117/07	O-117/07	O-117/07	O-117/07	O-117/07	0-117/07
Vo	п/п	-	53 I	54 I	55 H	56 I	57 H	58 I	59 I	60 F	61 1	62 I	63 I	64 I	65 I	66 I	67 I	68 I	1 69	70 F	71	72 H	73 H	74 I	75 H	76 I	77 I	78 I

	*	22	* *		*	* *	* *	*	*		*	*	*						*	*	*	*	* *		*	*	*	*
	D	21	1.2	8.0	3.4	0.4	1.9	1.0	2.8	12.4	0.3	-0.5	1.8	8.4	7.1	10.8	14.1	6.3	2.6	3.6	-0.5	0.4	3.0	21.9	4.0	-0.1	-0.9	1.6
	±2σ	20	18		32	16	28	45	28		35	38	21						27	34	19	25	37		34	23	24	23
	CA	19	862	Discordant	1650	762	1406	2652	1362	Discordant	1793	1977	917	Discordant	Discordant	Discordant	Discordant	Discordant	1156	1441	176	1043	1630	Discordant	1353	871	896	864
leT	±lσ	18	59	56	53	63	56	49	59	54	56	56	66	63	70	68	60	61	68	67	76	73	66	62	74	79	81	80
, млн ј	²⁰⁶ Pb/ ²⁰⁷ Pb	17	900	966	1766	774	1472	2689	1455	1981	1805	1959	972	1141	861	997	2137	2054	1241	1561	762	1057	1733	2371	1487	871	871	915
зраст	±lσ	16	17	16	24	16	23	28	24	26	26	28	20	20	18	18	30	30	25	29	20	24	30	32	31	23	24	24
Bo	²⁰⁷ Pb/	15	871	828	1695	764	1429	2668	1395	1741	1797	1969	932	964	706	770	1868	1926	1183	1485	773	1047	1670	1975	1401	870	889	877
	μlα	14	6	~	16	~	14	25	14	16	18	20	10	10	~	~	19	20	14	17	10	13	19	19	17	11	12	12
	²⁰⁶ Pb/ ²³⁸ U	13	861	766	1639	762	1402	2642	1357	1548	1792	1980	916	890	659	695	1637	1812	1152	1434	777	1043	1622	1620	1347	871	897	863
	Rho	12	0.39	0.39	0.39	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.37	0.37	0.37	0.37	0.37	0.37	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.35	0.35	0.35
	±1σ	Π	0.0016	0.0014 (0.0033 (0.0014 (0.0028	0.0059 (0.0028	0.0032 0	0.0038 (0.0043	0.0019	0.0018	0.0014	0.0014	0.0038	0.0042	0.0025 0	0.0034 (0.0017	0.0024 0	0.0038 (0.0039 (0.0033 (0.0020	0.0021	0.0020
ения	²⁰⁶ Pb/ ²³⁸ U	10	0.1428	0.1262	0.2896	0.1254	0.2430	0.5066	0.2343	0.2715	0.3204	0.3595	0.1527	0.1480	0.1076	0.1139	0.2891	0.3245	0.1957	0.2492	0.1280	0.1756	0.2861	0.2858	0.2323	0.1446	0.1493	0.1432
понто	+1σ	6	0.0387	0.0351	0.1260	0.0340	0.0926	0.3877	0.0923	0.1408	0.1526	0.1887	0.0499	0.0514	0.0349	0.0390	0.1865	0.1999	0.0786	0.1224	0.0421	0.0671	0.1547	0.2243	0.1199	0.0537	0.0571	0.0557
отопные	²⁰⁷ Pb/ ²³⁵ U	~	1.3584	1.2591	4.3084	1.1228	3.0866	2.8416	2.9512	4.5522	4.8720	5.9544	1.5043	1.5854	1.0042	1.1357	5.2951	5.6680	2.2058	3.3185	1.1402	1.8044	4.1803	5.9948	2.9754	1.3564	1.4007	1.3720
И30	±1σ	7	0.0020	0.0020	0.0032	0.0020	0.0028	0.0056 1	0.0029	0.0038	0.0035	0.0038	0.0024	0.0025	0.0024	0.0025	0.0047	0.0045	0.0029	0.0036	0.0024	0.0028	0.0039	0.0056	0.0037	0.0027	0.0028	0.0028
	²⁰⁶ Pb/ ²⁰⁷ Pb	9	4.4918	3.8162	0.2622	5.3929	0.8489	5.4365	0.9421	8.2194	0.0643	8.3215	3.9865	2.8613	4.7673	3.8187	7.5254	7.8908	2.2289	0.3482	5.4760	3.4107	9.4326	5.5702	0.7615	4.6910	4.6895	4.3835
)년 2년	S	1.1	5.4 1	1.1	1.5 1	1.1	6.0	1.8 1	1.5	2.3	1.2	0.6 1	0.6 1	1.3 1	0.4 1	1.3	6.0	3.4 1	1.8 1	1.0 1	1.6 1	1.3	1.3 (2.9 1	1.9 1	2.1 1	1.1
=	U, IKT/T	4	186	1277	298	206	341	192	118	491	366	280	131	757	232	1227	133	121	309	64	252	184	494	364	51	638	130	393
4		e	179	235	293	135	315	200	68	328	162	229	218	160	182	1689	66	138	90	35	240	118	393	273	18	331	61	360
Howen	анализа M	2	HO-117/079	HO-117/080	HO-117/081	HO-117/082	HO-117/083	HO-117/084	HO-117/085	HO-117/086	HO-117/087	HO-117/088	HO-117/089	HO-117/090 1	HO-117/091	HO-117/092	HO-117/093	HO-117/094	HO-117/095	HO-117/096	HO-117/097	HO-117/098	HO-117/099	HO-117/100	HO-117/101	HO-117/102	HO-117/103	HO-117/104
ي لا	п/п	-	62	80	81	82	83	84	85	86	87	88	68	90	91	92	93	94	95	96	97	98	66	100	101	102	103	104

Таблица 3. Продолжение

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 32 № 3 2024

СМИРНОВА и др.

18

	*	22	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	
		21	5.8	-1.2	1.0	-0.7	1.2	0.8	-0.5	1.5	-0.2	6.8	1.2	0.5	1.7	33.2	1.5	0.5	
	±2σ	20	22	53	24	24	24	48	26	25	52	25	27	26	46		34	55	LOC
	CA	19	805	1962	866	885	865	1985	911	849	2035	861	902	856	1650	Discordant	1148	2008	
тет	±lσ	18	80	73	83	84	85	73	89	89	77	88	93	92	83	78	91	82	
г, млн .	²⁰⁶ Pb/ ²⁰⁷ Pb	17	975	1922	896	865	903	2014	898	896	2028	1061	941	872	1710	2356	1196	2025	-000
озрас	±lσ	16	24	37	24	25	25	37	27	26	40	28	29	27	39	40	34	43	
ğ	²⁰⁷ Pb/ ²³⁵ U	15	850	1946	874	879	875	1997	907	861	2031	917	912	860	1673	1785	1163	2016	
	±lσ	14	11	29	12	12	12	26	13	12	28	13	14	13	24	20	17	29	
	²⁰⁶ Pb/ ²³⁸ U	13	803	1969	865	885	865	1982	912	848	2036	859	901	855	1645	1340	1146	2006	
	Rho	12	0.35	0.40	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.34	0.34	0.34	0.34	0.34	0.34	0.34	
	±lσ	11	0.0019	0.0061	0.0021	0.0022	0.0022	0.0054	0.0024	0.0022	0.0059	0.0023	0.0024	0.0023	0.0048	0.0038	0.0032	0.0061	
ения	²⁰⁶ Pb/ ²³⁸ U	10	0.1327	0.3572	0.1437	0.1472	0.1435	0.3599	0.1519	0.1406	0.3713	0.1425	0.1500	0.1419	0.2907	0.2310	0.1946	0.3650	200
отнош	±1σ	6	0.0535	0.2496	0.0572	0.0581	0.0585	0.2633	0.0649	0.0602	0.2910	0.0675	0.0692	0.0625	0.1997	0.2292	0.1039	0.3065	
отопные	²⁰⁷ Pb/ ²³⁵ U	~	1.3088	5.7959	1.3642	1.3769	1.3671	6.1457	1.4432	1.3346	6.3931	1.4667	1.4554	1.3316	4.1956	4.8028	2.1438	6.2807	1
Из	±lσ	7	0.0029	0.0049	0.0028	0.0028	0.0029	0.0052	0.0030	0.0030	0.0056	0.0034	0.0033	0.0031	0.0049	0.0070	0.0038	0.0060	
	²⁰⁶ Pb/ ²⁰⁷ Pb	6	3.9705	8.4946	4.5133	4.7348	4.4683	8.0710	4.5054	4.5143	8.0051	3.3888	4.2046	4.6830	9.5503	6.6292	2.5086	8.0083	
11/	- hT	5	1.9 1	2.2	1.8 1	1.0 1	1.2 1	3.4	0.9 1	1.0 1	1.1	0.7 1	0.7 1	1.8 1	3.0	2.0	2.5 1	1.3	
11	U, MKT/T	4	544	21	350	506	283	377	284	970	381	808	110	790	129	1713	285	184	,
ł	MKT/T	ю	282	6	192	506	236	111	306	939	348	1156	152	427	42	844	115	138	
Ucercon	анализа	2	HO-117/105	HO-117/106	HO-117/107	HO-117/108	HO-117/109	HO-117/110	HO-117/111	HO-117/112	HO-117/113	HO-117/114	HO-117/115	HO-117/116	HO-117/117	HO-117/118	HO-117/119	HO-117/120	ł
ې ۷	п/п	-	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	

ее пиков использовались только те значения возрастов, которые характеризуются конкордантным возрастом (CA), при этом в них значения показателя дискор-дантности составляли не более 10%, а ошибка значений отношения возрастов ²⁰⁶Рb/²³⁸U и ²⁰⁷Pb/²³⁵U не более 3%. дискордантность, σ – относительная ошиока того или иного отношения (Gerdes, Zeh, 2006; Powerman et al., 2021); CA – конкордантный возраст (Ludwig, 2008), D – дискордантность, вычислялась по формуле (Bospacr(²⁰⁶Pb/²³⁸U)/Bospacr(²⁰⁶Pb/²³⁹U) – 100%. (**) – для построения кривой относительной вероятности цирконов и вычисления

ИСТОЧНИКИ ВЕРХНЕПРОТЕРОЗОЙСКИХ ТЕРРИГЕННЫХ ОТЛОЖЕНИЙ

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 32

Таблица 3. Окончание

№ 3 2024

20	
юй свиты (обр. Ю-123) Аргунского	
ята нортуйск	
и из алевроли	
го циркона	
детритовоі	
зерен	
е для	
данны (
P-MS	
LA-IC	Ba
-Pb (Maccr
J-Th-	HOLO
4 . (нталі
Таблица	контине

	* *	22	*		* *		* *	* *				* *			* *	* *	* *		* *	* *	* *	*						
	D	21	-0.0	2.7	0.2	-2.2	-1.2	1.3	0.5	16.7	13.0	0.3	-0.3	0.6	-1.2	0.1	-0.5	1.2	-1.3	-1.2	-1.4	-1.0	0.5	6.2	0.3	-0.2	-0.1	-0.1
	±2σ	20	10		11		12	11				11	10	11	11	11	11	11			11	11	11		11	10	10	25
	CA	19	807	Discordant	753	Discordant	897	752	Discordant	Discordant	Discordant	743	763	774	825	794	782	764	Discordant	Discordant	824	770	813	Discordant	761	757	779	3622
н лет	±lσ	18	24	28	31	28	26	32	Ξ	11	24	33	26	29	25	28	30	29	26	24	26	29	27	26	29	28	26	22
T, MJI	²⁰⁶ Pb/ ²⁰⁷ Pb	17	807	861	761	727	868	789	1686	1692	1155	752	755	790	797	796	768	799	868	854	783	744	828	889	770	752	777	1834
o3pac	±1σ	16	5	2	٢	9	9	7	8	٢	9	٢	9	9	9	9	2	٢	9	9	9	9	9	9	9	9	9	8
B	²³⁵ U	15	806	801	755	777	893	760	1674	1372	890	745	761	776	822	794	677	771	895	879	814	765	816	753	763	756	778	1836
		14	9	9	9	9	9	9	11	8	9	9	9	9	9	9	9	9	9	9	9	9	9	5	9	9	9	12
	⁰⁶ Pb/	13	807	780	753	795	903	750	1666	178	787	743	764	772	832	794	784	762	906	889	826	772	811	709	761	757	677	838
	Sho 20	12).81).65).61).72).72	.59	.24	.84).76).57).72).66	0.77).66).63	.64	.64).73).75).66	69.(.71	.65	69.(.74	.19
	±lσ	11	0.0010 (0.0010 0	0.0010 0	0.0010 0	0.0012 0	0.0010 0	0.0022 0	0.0015 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0012 0	0.0011 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0010 0	0.0025 (
винэшо	²⁰⁶ Pb/ ²³⁸ U	10	0.1333	0.1286	0.1239	0.1312	0.1504	0.1234	0.2948	0.2001	0.1299	0.1221	0.1258	0.1273	0.1377	0.1310	0.1293	0.1254	0.1509	0.1479	0.1366	0.1273	0.1341	0.1162	0.1252	0.1246	0.1285	0.3300
ble othc	$\pm 1\sigma$	6	0.0113	0.0143	0.0144	0.0134	0.0149	0.0151	0.0386	0.0256	0.0140	0.0151	0.0119	0.0136	0.0122	0.0140	0.0144	0.0139	0.0151	0.0128	0.0127	0.0133	0.0138	0.0118	0.0132	0.0124	0.0117	0.0509
зотопн	²⁰⁷ Pb/ ²³⁵ U	~	1.2128	1.2012	1.1028	1.2471	1.4089	1.1134	1.2471	2.8612	1.4023	1.0821	1.1166	1.1485	1.2471	1.1858	1.1546	1.1372	1.2471	1.2471	1.2471	1.1236	1.2330	1.0992	1.1197	1.1051	1.1526	1.2471
	±lσ	7	0.0008	0.0009	0.0010	0.0009	0.0009	0.0010	0.0012	0.0012	0.0010	0.0010	0.0008	0.0009	0.0008	0.0009	0.0009	0.0009	0.0009	0.0008	0.0008	0.0009	0.0009	0.0009	0.0009	0.0008	0.0008	0.0014
	²⁰⁶ Pb/ ²⁰⁷ Pb	9	15.1492	14.7580	15.4847	15.7356	14.7102	15.2788	9.6712	9.6367	12.7681	15.5497	15.5280	15.2695	15.2184	15.2230	15.4297	15.2022	14.7124	14.8104	15.3210	15.6104	14.9925	14.5709	15.4154	15.5448	15.3633	8.9190
11/) H	5	1.7	1.4	1.7	1.6	1.0	1.5	1.5	1.6	1.0	1.8	1.3	1.5	2.6	1.6	1.8	1.7	1.6	2.0	1.3	1.7	2.4	3.7	1.7	1.3	1.0	1.2
1	U, MKT/T	4	1109	219	168	244	331	270	364	1077	661	203	407	237	692	233	189	212	326	1323	480	252	300	344	250	328	601	165
Ē	LII, MKT/T	3	657	159	97	158	335	185	247	665	664	116	308	158	264	144	106	126	205	654	377	145	126	94	146	261	626	138
	помер анализа	2	HO-123/001	HO-123/002	HO-123/003	HO-123/004	HO-123/005	HO-123/006	HO-123/007	HO-123/008	HO-123/009	HO-123/010	HO-123/011	HO-123/012	HO-123/013	HO-123/014	HO-123/015	HO-123/016	HO-123/017	HO-123/019	HO-123/020	HO-123/021	HO-123/022	HO-123/023	HO-123/024	HO-123/025	HO-123/026	HO-123/027
2	u/⊓			7	б	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Таблица 4. Продолжение

	* *	22				* *	* *	* *			* *	* *	* *	*	* *			* *									
	D	21	0.8	-0.6	4.3	-0.1	1.8	1.3	14.2	3.6	0.6	1.9	-0.9	1.0	-0.1	0.3	-0.2	0.9	-0.1	-0.2	0.3	-0.2	0.4	4.1	17.0	1.1	22.4
	±2σ	20				11	13	11			11	11	Ξ	11	Ξ	11	10	11	11	Ξ	11	Ξ	10			11	
	CA	19	Discordant	Discordant	Discordant	767	886	875	Discordant	Discordant	757	775	761	762	760	761	756	768	760	748	746	770	731	Discordant	Discordant	743	Discordant
н лет	±1σ	18	19	20	26	31	31	25	32	25	29	31	29	28	29	29	27	33	29	30	29	29	29	40	22	29	22
т, мл	²⁰⁶ Pb/ ²⁰⁷ Pb	17	2612	2390	906	766	937	908	1062	1007	775	829	738	791	757	770	752	794	758	742	755	764	744	685	2096	774	1957
oзpac	+1σ	16	6	6	9	7	8	9	×	9	9	7	9	9	9	9	9	~	9	9	9	9	9	×	6	9	8
В	²⁰⁷ Pb/ ²³⁵ U	15	2594	2400	812	767	898	879	772	929	760	786	757	767	759	762	756	774	759	747	747	769	734	593	1776	749	1546
	±lσ	14	16	16	9	9	٢	9	5	9	9	9	9	9	9	9	9	9	9	9	9	9	S	S	10	9	6
	⁰⁶ Pb/	13	2572	2413	778	768	882	868	675	897	756	772	763	760	760	760	757	767	760	749	745	770	730	570	1518	741	1263
	Rho	12	0.08	0.10	0.72	0.60	0.59	0.76	0.57	0.74	0.65	0.61	0.65	0.68	0.64	0.65	0.71	0.58	0.65	0.64	0.65	0.65	0.64	0.48	0.74	0.64	0.74
	±lσ	11	0038	0035	0010	0010	0012	0011	6000	0011	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	6000	0008	0020	0010	0017
ВИ	: /q		02 0.	40 0.	83 0.	65 0.	67 0.	42 0.	05 0.	93 0.	44 0.	72 0.	57 0.	51 0.	51 0.	51 0.	46 0.	64 0.	52 0.	32 0.	25 0.	70 0.	00 0.	24 0.	55 0.	18 0.	65 0.
ошен	²⁰⁶ P	10	0.49	0.45	0.12	0.12	0.14	0.14	0.11	0.14	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.0	0.26	0.12	0.21
sie oth	±1σ	6	0.1133	0.0939	0.0131	0.0148	0.0194	0.0137	0.0164	0.0155	0.0134	0.0152	0.0134	0.0129	0.0135	0.0133	0.0120	0.0160	0.0133	0.0133	0.0130	0.0135	0.0127	0.0140	0.0491	0.0132	0.0372
зотопні	²⁰⁷ Pb/ ²³⁵ U	~	1.2471	1.2471	1.2240	1.1284	1.4210	1.3773	1.1380	1.4964	1.1145	1.1694	1.1067	1.1291	1.1116	1.1189	1.1045	1.1426	1.1126	1.0866	1.0872	1.1320	1.0595	0.7931	4.7504	1.0912	3.5816
И	±lσ	7	0.0021	.0018	6000.	0.0010	.0011	.0008	.0012	6000.	6000.	0010)	6000.	6000.	6000.	6000.	.0008	0010)	6000.	6000.	6000.	6000.	6000.	.0012	.0016	6000.	0.0015
	²⁰⁶ Pb/ ²⁰⁷ Pb	9	5.6954 (6.4982 0	14.4425 (15.4440 (14.2227	14.4279	13.3779 0	13.7476 0	15.3822 (14.9858	15.6494 (15.2625 (15.5087 0	15.4131 (15.5473 (15.2393 (15.5015 0	15.6201 0	15.5255 (15.4560 0	15.6031 0	16.0488 (7.7018 0	15.3846 (8.3292 (
11/) HT	5	2.4	1.6	1.3	2.5	1.5	3.4	1.1	1.7	0.7	2.0	1.4	1.5	1.7	1.6	1.0	2.1	1.4	1.4	1.5	1.4	1.4	1.4	1.7	1.5	1.3
11	U, MKT/T	4	132	122	314	170	135	747	184	496	272	189	276	363	275	315	544	157	349	332	322	309	496	106	282	316	397
4 L		e	56	77	244	68	93	216	161	290	400	96	194	240	161	202	521	74	253	240	212	216	358	76	169	216	315
Howen	анализа м	2	HO-123/028	HO-123/029	HO-123/030	HO-123/031	HO-123/032	HO-123/033	IO-123/034	HO-123/035	HO-123/036	HO-123/037	HO-123/038	HO-123/039	HO-123/040	HO-123/041	HO-123/043	HO-123/044	HO-123/045	HO-123/046	HO-123/047	IO-123/048	HO-123/049	HO-123/050	HO-123/051	HO-123/052	HO-123/053
J V	п/п	-	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

СМИРНОВА и др.

53 * * * * * * * * * * * * * * * * * 44.5 -0.6 -0.3 0.5 0.30.5 -1.5 7.5 -2.2 0.80.8-1.0 0.43.9 -0.3 1.5 1.01.4 8.7 7.7 2.1 5.7 3.2 21 0.1 Ω ±2σ 12 11 1 11 12 12 11 12 Π Ξ 11 14 20 Π Discordant 774 763 859 758 760 910 864 834 777760 737 992 S 751 19 ±1σ 1824 28 20 34 29 56 29 24 27 30 26 26 35 30 27 29 32 31 28 29 31 50 32 30 ²⁰⁶Pb/ ²⁰⁷Pb 2747 1043 1008 1939 1557 1020 2854 762 751 774 932 819 838 845 712 761 791 692 894 828 755 823 780 897 922 17 ò \sim 9 9 ∞ ~ 10 ~ 9 \sim ∞ 7 7 ∞ ~ 7 2852 860 836 745 866 LUUY 998 914 772 762 752 744 824 771 741 861 2 Ś $\overline{\infty}$ 9 9 9 9 9 9 S 9 9 9 9 9 869 832 2850 734 989 855 755 758 907 756 730 713 764 729 838 1721 0.72 0.620.630.640.630.72 0.540.620.060.680.590.69 0.590.71 0.67C7.0 0.0010 0.0013 0.0283 0.20 / 2/ 02.0 2850 0.00100.0163 0.1510 0.0012 0.0143 0.1443 0.0011 0.0009 0.00100.0011 0.0010 0.0174 0.1199 0.0010 0.0043 0.0009 0.00100.0010 0.0011 0.1258 0.0142 0.1244 0.0135 0.1378 0.0136 0.1169 0.1644 0.5561 0.0118 0.1198 0.0137 | 0.1206 |0.0209 0.1658 0.0164 | 0.1418 |0.0145 0.1243 0.12480.13880.0150 0.0170 0.0156 1.4596 1.09781.08341.24/1 1.33221.07441.67301.27741.1171 1.24711.33481.1382 14.5264 0.0012 1.1374 1.34721.2471 1.2521 0.001010.3048 0.0012 14.2572 0.0009 15.0602 0.0010 14.9232 0.0009 15.1 14.8721 0.0008 14.9970 0.0010 0.000815.3421 0.0010 13.6575 0.0010 14.5054 0.0010 $15.8479 \left| 0.0010 \right|$ 13.7382 0.0011 $14.3308 \mid 0.0010 \mid$ 0.0026 15.5231 4.9142 15.0331 21.9 7.2 2.3 0.8 7.3 0.7 0.0 1.9 0.9 1.61.81.2 1.3 1.81.9 2454 1297 3122 252 209 319 316 239 349 394 254 659 100 727 322 327 110 214 384 385 428 284 110360 179 163 157 990 141 15 131 197 LU-125/U05 HO-123/066 HO-123/074 HO-123/075 HO-123/076 HO-123/077 HO-123/078 HO-123/064 HO-123/065 HO-123/067 HO-123/068 HO-123/069 HO-123/070 HO-123/071 HO-123/072 HO-123/073 62 63 64 65 99 67 68 69 70 71 72 73 74 75 76 0

ИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ 2024 том 32 <u>№</u> 3

г, млн лет

E

e E

Продолжение
4
Таблица

	* *	22	* *	* *	* *	* *	* *			* *	* *		* *	*	* *		*				* *				* *	* *		*
	D	21	2.1	2.5	2.1	0.8	0.2	59.0	6.0	2.0	0.3	24.2	0.2	1.7	0.4	201.3	1.6	3.9	46.5	3.7	-0.0	4.1	5.2	-1.8	0.6	0.4	25.4	0.9
	E2σ	20	11	11	12	12	11		-	11	11	-	25	11	25		12		-		13	-		-	11	11		12
	CA	19	742	738	849	792	744	Discordant	Discordant	741	739	Discordant	3893	167	3802	Discordant	842	Discordant	Discordant	Discordant	858	Discordant	Discordant	Discordant	757	744	Discordant	859
н лет	$\pm 1\sigma$	18	32	34	32	31	31	24	28	31	31	24	26	30	24	27	30	29	24	32	33	32	34	32	32	33	26	30
т, мл	²⁰⁶ Pb/ ²⁰⁷ Pb	17	801	810	910	817	750	2271	820	797	750	1826	2159	840	2057	3310	889	959	4817	854	859	891	833	822	774	756	2094	886
озрас	±lσ	16	7	×	×	7	7	6	9	7	7	6	12	7	10	11	7	٢	40	7	~	×	×	×	7	7	10	7
B	²⁰⁷ Pb/ ²³⁵ U	15	754	753	862	797	745	1354	690	753	741	1381	2154	801	2049	1289	852	874	4099	772	858	802	720	860	761	746	1636	864
	±1σ	4	9	9	9	9	9	9	S	9	9	∞	15	9	14	4	9	9	89	9	9	9	S	7	9	9	10	9
	$\left \frac{1}{238} \frac{1}{1} \right ^{2}$	13	739	735	845	790	743	852	650	738	739	1111	2150	787	2042	428	838	842	2797	744	858	770	684	876	756	744	304	856
	Sho 20	12	.58	.55	.59	.60	.61	.67	.67	.61	.61	.68]	0.11	.62	0.13).63	.62	.64	6 86.0	.59	.58	.58).56	.54	.59	.58).63]	.63
	lo l	1	010 (010 (011 0	010 (010 (011 (008 (010 (010 (015 (033 (010 (029 (000	011 (011 0	214 (010 (012 (010 () 600	012 (010 (010 (018 (011 (
Я	+	_	4 0.0	7 0.0	0.0	4 0.0	2 0.0	3 0.0	2 0.0	3 0.0	4 0.0	2 0.0	9 0.0	0.0 6	5 0.0	5 0.0	9 0.0	5 0.0	3 0.0	3 0.0	4 0.0	0.0	0.0	5 0.0	5 0.0	3 0.0	2 0.0	1 0.0
инэш	²⁰⁶ Pb, ²³⁸ U	10	0.121^{4}	0.120	0.140(0.130	0.122	0.141	0.106	0.121	0.121	0.188	0.395	0.129	0.372	0.068	0.138	0.139:	0.543	0.122	0.142^{4}	0.1270	0.1120	0.145:	0.124:	0.122	0.224	0.142
sie othc	$\pm 1\sigma$	6	0.0153	0.0162	0.0184	0.0157	0.0141	0.0329	0.0114	0.0143	0.0138	0.0330	0.0950	0.0152	0.0775	0.0382	0.0168	0.0169	2.2306	0.0154	0.0188	0.0170	0.0152	0.0184	0.0151	0.0152	0.0511	0.0170
зотопні	²⁰⁷ Pb/ ²³⁵ U	8	1.1018	1.0996	1.3382	1.1917	1.0825	2.7957	0.9720	1.0986	1.0752	2.8955	1.2471	1.2004	1.2471	2.5605	1.3142	1.3660	5.6429	1.1380	1.3285	1.2025	1.0317	1.2471	1.1151	1.0857	4.0077	1.3427
И	$\pm 1\sigma$	7	0010)	0.0011	0.0011	0.0010	0.0010	0.0020	6000.0	0.0010	0.0010	0.0015	0.0020	0.0010	0.0018	0.0046	0.0010	0.0010	0.0124	0.0010	0.0011	0.0011	0.0011	0.0010	0.0010	0.0010	.0019	0.0010
	²⁰⁶ Pb/ ²⁰⁷ Pb	9	15.1883 (15.1263	14.4175	15.0784 (15.5594 (6.9633 (15.0534 (15.2207	15.5642 (8.9558 (7.4278 0	14.9120	7.8722 0	3.6947 (14.5624 (14.0746	1.3456 (14.8104	14.7754	14.5476 (14.9611	15.0376 0	15.3846 (15.5207	7.7101 0	14.5836 (
/11	Dh L	5	1.6	2.1	1:1	2.1	1.3	1.2	1.1	1.0	1.3	2.0	1.6	5.0]	1.9	2.0	1.1	1.4	0.6	1.3	1.4	1.6	1.4	1.4	1.6	1.4	2.9	2.3
Π	AKT/T	4	219	162	204	295	353	455	1248	433	433	2598	68	470	333	131	483	786	10	361	229	263	316	289	460	351	342	1367
 Ч	KT/T	e	139	78	190	142	275	396	164	437	344	314	42	94	177	99	442	577	16	272	164	164	230	213	292	246	117	597
Howen	анализа М	2	HO-123/079	HO-123/080	HO-123/081	HO-123/082	HO-123/083	HO-123/084	HO-123/085 1	HO-123/086	HO-123/087	HO-123/088 1	HO-123/089	HO-123/090	HO-123/091	HO-123/092	HO-123/093	HO-123/094	HO-123/095	HO-123/096	HO-123/097	HO-123/098	HO-123/099	HO-123/100	HO-123/101	HO-123/102	HO-123/103	HO-123/104
Ŋ	п/п	Ч	77	78	62	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	66	100	101	102

	*	22	*		*			*		*		*	*	*	*	*	*	* *	,
	Ω	21	1.4	-0.2	1.3	215.9	-1.7	2.2	4.1	1.2	0.2	1.4	2.1	0.7	-0.5	2.3	1.2	2.3	
	±2σ	20	12		12			11		14		28	14	11	13	11	11	11	100
	CA	19	748	Discordant	860	Discordant	Discordant	743	Discordant	971	Discordant	3495	967	727	880	734	719	728	
н лет	±1σ	18	36	26	30	30	34	34	34	30	30	28	30	36	34	35	39	35	
T, MJI	²⁰⁶ Pb/ ²⁰⁷ Pb	17	788	2539	868	3901	708	807	960	1008	1056	1763	1027	748	867	800	755	793	0
o3pac	+1σ	16	~	13	8	15	8	8	6	8	6	12	8	8	6	8	6	8	
B	²⁰⁷ Pb/ ²³⁵ U	15	757	2541	868	1860	745	756	872	980	1050	1732	981	731	877	748	727	742	
	1 1 1	4	9	18	9	9	9	9	9	7	8	12	7	9	7	9	9	9	
	²⁰⁶ Pb/ ²³⁸ U	13	747	2546	856	589	758	740	838	968	1048	1708	962	726	881	731	718	725	
	Rho	12	0.54	0.07	0.62	0.65	0.65	0.56	0.55	0.60	0.42	0.16	09.0	0.54	0.56	0.54	0.50	0.55	500
	±lσ	11	0.0010	0.0042	0.0011	0.0011	0.0010	0.0010	0.0011	0.0013	0.0014	0.0025	0.0013	0.0010	0.0012	0.0010	0.0010	0.0010	0
пения	²⁰⁶ Pb/ ²³⁸ U	10	0.1228	0.4843	0.1421	0.0956	0.1248	0.1216	0.1388	0.1620	0.1765	0.3033	0.1608	0.1192	0.1465	0.1201	0.1178	0.1191	- 200
le othol	i H α	6	0.0172 0	0.1577 0	0.0174	0.0933 (0.0155	0.0162	0.0204	0.0216	0.0240	0.0622	0.0219	0.0168	0.0201	0.0166	0.0177 0	0.0162	
30TOITHE	²⁰⁷ Pb/ ²³⁵ U	~	1.1070	1.2471	1.3508	5.2431	1.2471	1.1063	1.3597	1.6244	1.2471	1.2471	1.6286	1.0548	1.3717	1.0886	1.0457	1.0760	,
И	±lσ	~	0.0011	0.0027	0.0010	0.0081	0.0010	0.0011	0.0012	0.0011	0.0011	0.0017	0.0011	0.0011	0.0011	0.0011	0.0012	0.0011	
	²⁰⁶ Pb/ ²⁰⁷ Pb	9	15.2858	5.9492	14.5012	2.5134	15.8705	15.1492	14.0667	3.7400	13.4138	9.2721	3.6110	15.5763	4.7167	15.1999	15.5280	15.2486	
11/	- hT	S	1.9	2.0	2.0]	4.3	1.3	1.5	0.8]	1.9	5.6]	1.5	2.2	1.8	1.9	1.8	2.0	1.9	
=	U, MKT/T	4	187	155	1007	48	354	293	207	806	930	164	753	257	294	268	248	312	
4 H		e S	100	79	500	11	269	194	251	429	167	110	338	140	154	153	127	168	
Uoven	анализа и	2	D-123/105	D-123/106	D-123/107	D-123/108	D-123/109	D-123/110	D-123/111	D-123/112	D-123/113	D-123/114	D-123/115	D-123/116	D-123/117	D-123/118	D-123/119	D-123/120	Ì
ي ا	п/п	-	103 K	104 K	105 H	106 H	107 H	108 H	109 H	110 K	111 K	112 K	113 K	114 K	115 H	116 K	117 K	118 K	

де σ – относительная ошибка того или иного отношения (Gerdes, Zeh, 2006; Powerman et al., 2021); CA – конкордантный возраст (Ludwig, 2008), D – дискордантность, ее пиков использовались только те значения возрастов, которые характеризуются конкордантным возрастом (CA), при этом в них значения показателя дискор-дантности составляли не более 10%, а ошибка значений отношения возрастов ²⁰⁶Рb/²³⁸U и ²⁰⁷Рb/²³⁵U не более 3%. вычислялась по формуле (Boзраст⁽²⁰⁶Pb/²³⁸U)/Возраст⁽²⁰⁶Pb/²⁰⁷Pb)×100) – 100%. (**) – для построения кривой относительной вероятности цирконов и вычисления

СМИРНОВА и др.

24

Таблица 4. Окончание

Рис. 8. Диаграммы La/Sc–Th/Co (Cullers, 2002) (a), Rb–K (Floyd, Leveridge, 1987) (б), Th–La–Sc (Cullers, 2002) (в) для осадочных пород надаровской и нортуйской свит Аргунского континентального массива. 1 – алевролиты надаровской свиты; 2 – песчаники надаровской свиты; 3 – песчаники урулюнгуйской свиты (Смирнова

1 – аловролиты падаровской свиты, 2 – песчаники надаровской свиты, 5 – песчаники урулюнгуйской свиты (Смирнова и др., 2022); 4 – песчаники, алевропесчаники и алевролиты дырбылкейской свиты (Смирнова и др., 2022); 5 – алевролиты песчанистые нортуйской свиты.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ

Прежде всего обратимся к интерпретации результатов геохимических исследований. Для реконструкции основных источников сноса кластического материала в настоящее время разработана серия дискриминационных диаграмм (Bhatia, Crook, 1986; Floyd, Leveridge, 1987; Wronkiewicz, Condie, 1987; Тейлор, Мак-Леннан, 1988; Cullers, 2002 и др.). Среди них наиболее информативными являются диаграммы, в основе которых лежат содержания и соотношения микроэлементов, наименее подверженные вариациям при постседиментационных процессах.

Положение фигуративных точек состава осадочных пород надаровской и нортуйской свит на диаграмме La/Sc—Th/Co (Cullers, 2002) свидетельствует

Рис. 9. Диаграммы Th–La (a), La–Th/Sc (б), Hf–La/Th (в), Co/Ni–Cr/Ni (г), $[La/Yb]_n$ –Eu/Eu* (д), $[La/Yb]_n$ –Yb_n (е) для осадочных пород надаровской и нортуйской свит Аргунского континентального массива.

1 – алевролиты надаровской свиты; 2 – песчаники надаровской свиты; 3 – песчанистые алевролиты нортуйской свиты; 4–6 – состав по (Condie, 1993): 4 – протерозойские граниты, 5 – позднепротерозойские андезиты, 6 – позднепротерозойские базальты; 7 – поле состава позднепротерозойских образований Аргунского массива (Gou et al., 2013; Tang et al., 2013; Liu et al., 2020; Feng et al., 2022).

Рис. 10. Кривые относительной вероятности возрастов зерен детритового циркона из (а) песчанистого алевролита нортуйской свиты (обр. Ю-123), (б) песчаника дырбылкейской свиты (обр. Ю-115-2) (Смирнова и др., 2022), (в) песчаника урулюнгуйской свиты (обр. Ю-112) (Смирнова и др., 2022), (г) алевролита надаровской свиты (обр. Ю-117) Аргунского континентального массива.

о присутствии в области сноса кислых магматических пород (рис. 8а). Данный вывод согласуется с доминированием в изученных образцах осадочных пород обломков кварца и полевых шпатов и присутствием среди акцессорных минералов сиалических разностей (циркон, гранат и апатит).

На диаграмме Rb—К (Floyd, Leveridge, 1987) фигуративные точки состава песчанистых алевролитов нортуйской свиты и алевролитов надаровской свиты лежат компактно в поле пород, источниками которых являются образования кислого и среднего состава (рис. 8б). Песчаники надаровской свиты характеризуются значительными вариациями содержаний К и Rb и попадают в поле пород, сформированных за счет размыва образований кислого, среднего и основного состава.

На смешанный состав исходных пород также указывают вариации микроэлементов, лежащих в основе диаграммы La—Th—Sc (Cullers, 2002) (рис. 8в). Значительное сходство по геохимическому составу осадочных пород надаровской и нортуйской свит с ранее изученными породами урулюнгуйской и дырбылкейской свит даурской серии свидетельствует о единых источниках сноса исходного материала для них (рис. 8).

Для выявления состава исходных пород также использовалась серия диаграмм Th–La, La–Th/Sc, Hf–La/Th, Co/Ni–Cr/Ni, $[La/Yb]_n$ –Eu/Eu* и [La/Yb]_n–Yb_n, на которых в качестве геохимических "эталонов" вынесены средние составы протерозойского гранита, позднепротерозойского андезита и позднепротерозойского базальта по данным (Condie, 1993). Осадочные породы надаровской и нортуйской свит на диаграммах, представленных на рис. 9, соответствуют отложениям, накопление которых происходило за счет размыва различных по кремнекислотности исходных пород.

Для алевролитов надаровской свиты типичны наиболее низкие значения величины $\varepsilon_{Nd(t)} = -6.6$ при раннепротерозойских значениях Nd-модельного возраста ($t_{Nd(DM)} = 2.0$ млрд лет), которые наиболее близки оценкам $\varepsilon_{Nd(t)} = -6.1...-5.4$ и $t_{Nd(DM)} = 2.2-2.0$ млрд лет, выявленным ранее для песчаников урулюнгуйской свиты даурской серии (Смирнова и др., 2022) (рис. 6). Для алевролитов нортуйской свиты и осадочных пород дырбылкейской свиты даурской серии также установлены близкие значения величин $\varepsilon_{\text{Nd(t)}}$ и t_{Nd(DM)} ($\varepsilon_{\text{Nd(t)}} = -3.5$, t_{Nd(DM)} = 1.8 млрд лет и $\varepsilon_{\text{Nd(t)}} = -4.2...-2.3$, t_{Nd(DM)} = 1.9 – 1.7 млрд лет со-ответственно; Смирнова и др., 2022). Эти данные полтверждают ранее сделанный вывод о единстве источников сноса для осадочных пород рифейского возраста Аргунского массива. В качестве одного из поставщиков кластического материала для изученных осадочных пород даурской серии можно рассматривать позднерифейские гранитогнейсы массива Ухусишань (Wuhuxishan, входит в состав Аргунского континентального массива), характеризующиеся

близкими значениями показателя $\varepsilon_{Nd(t)} = -2.3...-0.9$ и палеопротерозойскими величинами Nd-модельного возраста ($t_{Nd(DM)} = 1.8 - 1.6$ млрд лет; Liu et al., 2020) (рис. 6). Вопрос об областях сноса для пород надаровской свиты, характеризующихся более древним Nd-модельным возрастом, открыт, так как в настоящее время отсутствуют данные, подтверждающие участие образований в структуре Аргунского массива с Nd-модельным возрастом $t_{Nd(DM)} = 2.2 - 2.0$ млрд лет.

В свою очередь, результаты U–Th–Pb датирования зерен детритового циркона позволили получить информацию о нижней возрастной границе накопления осадочных пород надаровской и нортуйской свит: так, наиболее молодые группы циркона из алевролитов этих свит имеют позднерифейский возраст (~775 и ~744 млн лет соответственно). Полученные данные противоречат принятому среднерифейскому возрасту надаровской свиты (Шивохин и др., 2010).

При сравнении возрастов наиболее молодых зерен циркона из отложений надаровской, дырбылкейской и нортуйской свит стоит отметить для них определенную последовательность. В алевролитах надаровской свиты, песчаниках дырбылкейской свиты и алевролитах нортуйской свиты пики на кривых относительной вероятности возрастов зерен детритового циркона составляют ~775, ~771 и ~744 млн лет соответственно (рис. 10). В то время как для песчаников урулюнгуйской свиты даурской серии получено наиболее древнее значение нижней возрастной границы накопления ~899 млн лет (Смирнова и др., 2022). Учитывая, что урулюнгуйская свита не охарактеризована органическими остатками (Шивохин и др., 2010), контакты между надаровской и урулюнгуйской свитами несогласные и в песчаниках отсутствуют зерна циркона позднерифейского возраста (Смирнова и др., 2022), выявленные в алевролитах надаровской свиты, не исключено, что накопление осадочных пород урулюнгуйской свиты происходило на более раннем этапе развития Аргунского массива и предшествовало формированию осадочных пород надаровской свиты.

Доминирующая часть зерен циркона в терригенных отложениях надаровской и нортуйской свит имеет позднерифейский возраст. Их источниками, вероятно, являлись позднерифейские образования, достаточно широко распространенные на территории Китая в пределах Аргунского континентального массива (Wu et al., 2011; Gou et al., 2013; Tang et al., 2013; Yang et al., 2017; Liu et al., 2020; Feng et al., 2022 и др.). Данному выводу не противоречит сходство по геохимическому составу осадочных пород нортуйской, надаровской свит и позднерифейских магматических образований Аргунского массива (рис. 9). Также в качестве источников сноса кластического материла, по-видимому, стоит рассматривать образования бухотуйского гранитового и уртуйского базальт-риолитового комплексов. Однако отсутствие данных об их микроэлементном и Nd-изотопном

составе в настоящее время не позволяет сделать более точные выводы.

Кроме того, в изученных отложениях присутствуют в незначительном количестве цирконы ранне-, среднерифейского и архейского возраста. Вопрос об их источниках открыт, так как до сих пор в структуре Аргунского массива не выявлены с помощью современных геохронологических методов исследований образования данного возраста. Источниками раннепротерозойской группы зерен циркона, по-видимому, стоит рассматривать раннепротерозойские гранитогнейсы Аргунского массива, характеризующиеся возрастом 1.84 млрд лет (Feng et al., 2022).

Геохимические особенности осадочных пород надаровской и нортуйской свит, в совокупности с их гранулометрическим составом, слабой степенью окатанности обломочного материала и присутствием значительного количества детритового циркона позднепротерозойского возраста, свидетельствуют об активном тектоническом режиме накопления верхнепротерозойских осадочных пород северо-западной части Аргунского континентального массива.

выводы

Полученные в результате исследований данные позволяют сформулировать следующие выводы:

1. Особенности микроэлементного состава осадочных пород надаровской и нортуйской свит, в совокупности с их преимущественно аркозовым составом, доминированием среди обломков кварца и полевых шпатов, а также присутствием сиалических акцессорных минералов (циркон, гранат и апатит), свидетельствуют о том, что источниками кластического материала для отложений являлись магматические породы кислого состава при незначительном вкладе образований среднего и основного состава.

2. Осадочные породы надаровской и нортуйской свит характеризуются раннепротерозойскими значениями Nd-модельного возраста ($t_{Nd(DM)} = 2.0-1.8$ млрд лет) при отрицательных величинах $\varepsilon_{Nd(t)} = -6.6...-3.5$, что указывает на присутствие в области сноса образований раннепротерозойского возраста и/или более молодых изверженных пород, исходные расплавы которых сформировались за счет переработки континентальной коры раннепротерозойского возраста.

3. По данным U–Th–Pb датирования зерен циркона установлено, что их доминирующая часть в алевролитах надаровской и нортуйской свит имеет позднерифейский возраст. Основными их источниками, по-видимому, являлись позднерифейские магматические комплексы Аргунского массива. В качестве дополнительных источников сноса кластического материала стоит рассматривать раннепротерозойские образования, выявленные в последние годы в строении Аргунского массива на территории Китая.

 Нижняя возрастная граница накопления терригенных отложений надаровской и нортуйской свит

приходится на поздний рифей (~775 и ~744 млн лет соответственно).

Благодарности. Авторы благодарят сотрудников ЦКП "Амурский центр минералого-геохимических исследований" ИГиП ДВО РАН: А.С. Сегренёва, Е.С. Сапожник, Е.В. Ушакову, Е.Н. Воропаеву, О.Г. Медведеву, сотрудников ЦКП "Изотопно-геохимические исследования" ИГХ СО РАН: О.В. Зарубину, Н.В. Брянского, Т.Н. Галкину, а также персонал ЦКП "Геоспектр" ГИН СО РАН (г. Улан-Удэ) за проведение аналитических исследований. Авторы признательны рецензентам А.Б. Котову, В.Н. Подковырову и В.П. Ковачу за конструктивные замечания и дискуссию.

Источники финансирования. Исследования выполнены в рамках фундаментальных исследований ИГиП ДВО РАН (№ 122041800127-8 "Геодинамические обстановки, основные этапы тектонической эволюции и металлогения восточной части Центрально-Азиатского складчатого пояса").

СПИСОК ЛИТЕРАТУРЫ

Голубев В.Н., Чернышев И.В., Котов А.Б., Сальникова Е.Б., Гольцман Ю.В., Баирова Э.Д., Яковлева С.З. Стрельцовский урановорудный район: изотопно-геохронологическая (U–Pb, Rb–Sr и Sm–Nd) характеристика гранитоидов и их место в истории формирования урановых месторождений // Геология рудных месторождений. 2010. Т. 52. № 6. С. 553–571.

Гордиенко И.В., Метелкин Д.В., Ветлужских Л.И. Строение Монголо-Охотского складчатого пояса и проблема выделения Амурского микроконтинента // Геология и геофизика. 2019. Т. 60. № 3. С. 318–341.

Котов А.Б., Сорокин А.А., Сальникова Е.Б., Сорокин А.П., Ларин А.М., Великославинский С.Д., Беляков Т.В., Анисимова И.В., Яковлева С.З. Мезозойский возраст гранитоидов бекетского комплекса (Гонжинский блок Аргунского террейна Центрально-Азиатского складчатого пояса) // Докл. АН. 2009. Т. 429. № 6. С. 779–783.

Котов А.Б., Мазукабзов А.М., Сковитина Т.М., Великославинский С.Д., Сорокин А.А., Сорокин А.П. Структурная эволюция и геодинамическая позиция Гонжинского блока (Верхнее Приамурье) // Геотектоника. 2013. № 5. С. 48–60.

Лыхин Д.А., Пресняков С.Л., Некрасов Г.Е., Руженцев С.В., Голионко Б.Г., Балашова Ю.С. Вопросы геодинамики области сочленения Агинской и Аргунской зон Забайкалья (данные U–Pb SHRIMP-датирования пород Цугольского габбро-плагиогранитного массива) // Докл. АН. 2007. Т. 417. № 5. С. 668–672.

Озерский А.Ф., Винниченко Е.Л. Государственная геологическая карта Российской Федерации масштаба 1:200000. Издание второе. Приаргунская серия. Лист М-50-XVII (Краснокаменск). Ред. Старченко В.В. СПб.: ВСЕГЕИ, 2002.

Павлова В.В., Грознова Т.Н., Афанасов М.Н., Платонов Е.Г., Лейкум М.С. Государственная геологическая карта Российской Федерации масштаба 1 : 200000. Издание второе. Приаргунская серия. Лист М-50-XVI. Ред. Амантов В.А. СПб.: ВСЕГЕИ, 2001.

Петрук Н.Н., Козлов С.А. Государственная геологическая карта Российской Федерации масштаба 1 : 1000000. Третье поколение. Дальневосточная серия. Лист N-51 (Сковородино). Ред. Вольский А.С. СПб.: ВСЕГЕИ, 2009.

Петтиджон Ф. Дж., Поттер П., Сивер Р.М. Пески и песчаники. М.: Мир, 1976. 535 с.

Сальникова Е.Б., Котов А.Б., Ковач В.П., Великославинский С.Д., Джан Б.-М., Сорокин А.А., Сорокин А.П., Ван К.-Л., Чан С.-Л., Ли Х.-Я., Толмачева Е.В. О возрасте гонжинской серии (Аргунский террейн Центрально-Азиатского складчатого пояса): результаты U–Pb и Lu– Hf-изотопных исследований детритовых цирконов // Докл. АН. 2012. Т. 444. № 5. С. 519–522.

Смирнова Ю.Н., Сорокин А.А. Возраст и обстановки формирования чаловской серии ордовика Аргунского массива, восточная часть Центрально-Азиатского складчатого пояса // Стратиграфия. Геол. корреляция. 2019. Т. 27. № 3. С. 3–23.

Смирнова Ю.Н., Овчинников Р.О., Смирнов Ю.В., Дриль С.И. Источники кластического материала и условия накопления осадочных пород даурской серии Аргунского континентального массива // Тихоокеанская геология. 2022. Т. 41. № 1. С. 13–31.

Сорокин А.А., Смирнов Ю.В., Котов А.Б., Сальникова Е.Б., Сорокин А.П., Ковач В.П., Яковлева С.З., Анисимова И.В. Раннепалеозойский возраст исагачинской толщи чаловской серии Гонжинского террейна (восточная часть Центрально-Азиатского складчатого пояса) // Докл. АН. 2014. Т. 457. № 3. С. 323–326.

Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.

Хубанов В.Б., Буянтуев М.Д., Цыганков А.А. U–Pb изотопное датирование цирконов из PZ3–MZ магматических комплексов Забайкалья методом магнитно-секторной масс-спектрометрии с лазерным пробоотбором: процедура определения и сопоставления с SHRIMP данными // Геология и геофизика. 2016. Т. 57. № 1. С. 241–258.

Шивохин Е.А., Озерский А.Ф., Куриленко А.В., Раитина Н.И., Карасев В.В. Государственная геологическая карта Российской Федерации. Масштаб 1 : 1 000000. Третье поколение. Серия Алдано-Забайкальская. Лист М-50 (Борзя). Ред. Старченко В.В. СПб.: ВСЕГЕИ, 2010.

Bhatia M.R., Crook K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins // Contrib. Miner. Petrol. 1986. V. 92. P. 181–193.

Condie K.C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales // Chem. Geol. 1993. V. 104. Iss. 1–4. P. 1–37.

Cullers R.L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA // Chem. Geol. 2002. V. 191. Iss. 4. P. 305–327.

Feng Z., Zhang Q., Liu Y., Li L., Jiang L., Zhou J., Li W., Ma Y. Reconstruction of Rodinia supercontinent: evidence from the Erguna Block (NE China) and adjacent units in the eastern Central Asian orogenic Belt // Precambrian Res. 2022. V. 368. P. 106467.

Floyd P.A., Leveridge B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones // J. Geol. Soc. London. 1987. V. 144. Iss. 4. P. 531–542.

Gerdes A., Zeh A. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany // Earth Planet. Sci. Lett. 2006. V. 249. P. 47–61.

Gehrels G.E. AgePick, Available online: https://sites.google. com/a/laserchron.org/laserchron/home/. 2007.

Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution // Earth Planet Sci. Lett. 1988. V. 87. P. 249–265.

Gou J., Sun D.Y., Ren Y.S., Liu Y.J., Zhang S.Y., Fu C.L., Wang T.H., Wu P.F., Liu X.M. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: geochronological, geochemical and Hf isotopic evidence // J. Asian Earth Sci. 2013. V. 67–68. P. 114–137.

Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. Glitter: data reduction software for laser ablation ICP-MS // Laser Ablation–ICP-MS in the Earth Sciences. Current practices and outstanding issues. Ed. Sylvester P. Mineral. Assoc. Canada Short Course Ser. 2008. V. 40. P. 308–314.

Herron M.M. Geochemical classification of terrigenous sands and shales from core or log data // J. Sediment. Petrol. 1988. V. 58. \mathbb{N} 5. P. 820–829.

Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47–69.

Jacobsen S.B., Wasserburg G.J. Sm–Nd isotopic evolution of chondrites and achondrites, II // Earth Planet. Sci. Lett. 1984. V. 67. P. 137–150.

Liu H., Li Y., Wan Z., Lai Ch.-K. Early Neoproterozoic tectonic evolution of the Erguna Terrane (NE China) and its paleogeographic location in Rodinia supercontinent: insights from magmatic and sedimentary record // Gondwana Res. 2020. V. 88. P. 185–200.

Ludwig K.R. Isoplot 3.6. A geochronological toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. Publ. 2008. № 4. P. 1–77.

Makishima A., Nagender B., Nakamura E. New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC–ICP-MS and TIMS // Geochem. J. 2008. V. 42. P. 237–246.

McDonough W.F., Sun S.S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.

Pin C., Briot D., Bassin C., Poitrasson F. Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography // Anal. Chim. Acta. 1994. V. 298. P. 209–217.

Powerman V.I., Buyantuev M.D., Ivanov A.V. A review of detrital zircon data treatment, and launch of a new tool 'Dezirteer' along with the suggested universal workflow // Chem. Geol. 2021. V. 583, 120437.

*Richard P., Shimizu N., Allegre C.J.*¹⁴³Nd/¹⁴⁶Nd A natural tracer: an application to oceanic basalts // Earth Plan. Sci. Lett. 1976. V. 31. P. 269–278.

Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis // Chem. Geol. 2008. V. 249. P. 1–35.

Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M., Orihashi Y., Yoneda S., Shimizu H., Kunimaru T., Takahashi K., Yanagi T., Nakano T., Fujimaki H., Shinjo R., Asahara Y., Tanimizu M., Dragusanu C. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium // Chem. Geol. 2000. V. 168. P. 279–281.

Tang J., Xu W.L., Wang F., Wang W., Xu M.J., Zhang Y.H. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesis and implications for the breakup of the Rodinia supercontinent // Precambrian Res. 2013. V. 224. P. 597–611.

Wiedenbeck M., Allé P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses // Geostandards Newslett. 1995. V. 19. Iss. 1. P. 1–23.

Wronkiewicz D.J., Condie K.C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance // Geochim. Cosmochim. Acta. 1987. V. 51. № 9. P. 2401–2416.

Wu F.Y., Sun D.Y., Ge W.C., Zhang Y.B., Grant M.L., Wilde S.A., Jahn B.M. Geochronology of the Phanerozoic granitoids in northeastern China // J. Asian Earth Sci. 2011. V. 41. Iss. 1. P. 1–30.

Yang H., Liu Y., Zheng J., Liang Z., Wang X., Tang X., Su Y. Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China // Geol. Bull. China. 2017. V. 36. Iss. 2–3. P. 342–356.

Yang Y.H., Chu Z.Y., Wu F.Y., Xie L.W., Yang J.H. Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC–ICP-MS // J. Anal. At. Spectrom. 2011. V. 26. P. 1237–1244.

Рецензенты В.П. Ковач, А.Б. Котов, В.Н. Подковыров

Sources of the Upper Proterozoic Terrigenous Deposits in the Northwestern Part of the Argun Massif, Central Asian Fold Belt: Results of U–Th–Pb Geochronological and Sm–Nd Isotopic-Geochemical Studies

Yu. N. Smirnova^{a, #}, A. V. Kurilenko^{b, c}, S. I. Dril^d, V. B. Khubanov^b

^a Institute of Geology and Nature Management of FEB RAS, Blagoveshchensk, Russia
^bDobretsov Geological Institute of SB RAS, Ulan-Ude, Russia
^cA.P. Karpinsky Russian Geological Research Institute, St. Petersburg, Russia
^dVinogradov Institute of Geochemistry of SB RAS, Irkutsk, Russia
[#]e-mail: smirnova@ascnet.ru

The publication presents the results of geochemical, isotopic-geochemical (Sm–Nd) and isotopicgeochronological (U–Th–Pb) studies of terrigenous rocks of the Middle Riphean (?) Nadarov formation and the Upper Riphean (?) Nortui formation of the northwestern part of the Argun continental massif. Features of the material composition of the deposits indicate the presence of formations of various silicia acidity in the source area. According to Sm–Nd data, sedimentary rocks of the Nadarov and Nortui formations are characterized by negative values $\varepsilon_{Nd(t)} = -6.6...-3.5$ at Early Proterozoic values of Nd model age ($t_{Nd(DM)} = 2.0-1.8$ Ga). According to U–Th–Pb dating of grains of detrital zircon, it was defined that the lower age limit of accumulation of terrigenous deposits of the Nadarov and Nortui formations falls at the Late Riphean (~775 and ~ 744 Ma, respectively). The main provenances area for them were Late Riphean igneous rocks with the participation of Early Proterozoic rocks, extended in the structure of the Argun massif.

Keywords: Argun massif, Nadarov and Nortui formations, geochemistry, U-Th-Pb data