## = НОВЫЕ МИНЕРАЛЫ =

#### **НОВЫЕ МИНЕРАЛЫ. LXXVII**

© 2023 г. д. чл. В. Н. Смольянинова\*

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Старомонетный пер., 35, Москва, 119017 Россия

\*e-mail: smolvernik@yandex.ru

Поступила в редакцию 22.06.2023 г. После доработки 22.06.2023 г. Принята к публикации 02.10.2023 г.

Представлен обзор новых минералов, опубликованных в 2022 г. Для каждого минерала приведены кристаллохимическая формула, параметры кристаллической структуры, главные физические свойства, химический состав, место находки, этимология названия, ссылка на первую публикацию о нем. Всего в обзоре приводятся данные для 106 минералов, утвержденных ММА. Кроме того, приводятся ссылки на публикации, посвященные вопросам классификации и номенклатуры минералов, уточнения состава и структуры уже известных минеральных видов.

Ключевые слова: новые минералы

DOI: 10.31857/S0869605523060059, EDN: GOPCBJ

# ИНТЕРМЕТАЛЛИДЫ

- **1.** Румоиит (rumoiite) AuSn<sub>2</sub>. Ромб.с. *Pbca.* a=6.9088, b=7.0135, c=11.7979 Å. Z=8. Сетевидные образования до ~4 мкм. Цв. серебристо-белый. Черта серая. Бл. метал. Хрупкий. Тв. 2.5. Плотн. 10.1 (выч.). В отр. св. белый. Плеохроизм очень слабый от белого до слегка голубовато-белого. Анизотропия сильная до умеренной от голубого до коричневато-желтого. R на воздухе (%): 75.6 при 470 нм, 78.1 при 546, 78.7 при 589, 78.7 при 650 нм. Хим. (SEM EDS, средн. из 10 опр.): Ag 0.08, Sn 52.42, Sb 2.12, Au 42.84, Pb 1.04, Bi 0.65, сумма 99.15. Рентгенограмма (интенс. л.): 4.543(42)(111), 3.775(34)(112), 3.098(100)(210), 2.949(69)(004), 2.711(37)(104), 2.243(39)(204), 2.128(46)(115), 1.757(51)(314). В россыпях р. Сёсамбецу, пров. Румои, о-в Хоккайдо (Япония) с сам. золотом, сесамбецуитом, юанцянитом, ауростибитом и анюйитом. Назван по месту находки. *Nishio-Hamane D., Saito K.* J. Miner. Petrol. Sci. 2021. Vol. 116. N 5. P. 263—271.
- **2.** Сёсамбецуит (shosanbetsuite)  $Ag_3Sn$ . Ромб.с. *Рттп. а* = 5.986, b = 4.779, c = 5.156 Å. Z = 2. Выделения до 4 мкм. В отр. св. белый. Плеохроизм и анизотропия слабые от белых до слегка голубовато-белых оттенков. R на воздухе (%): 50.3 при 470 нм, 57.2 при 546, 59.8 при 589, 63.0 при 650 нм. Хим. (SEM EDS, средн. из 10 опр.): Ag 53.92, Sn 23.45, Sb 0.19, Au 21.44, Pb 0.62, Bi 0.46, сумма 100.08. Рентгенограмма (интенс. л.): 2.592(11)(201), 2.576(8)(002), 2.388(29)(020), 2.275(100)(211), 2.267(78)(012), 1.757(70)(221), 1.356(68)(231,032). В россыпях р. Сёсамбецу, пров. Румои, о-в Хоккайдо (Япония) с сам. золотом, румоитом, юанцянитом, ауростибитом и анюйитом. Назван по месту находки. *Nishio-Hamane D., Saito K.* J. Miner. Petr. Sci. 2021. Vol. 116. N 5. P. 263—271.
- 3. Служеникинит (sluzhenikinite)  $Pd_{15}(Sb_{7-x}Sn_x)$ ,  $3 \le x \le 4$ . ПГМ. Монокл.с.  $P2_1/m$ . a = 7.5558, b = 29.2967, c = 7.5713 Å,  $\beta = 119.931^\circ$ . Z = 4. Эвгедральные удлиненные пластинчатые кристаллы до  $100-150 \times 10-50$  мкм. В отр. св. бледно-коричневый со сла-

бым двуотражением, малозаметным плеохроизмом и слабой анизотропией в соломенно-желтых до синих тонах.  $R_1$  и  $R_2$  на воздухе (%): 46.2 и 46.5 при 470 нм, 52.1 и 52.2 при 546, 54.7 и 55.1 при 589, 57.8 и 59.0 при 650 нм. Хим. (м.з., WDS, средн. из 13 опр.): Pd 65.06, Sn 15.6, Sb 19.58, сумма 100.24. Рентгенограмма (интенс. л.): 2.3169(65)(1.10.1,  $\overline{1}$ .10.2), 2.3151(100)( $\overline{2}$ .10.1), 2.3084(29)(290,  $\overline{2}$ 92), 2.1872(89)(003), 2.1827(74)(300,  $\overline{3}$ 03), 2.1783(15)(1.11.1), 2.1766(25) ( $\overline{1}$ .11.2), 1.5899(16)(2.10.2,  $\overline{2}$ .10.4)1.4648(19)(0.20.0). В пегматоидных галенит-халькопиритовых массивных рудах шахты Октябрьская, рудник Октябрьский, Норильск (Россия) с Аи-Ад сплавами, инсизваитом, стибиопентландитом, масловитом, соболевскитом, сперрилитом, галенитом, халькопиритом, кубанитом и пентландитом. Назван в честь русского минералога Сергея Федоровича Служеникина (Sergey Fedorovich Sluzhenikin, b. 1943). *Уутагаlova А., Welch М.D., Laufek F., Kozlov V.V., Stanley C.J., Plášil J.* Miner. Mag. 2022. Vol. 86. N 4. P. 577—585.

## БОРИДЫ

**4.** Цзинсуйит (jingsuiite) —  $TiB_2$ . Гекс.с. P6/mmm. a=3.04, b=3.04, c=3.22 Å,  $\alpha=90^\circ$ ,  $\beta=90^\circ$ ,  $\gamma=120^\circ$ . Z=1. Отдельные зерна до 50 мкм, или в агрегатах интерметаллидов. Предположительно непрозрачный черного цвета. Хим. (EELS): В 61.87, С 1.53, Ті 36.62, сумма 100.02. Рентгенограмма (интенс. л., d, I): 3.218(21), 2.615(60), 2.029(100), 1.609(9), 1.510(20), 1.370(11), 1.211(12), 1.101(11). В хромититовом рудном теле офиолитового комплекса Луобуса, Тибет (Китай) с фазами твердого раствора осборнит — хамрабаевит и дельталюмитом. Не исключена техногенная природа минерала. *Xiong F., Xu X., Magnaioli E., Gemmi M., Wirth R., Grew E.S., Robinson P.T.* Amer. Miner. 2022. Vol. 107. N 1. P. 43—53. https://www.mindat.org/min-54032.html

#### ФОСФИДЫ

- **5.** Николаиит (nickolayite) FeMoP. PoMó.c. *Pnma. a* = 5.9519, b = 3.7070, c = 6.8465 Å. Z = 4. Неправильные зерна до 80 мкм. Цв. светло-серый до серовато-белого. Бл. метал. Пластинчатый. Микротв. 538. Плотн. 7.819 (выч.). В отр. св. белый.  $R_{\rm max}$  и  $R_{\rm min}$  на воздухе (%): 48.5 и 46.5 при 470 нм, 50.5 и 48.5 при 546, 51.8 и 49.9 при 589, 53.9 и 52.0 при 650 нм. Хим. (м.з., средн. из 4 опр.): Fe 32.21, Mo 47.06, Ni 3.69, Co 0.13, P 17.45, сумма 100.54. Рентгенограмма (интенс. л., d,D): 3.238(21), 2.298(100), 2.226(9), 2.181(89), 2.113(26), 1.997(14), 1.838(18), 1.388(13). В пирометаморфических породах формации Хатрурим (Иордания) с баритом, тридимитом, хромитом, гематитом, пирротином, фторапатитом, титанитом и повеллитом. Назван в честь немецкого минералога и коллекционера Дитера Николаи (Dieter Nickolay, b. 1941). *Murashko M.N., Britvin S.N., Vapnik Y.N., Polekhovsky Yu.S., Shilovskikh V.V., Zaitsev A.N., Vereshchagin O.S.* Miner. Mag. 2022. Vol. 86. N 5. P. 749—757. https://www.mindat.org/min-53366.html
- **6. Орищинит** (orishchinite) (Ni,Fe,Mo)<sub>2</sub>P. Ni аналог аллабогданита. Ромб.с. *Pnma*.  $a=5.8020,\ b=3.5933,\ c=6.7558\ \text{Å}.\ Z=4$ . Неправильное зерно-кристалл до 0.2 мм. Хрупкий. Тв. 5—6. Плотн. 7.500 (выч.). В отр. св. желтовато-белый без видимого двуотражения и анизотропии.  $R_{\text{max}}$  и  $R_{\text{min}}$  на воздухе (%): 48.1 и 47.5 при 470 нм, 50.6 и 49.4 при 546, 52.1 и 50.8 при 589, 54.4 и 52.9 при 650 нм. Хим. (м.з., средн. из 7 опр.): Fe 22.38, Co 0.47, Ni 38.49, Mo 18.80, P 19.46, сумма 99.60. Рентгенограмма (интенс. л.): 2.265(100)(112), 2.142(55)(211), 2.201(16)(202), 2.100(35)(103), 1.909(21)(013), 1.811(19)(113), 1.796(31)(020). В пирометаморфических породах комплекса Даба-Сивак, формация Хатрурим (Зап. Иордан) с мурашкоитом и аллабогданитом в пироксен-плагиоклазовой матрице. Назван в честь русского и украинского кристаллохимика Степана Васильовича Орищина (Stepan Vasil'ovich Orishchin, 1955—2021). *Britvin S.N., Murashko M.N., Vapnik Y., Zaitsev A.N., Shilovskikh V.V., Krzhizhanovskaya M.G., Gorelova L.A., Vereshchagin O.S., Vasilev E.* Miner. Petrol. 2022. Vol. 116. N 5. P. 369—378.

**7. Назаровит** (nazarovite) —  $Ni_{12}P_5$ . Тетр.с. I4/m. a=8.640, c=5.071 Å. Z=2. Характеристики приводятся для голотипа. Микронного размера платинч. прорастания с трансиорданитом. Плотн. 7.54 (выч.). Хим. (м.з., средн. из 7 опр.): Ni 81.87, P 18.16, сумма 100.03. Рентгенограмма (интенс. л.): 4.374(5)(101), 2.503(5)(301), 2.341(54)(112), 2.160(13)(400), 2.040(15)(330), 1.931(40)(420), 1.860(100)(312). В фосфидных комплексах пирометаморфической формации Хатрирум, пустыня Негев (Израиль) (голотип) и в метеорите Марьялахти, Карелия (Россия) (котип). Назван в честь русского минералога и петролога Михаила Александровича Назарова (Michail Alexandrovich Nazarov, 1949—2016). *Britvin S.N., Murashko M.N., Krzhhizhanovskaya M.G., Vereshchagin O.S., Vapnik Y., Shilovskikh V.V., Lozhkin M.S., Obolonskaya E.V.* Amer. Miner. 2022. Vol. 107. N 10. p. 1946—1951.

## СУЛЬФИДЫ, СУЛЬФОСОЛИ, СЕЛЕНИДЫ

- **8.** Радваницеит (radvaniceite) GeS $_2$ . Монокл.с.  $Pc.\ a=6.883,\ b=22.501,\ c=6.8081$  Å,  $\beta=120.365^\circ$ . Z=12. Агрегаты до 5 мм, напоминающие клочки ваты, состоящие из игольчатых кристаллов толщиной до 1-5 мкм и длиной до 3 мм; неправильные зерна до 10-50 мкм, их агрегаты. Полупрозрачный. Цв. белый до желтовато-серого. Черта белая. Эластичный до гибкого. Плотн. 3.05 и 2.99 (выч. по эмпир. и идеальной ф-лам). n>1.8. В отр. св. светло-серый. Анизотропия отчетливая.  $R_{\rm max}$  и  $R_{\rm min}$  на воздухе (%): 18.8 и 15.4 при 470 нм, 20.4 и 16.1 при 546, 20.8 и 16.4 при 589, 20.9 и 16.9 при 650 нм. Хим. (м.з., WDS, средн. из 12 опр.): Ge 51.84, Pb 0.18, Sn 0.21, Bi 0.66, Sb 0.12, As 0.12, S 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.2067(16)(021), 1.20
- **9.** Парадиморфит (paradimorfite)  $\beta$ -As<sub>4</sub>S<sub>3</sub>. Высокотемпературный полиморф As<sub>4</sub>S<sub>3</sub>. Ромб.с. *Рпта.* a=9.1577, b=8.0332, c=10.2005 Å. Z=4. Призмат. кристаллы. Простые формы: {110}, {101}, {101}, {100}, {010}, {001} (дан чертеж). Прозрачный и полупрозрачный. Бл. алмазн. Цв. оранжево-желтый. Черта шафраново-желтая. Хрупкий. Тв. 1—2. Микротв. 70. Плотн. 3.510 (изм.), 3.500 (изм.). Двуосный(+). n>1.9. Дисперсия слабая, r>v. Плеохроизм едва заметный. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 6 опр.): As 75.38, S 24.36, Se 0.06, сумма 99.80. Рентгенограмма (интенс. л.): 6.299(48)(011), 5.186(100)(111), 4.174(31)(201), 3.133(34)(022), 3.116(58)(212), 2.980(41)(122), 1.846(27)(413), 1.808(23)(134). В вулканическом кратере Сольфатара ди Поццуоли (Италия) (голотип) с реальгаром, нашатырем, масканьитом и руссоитом, в кратере Везувия (Италия) (котип) с ангидритом и сассолином. Назван по аналогии с низкотемпературным полиморфом диморфита. *Сатроstrini I., Castellano C., Demartin F., Rocchetti I., Russo M.* Miner. Mag. 2022. Vol. 86. N 3. P. 500—506.
- **10.** Золенскиит (zolenskyite) FeCr<sub>2</sub>S<sub>4</sub>. Монокл.с. C2/m. a=12.84, b=3.44, c=5.94 Å,  $\beta=117^{\circ}$ . Z=2. Эвгедральные до субгедральных отдельные кристаллы до 10-20 мкм. Непрозрачный. Физ. и опт. св-ва не определены из-за малого размера зерен. Хим. (м.з., средн. из 4 опр.): S 43.85, Cr 35.53, Fe 18.94, Mn 0.68, Ca 0.13, сумма 99.13. Рентгенограмма (интенс. л.): 5.7203(31)(200),  $5.2508(52)(\overline{2}01)$ ,  $2.9768(47)(\overline{1}11)$ , 2.6459(92)(111),  $2.6254(46)(\overline{4}02)$ , 2.5543(31)(310), 2.0702(39)(202),  $2.0575(100)(\overline{5}11)$ ,  $2.0502(45)(\overline{6}02)$ , 1.7200(47)(020),  $1.7160(78)(\overline{3}13)$ . В метеорите Индарх, Нагорный Карабах (Азербайджан) с троилитом, клиноэнстатитом и тридимитом. Назван в честь американского

космохимика и минералога Михаила Е. Золенского (Michael E. Zolensky, b. 1955). *Ma C., Rubin A.E.* Amer. Miner. 2022. Vol. 107. N 6. P. 1030—1033.

- **11.** Тамураит (tamuraite)  $Ir_5Fe_{10}S_{16}$ . Триг.  $R\overline{3}m$ . a=7.073(1), c=34.277(8). Z=3. Зерна до 20 мкм. Непрозрачный. Бл. метал. Плотн. 6.30 (выч.). В отр. св. серый до коричневато-серого. Двуотражение отсутствует или очень слабое. Плеохроизм очень слабый от сероватых до светло-коричневатых оттенков. Анизотропия слабая (от серых до светло-желтых тонов). Хим. (м.з., WDS, средн. из 6 опр.): Ir 29.30, Rh 9.57, Pt 1.85, Ru 0.05, Os 0.06, Fe 13.09, Ni 12.18, Cu 6.30, Co 0.06, S 27.23, сумма 99.69. Рентгенограмма (интенс. л.):  $5.7740(45.1)(10\overline{2})$ ,  $3.0106(100)(2\overline{1}6)$ , 2.9963(50)(1.0.10), 2.7994(55.5)(205), 2.4948(37.9)(208),  $1.7699(71)(4\overline{2}0)$ , 1.7583(64.7)(2.0.16). В Сисимской россыпной зоне, Лысанский дунит-перидотитово-габбровый комплекс, Красноярский край (Россия) с пентландитом, фазами твердого раствора лаурит эрлихманит и осьмием. Назван в честь американского ученого Нобумити Тамура (Nobumichi Tamura, b. 1966). *Barkov A.Y., Tolstykh N.D., Martin R.F., McDonald A.M.* Minerals. 2021. Vol. 11. N 5. paper 545. https://doi.org/10.3390/min11050545
- **12.** Пирадокетосит (ругаdoketosite)  $Ag_3SbS_3$ . Монокл.с.  $P2_1/n$ . a=13.7510, b=6.9350, c=19.555 Å,  $\beta=94.807$ °. Z=12. Игольчатые кристаллы со штриховкой параллельной удлинению до  $25\times200$  мкм. Цв. и черта оранжевые. Полупрозрачный. Бл. алмаз. Хрупкий. Плотн. 5.809 (выч.). В отр. св. слегка голубовато-серый с обильными оранжевыми внутренними рефлексами. Двуотражение слабое.  $R_1$  и  $R_2$  на воздухе (%): 32.8 и 32.9 при 470 нм, 30.2 и 30.7 при 546, 29.0 и 29.6 при 589, 27.5 и 28.4 при 650 нм. Хим. (м.з., WDS, средн. из 6 опр.): Ag 59.81, Sb 22.63, S 17.78, сумма 100.22. Рентгенограмма (интенс. л.): 3.198(слаб.)( $\overline{1}22$ ), 3.193(слаб.)(313), 2.999(сильн.)(411), 2.959(сильн.)(57), 2.832(слаб.)(116). В доломит—барит—кварцевых жилах на м-нии Монте-Арсиччио, Апуанские Альпы (Италия) с пираргиритом, тетраэдритом-(170.0), валентинитом и возможно пиростильпнитом. Название от греческих слов "170.0" (огонь) и "170.00 (ого
- 13. Гунгерит (gungerite)  $TlAs_5Sb_4S_{13}$ . Ромб.с. *Pbcn.* a = 20.1958, b = 11.5258, c == 20.1430 Å. Z = 8. Тонкозернистые агрегаты до 0.5–0.2 см. Полупрозрачный. Цв. ярко-оранжевый. Черта оранжевая. Бл. жирн. Сп. совершенная по {010}. Микротв. 86 (тв. 2-2.5). Плотн. 4.173 (выч.). В отр. св. желтовато-белый, но на контакте со стибнитом светло-серый со слабым голубоватым оттенком. Двуотражение очень слабое. Отчетливо анизотропный, но анизотропия замаскирована внутренними ярко-оранжевыми рефлексами. R<sub>1</sub> и R<sub>2</sub> на воздухе (%): 29.8 и 27.0 при 470 нм, 27.4 и 26.1 при 546, 25.9 и 24.5 при 589, 23.9 и 22.4 при 650 нм. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 19 опр.): T1 13.68, As 26.77, Sb 30.97, S 28.02, сумма 99.44. Рентгенограмма (интенс. л.): 5.755(100)(020), 3.705(6)(131), 3.030(10)(424), 2.901(10)(620), 2.878(14)(040), 2.850(5)(041), 2.821(10)(141). На Воронцовском золорудном м-нии, Северный Урал (Россия) с кальцитом, доломитом, аурипигментом, пиритом, реальгаром, стибнитом, баритом, кварцем и др. Назван в честь русского горного инженера, знатока Северного Урала Юрия Владимировича Гунгера (Gunger Yuri Vladimirovich, b. 1961). Kasatkin A.V., Plášil J., Makovicky E., Chukanov N.V., Škoda R., Agakhanov A.A., Tsyganko M.V. Amer. Miner. 2022. Vol. 107. N 6. P. 1164–1173.
- **14.** Походящинит (pokhodyashinite) CuTlSb<sub>2</sub>(Sb<sub>1-x</sub>Tl<sub>x</sub>)AsS<sub>7-x</sub>. Монокл.с. C2/m. a=23.431, b=3.996, c=14.070 Å,  $\beta=110.23^\circ$ . Z=4. Редкие ангедральные зерна до  $0.1\times 0.05$  мм в кальцитовой матрице. Черный, черта черная. Непрозрачный. Бл. метал. Хрупкий. Изл. неровн. Сп. несовершенная, возможно по  $\{100\}$ . Микротв. 55 (тв. 2). Плотн. 5.169 (выч.). В отр. св. серовато-белый. Двуотражение отчетливое. Анизотро-

пия сильная — от темно-коричневато-серого до светло-голубовато-серого.  $R_{\rm max}$  и  $R_{\rm min}$  на воздухе (%): 34.6 и 28.9 при 470 нм, 33.4 и 27.6 при 546, 32.4 и 26.7 при 589, 31.1 и 26.1 при 650 нм. Хим. (м.з., WDS, средн. из 6 опр.): Cu 4.59, Ag 3.79, Tl 27.88, Pb 0.42, As 7.63, Sb 32.95, S 21.89, сумма 99.15. Рентгенограмма (интенс. л.): 3.834(66)( $\overline{11}$ 1), 3.671(68)(203), 3.474(36)( $\overline{11}$ 2), 3.466(67)( $\overline{60}$ 3), 2.996(100)( $\overline{11}$ 3), 2.846(46)(1 $\overline{13}$ 3), 2.748(72)(800). На Воронцовском золоторудном м-нии, Сев. Урал (Россия) с кальцитом, аурипигментом, пиритом, реальгаром и в меньшей степени баритом, клинохлором, фторапатитом, гармотомом, пренитом, сам. Аи и сульфосолями. Назван в честь русского купца, фабриканта, владельца и основателя в районе многих шахт и плавильных заводов Максима Михайловича Походящина (Махіт Мікhailovitch Pokhodyashin, 1708—1780). *Kasatkin A.V., Plášil J., Makovicky E., Škoda R., Agakhanov A.A., Tsyganko M.V.* J. Geosci. 2022, Vol. 67. N 1. P. 41—51.

- **15. Теннантит-(Cu)** [tennantite-(Cu)]  $\mathrm{Cu}_{12}\mathrm{As}_4\mathrm{S}_{13}$  гр. тетраэдрита. Куб.с.  $\overline{I4}3m$ . a=10.1710 Å. Z=2. Вместе с энаргитом, халькопиритом и винсьеннитом образует амебовидные пятна до 80 мкм. Цв. черный, черта черная. Бл. метал. Тв. предположительно 3.5—4. Хрупкий. Изл. раков. Плотн. 4.656 (выч.). В отр. св. изотропный. Серый с голубоватым оттенком. R на воздухе (%): 29.1 при 470 нм, 28.4 при 546, 27.4 при 589, 25.0 при 650 нм. Хим. (м.з., средн. из 10 опр.): Cu 49.32, Fe 2.20, Zn 0.09, Sn 0.03, As 19.45, Sb 1.94, Te 0.02, S 27.75, сумма 100.80. Рентгенограмма (интенс. л.): 2.936(100)(222), 2.543(18)(400), 1.857(8)(521), 1.798(43)(440), 1.533(21)(622). На эпитермальном м-нии Лайо, пров. Кастилья, деп. Арекипа (Перу). Назван по составу и за сходство с минералами гр. теннантита. *Biagioni C., Sejkora J., Moëlo Y., Marcoux E., Mauro D., Dolniček Z.* Miner. Mag. 2022, Vol. 86. N 2. P. 331—339.
- **16. Теннантит-(Cd)** [tennantite-(Cd)]  $Cu_6(Cu_4Cd_2)As_4S_{13}$  гр. теннантита. Куб.с.  $I\overline{4}3m$ . a=10.3088 Å. Z=2. Ангедральные зерна до  $1\times 1$  мм. Черный. Черта красновато-коричневая. Бл. метал. Тв. предположительно 3.5—4. Хрупкий. Изл. раков. Плотн. 4.724 (выч.). В отр. св. изотропный. Внутренние рефлексы редкие с коричневато-красным оттенком. R на воздухе (%): 30.0 при 470 нм, 30.1 при 546, 28.2 при 589, 25.8 при 650 нм. Хим. (м.з., средн. из 11 опр.): Cu 40.56, Ag 0.05, Fe 0.04, Zn 1.91, Cd 11.32, Hg 0.04, As 19.04, S 26.78, сумма 99.74. Рентгенограмма (интенс. л.): 4.206(7)(211), 2.973(100)(222), 2.574(12)(400), 1.8212(27)(440), 1.5531(8)(622). В образце из рудного района Беренгела, Ла-Пас (Боливия) с баритом, монтмориллонитом и вторичными сульфатами (олдриджеитом, нидермайритом и воудоуриситом). Назван по составу и за сходство с минералами гр. теннантита. Biagioni C., Kasatkin A., Sejkora J., Nestola F., Skoda R. Miner. Mag. 2022. Vol. 86. N 5. P. 834—840.
- **17.** Стибиоголдфилдит (stibiogoldfieldite)  $\mathrm{Cu_{12}(Sb_2Te_2)S_{13}}$  гр. тетраэдрита. Куб.с.  $\overline{I4}3m$ . a=10.3466 Å. Z=2. Ангедральные зерна до 0.6 мм. Цв. темно-серый. Черта серая. Бл. метал. Тв. предположительно 3.5—4. Хрупкий. Изл. раков. Плотн. 5.055 (выч.). В отр. св. изотропный. Серый с плохо уловимым коричневатым оттенком. R на воздухе (%): 31.1 при 470 нм, 30.9 при 546, 30.8 при 589, 31.0 при 650 нм. Хим. (м.з., средн. из 60 опр.): Cu 45.03, Ag 0.26, Fe 0.02, Zn 0.13, Sn 0.02, Pb 0.05, Sb 8.02, As 2.80, Bi 2.77, Te 15.15, S 24.50, Se 0.52, сумма 99.27. Рентгенограмма (интенс. л.) (для котипа): 3.6442(18.9)(220), 2.9743(100.0)(222), 2.5762(18.8)(400), 1.8215(31.7)(440), 1.5534(13.0)(622). На м-нии Мохок, рудный район Голдфилд, шт. Невада (США) с кварцем, пиритом и Ag—Bi—(S,Se)-фазой. Назван по составу и за сходство с голдфилдитом. Biagioni C., Se-jkora J., Musetti S., Makovicky E., Pagano R., Pasero M. Miner. Mag. <math>2022. Vol. 86. N 1. P. 168—175.
- **18.** Стибиоусталечит (stibioustalečite)  $\mathrm{Cu_6}\mathrm{Cu_6}(\mathrm{Sb_2Te_2})\mathrm{Se_{13}}$  группа тетраэдрита. Куб.с.  $I\overline{4}3m$ . a=10.828 Å. Z=2. Ангедральные зерна до 0.1-0.3 мм. Цв. темно-серый. Черта серая. Непрозрачный. Бл. метал. Тв. 3.5-4. Хрупкий. Изл. раков. Плотн. 5.676

- (выч.). В отр. св. изотропный, серый. R на воздухе (%): 33.3 при 470 нм, 33.2 при 546, 33.1 при 589, 33.0 при 650 нм. Хим. (м.з., WDS, средн. из 7 опр.): Cu 34.10, Ag 1.22, Fe 0.04, Zn 0.09, Hg 0.33, Sb 9.39, As 0.70, Te 12.41, S 3.76, Se 37.59, сумма 99.63. Рентгенограмма (интенс. л.): 3.8283(9.6)(220), 3.1258(100)(222), 2.8939(10.9)(321), 2.5522(9.3)(411), 1.9769(11.1)(521), 1.9141(71.1)(440), 1.6324(33.4)(622), 1.3535(9.1)(800). На заброшенном урановом м-нии Усталеч, зап. Богемия (Чехия) с хакитом-(Hg) и берцелианитом. Название по составу и по месту находки. Seikora J., Plášil J., Makovicky E., Geosci J. 2022. Vol. 67. N 4. P. 275—283.
- 19. Аргентотетраэдрит-(Zn) [argentotetrahedrite-(Zn)]  $Ag_6(Cu_4Zn_2)Sb_4S_{13}$  гр. тетраэдрита. Куб.с.  $I\overline{4}3m$ . a=10.5505 Å. Z=2. Описание приводится для голотипа. Ангедральные зерна до 0.1 мм. Цв. стально-серый до черного. Черта черная. Бл. метал. Тв. вероятно 3.5—5. Хрупкий. Изл. раков. Плотн. 5.089 (выч.). В отр. св. изотропный. Серый с голубовато-зеленым оттенком. R на воздухе (%): 30.1 при 470 нм, 29.8 при 546, 29.8 при 589, 28.3 при 650 нм. Хим. (м.з., средн. из 13 опр.): Cu 23.97, Ag 19.78, Fe 0.73, Zn 6.20, Cd 0.15, Hg 0.06, As 0.71, Sb 26.33, S 22.85, сумма 100.78. Ренттенограмма (интенс. л.): 7.460(24)(110), 3.046(100)(222), 2.638(23)(400), 1.865(35)(440), 1.591(18)(622). На Au—Ag-эпитермальном м-нии Кремница (Словакия) (голотип) с еще не утвержденным конечным членом "аргентотеннантитом-(Fe)" и халькопиритом. Установлен также в карьере Ленгенбах, Бинн Вале (Швейцария) и на небольшом м-нии Звестов, Богемия (Чехия) (котипы). Назван по составу согласно номенклатуре минералов гр. тетраэдрита (Віадіопі, 2020). Sejkora J., Biagioni C., Števko M., Raber T., Roth P., Vrtiška L. Miner. Mag. 2022. Vol. 86. N 2. P. 319—330.
- **20.** Феррофеттелит (ferrofettelite)  $[Ag_6As_2S_7][Ag_{10}FeAs_2S_8]$  Fe аналог феттелита. Монокл.с.  $C2.\ a=26.011,\ b=15.048,\ c=15.513\ \text{Å},\ \beta=90.40^\circ.\ Z=8$ . Ангедральные до субгедральных чешуйки и зерна до 80 мкм. Непрозрачный. Черта серо-красноватая. Бл. стекл. Микротв. 122. Плотн. 5.74 (выч.). В отр. св. серовато-белый. Двуотражение умеренное (от белого до коричневато-серого). Анизотропия слабая. Внутренние рефлексы сильные (красные).  $R_{\text{min}}$  и  $R_{\text{max}}$  на воздухе (%): 28.2 и 29.4 при 471.1 нм, 25.0 и 26.3 при 548.3, 22.9 и 23.5 при 586.6, 20.9 и 21.3 при 652.3 нм. Хим. (м.з., WDS, средн.): Ag 65.66, Cu 0.05, Pb 0.01, Fe 1.16, Hg 3.04, As 11.21, Sb 0.14, S 18.77, сумма 99.54 (в оригинале 99.43). Рентгенограмма (интенс. л.): 3.18(50)(800,801), 3.104(100)(005), 3.004(60)(802), 2.755(40)(443), 2.501(30)(444), 1.880(30)(1240). В образце из карьера Гласберг, Оденвальд (Германия) с пруститом и ксантоконитом на арсенолите, кальците и прените. Назван по составу и за сходство с феттелитом. *Bindi L., Downs R.T.* Miner. Mag. 2022. Vol. 86. N 2. P. 340—345.
- **21.** Светланаит (svetlanaite) SnSe. Ромб.с. *Рпта.* a=11.500, b=4.154, c=4.445 Å. Z=4. Очень мелкие эвгедральные веретенообразные кристаллы-зерна до  $2\times15$  мкм. Непрозрачный. Бл. метал. Хрупкий. Плотн. 6.08 (выч.). В отр. св. светло-серый. Плеохроизм от белого до кремового. Анизотропия сильная в светло-голубых, синих, цвета хаки и оранжево-коричневых тонах.  $R_1$  и  $R_2$  на воздухе (%) (для синт. аналога): 50.9 и 56.5 при 470 нм, 50.2 и 56.7 при 546, 49.5 и 55.3 при 589, 48.7 и 53.4 при 650 нм. Хим. (SEM EDS, средн. из 12 опр.): Sn 61.30, Se 37.22, S 1.26, сумма 99.78. Рентгенограмма (интенс. л.): 2.934(14)(111), 2.874(100)(400), 2.378(14)(311), 2.086(10)(411), 1.833(19)(511), 1.437(18)(800). На эпитермальном Аи м-нии Озерновское, Камчатка (Россия) с кварцем, касситеритом, рутилом, мохитом, моусонитом, кидкрикитом, хемуситом, самородным теллуром, Se-содержащими блеклыми рудами. Назван в честь русского минералога Светланы Константиновны Смирновой (Svetlana K. Smirnova, 1935—2011). *Okrugin V.M., Vymazalova A., Kozlov V.V., Laufek F., Stanley C.J., Shkilev I.A.* Miner. Mag. 2022. Vol. 86. N 2. P. 234—242.

**22.** Гачингит (gachingite) — Au(Te<sub>1 — x</sub>Se<sub>x</sub>), при  $0.2 \approx x \le 0.5$ . Ромб.с. *Стисе. а* = 7.5379, b = 5.7415, c = 8.8985 Å. Z = 8. Отдельные каплевидные зерна до 2—10 мкм. Непрозрачный. Бл. метал. Хрупкий. Плотн. 10.47 (выч.), В отр. св. серый с голубоватым оттенком. Двуотражение сильное. Анизотропия от голубого до темно-голубого и до коричневого.  $R_{\text{max}}$  и  $R_{\text{min}}$  на воздухе (%): 40.3 и 39.9 при 470 нм, 43.3 и 41.6 при 546, 43.7 и 42.0 при 589, 44.0 и 43.0 при 650 нм. Дан рамановский спектр. Хим. (м.з., средн. из 18 опр.): Se 9.78, Te 27.33, S 0.01, Au 62.40, Ag 0.57, сумма 100.09. Рентгенограмма (интенс. л.): 4.461(65)(002), 3.194(36)(112), 2.883(99)(202), 2.734(100)(021), 2.231(33)(004), 2.215(51)(221), 1.921(28)(204), 1.813(63)(223). На рудопроявлении Гатчинг Малетойваямского рудного поля, Камчатка (Россия) в сам. золоте с калаверитом, малетойваямитом и Au—Sbокислами. Назван по месту находки. *Tolstykh N.D., Tuhy M., Vymazalova A., Laufek F., Plášil J., Košek F.* Miner. Mag. 2022. Vol. 86. N 2. P. 205—213.

## ГАЛОГЕНИДЫ

- **23. Холениусит-(Се)** [håleniusite-(Се)] СеОF. Куб.с. Fm3m.~a=5.6597 Å. Z=4. Мелкозернистые псевдоморфозы по гекс. таблитч. кристаллам бастнезита-(Се) до  $0.2\times 0.1$  мм. Непрозрачный. Цв. кремовый. Черта белая. Плотн. 5.890 (выч.). n=1.763 (выч.). Хим. (м.з., WDS, средн. из 9 опр.): СаО 0.73, SrO 0.08, Y<sub>2</sub>O<sub>3</sub> 1.31, La<sub>2</sub>O<sub>3</sub> 19.92, Ce<sub>2</sub>O<sub>3</sub> 39.37, Pr<sub>2</sub>O<sub>3</sub> 3.73, Nd<sub>2</sub>O<sub>3</sub> 14.46, Sm<sub>2</sub>O<sub>3</sub> 2.84, Eu<sub>2</sub>O<sub>3</sub> 0.62, Gd<sub>2</sub>O<sub>3</sub> 2.05, Dy<sub>2</sub>O<sub>3</sub> 0.31, F 14.33, —O=F 6.03, сумма 93.72. Рентгенограмма (интенс. л.): 3.247(100)(111), 2.840(31)(200), 2.004(46)(220), 1.705(30)(311). В ежектитах вулкана Агуа-де-Пау, о-в Сан-Мигель, Азорские о-ва, Португалия с астрофиллитом и фторнатропирохлором в матрице из альбита, кварца и эгирина. Назван по составу и за сходство с холениуситом-(La). *Катрf A.R., Ma C., Chiappino L.* Canad. Miner. 2022. Vol. 60. N 4. P. 713-717.
- **24.** Муонионалустаит (muonionalustaite)  $Ni_3(OH)_4Cl_2\cdot 4H_2O$ . Монокл.с. C2/m. a=15.018, b=3.1490, c=10.502 Å,  $\beta=101.535^\circ$ . Пластинчатые кристаллы до ~5 мкм, вытянутые вдоль [010] и уплощенные по {001}, их агрегаты и тонкие корочки. Прозрачный. Цв. зеленый. Плотн. 2.67 (выч.).  $n_{\rm средн}=1.68$  (выч.). Дан рамановский спектр. Эмп. ф-ла ( $Ni_{2.88}{\rm Fe}_{0.02}{\rm S}_{0.02}{\rm Al}_{0.01}{\rm Si}_{0.01}{\rm Si}_{0.01}{\rm Si}_{0.02}{\rm Al}_{0.01}{\rm Si}_{0.02}{\rm Al}_{0.02}{\rm Col}_{0.02}{\rm Col}_{$

## ОКИСЛЫ, ГИДРООКИСЛЫ

- **25.** Пертолдит (pertoldite)  $GeO_2$ . Триг.с.  $P3_121$ . a=4.980, c=5.644 Å. Z=3. Тонкие агрегаты пучки до 1 мм игольчатых кристаллов волокон до 1 мкм толщиной и 1 мм длинной. Полупрозрачный. Цв. и черта белые. Бл. шелк. Плотн. 4.18 (выч.). В пр. св. анизотропный.  $n_{\rm средн}=1.670$  (изм.), 1.705 (выч.). Хим. (м.з., WDS, средн.):  $GeO_2$  87.34,  $SiO_2$  3.19, сумма 90.53. Рентгенограмма (интенс. л.): 4.3154(44)(100), 3.4251(100)(101,011), 2.4896(31)(110), 23596(41)(012,102), 1.8674(31)(112), 1.4179(31)(023,203), 1.4124(37)(122,212). В горящих отвалах заброшенной угольной шахты Катержина, Градец-Кралове (Чехия) с многокомпонентными агрегатами, содержащими галенит, стибнит, сурьму, гринокит и висмут. Назван в честь чешского геолога Зденека Пертолда (Zdeněk Pertold, 1933—2020). *Žáček V., Škoda R., Laufek F., Seikora J., Haifler J.* J. Geosci. 2022. Vol. 67. N 3. P. 229—237.
- **26.** Лигоуит (liguowuite) WO<sub>3</sub> гр. перовскита. Монокл.с.  $P2_1/n$ . a=7.32582, b=7.54767, c=7.71128 Å,  $\beta=90.678^\circ$ . Z=8. Отдельные крайне редкие призмат. зерна до 0.1 мм, состоящие из мелких наночастиц до 200 мкм. Полупрозрачный. Цв. зеленовато-желтый. Черта белая. Бл. жирн. Хрупкий. Изл. неровн. Тв. ~3—4. Плотн. 7.22 (выч.).

- $n_{\text{средн}} = 2.24$  (выч.). Даны ИК- и рамановский спектры. Хим. (м.з., WDS, средн. из 4 опр.): WO<sub>3</sub> 99.23, K<sub>2</sub>O 0.01, TeO<sub>2</sub> 0.03, CaO 0.06, Na<sub>2</sub>O 0.04, сумма 99.37. Рентгенограмма (интенс. л.): 3.8552(88)(002), 3.7685(88)(020), 3.6590(100)( $\overline{2}$ 00), 2.6928(43)(022), 2.6258(60)(202). В биотит-кварцевых монцонитах южной части района Паньчжихуа Сичан (Китай) с роговой обманкой, паргаситом, феррогорнблендитом, аннитом, гидробиотитом, флогопитом, ортоклазом, микроклином, альбитом, кварцем, каолинитом, ильменитом, гетитом, гематитом, магнетитом, пиритом, цирконом, цоизитом, титанитом, эпидотом, диопсидом, турмалином, альмандином, фторапатитом, монацитом-(Се), бастнезитом-(Се), ксенотимом-(Y), шеелитом, муассанитом, теллуритом, вумуитом и тевитом. Назван в честь китайского геолога Ли Гоу (Li Guowu, b. 1964). *Хие Y., Sun N., He H., Chen A., Yang Y.* Europ. J. Miner. 2022. Vol. 34. N 1. P. 95–108.
- **27.** Гуит (guite)  $\text{Co}^{2+}\text{Co}_{2}^{3+}\text{O}_{4}$ . Куб.с. Fd3m. a=8.0898. Z=8. Зернистые агрегаты до 500 мкм ангедральных и субгедральных кристаллов до десятков мкм. Непрозрачный. Цв. темно-серый. Черта черная. Бл. метал. Тв. 6—6.5. Хрупкий. Изл. неровн. Плотн. 6.003 (выч.). В отр. св. белый без внутренних рефлексов. R на воздухе (%): 25.9 при 470 нм, 25.6 при 546, 25.2 при 589, 24.4 при 650 нм. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 20 опр.): Со 71.53, Си 0.58, Мп 0.67, Si 0.25, О 26.78, сумма 99.81. Рентгенограмма (интенс. л.): 4.6714(16.7)(111), 2.8620(18.4)(220), 2.4399(100)(311), 2.3348(10.4)(222), 2.0230(24.8)(400), 1.5556(26.3)(511,333), 1.4296(37.7)(440), 1.0524(10.1)(731,553). На м-нии Сикомайнес, Катанга (ДР Конго) в кварцевой матрице с гетерогенитом. Назван в честь китайского геолога Сянпина Гу (Xiangping Gu, b. 1964)  $\textit{Lei Z., Chen X., Wang J., Huang Y., Du F., Yan Z. Miner. Mag. 2022. Vol. 86. N 2. P. 346—353.$
- **28.** Чукохенит (chukochenite) ( $\text{Li}_{0.5}\text{Al}_{0.5}$ )Al $_2\text{O}_4$ . Ромб.с. *Ітта.* a=5.659, b=16.898, c=7.994 Å. Z=12. Субгедральные и эвгедральные кристаллы до 200 мкм. Прозрачный, бецветный. Бл. стекл. Хрупкий. Тв. ~8. Плотн. 3.771 (выч.). Двуосный(—).  $n_p=1.79, n_m=1.82, n_g=1.83, 2V=60^\circ$  (выч.). Дан рамановский спектр. Хим. (м.з., средн. из 13 опр.): Al $_2\text{O}_3$  80.70, Fe $_2\text{O}_3$  8.16, Li $_2\text{O}$  3.68, ZnO 3.25, MnO 2.49, MgO 1.70, Na $_2\text{O}$  0.11, CaO 0.08, SiO $_2$  0.04, TiO $_2$  0.02, K $_2\text{O}$  0.01, Cr $_2\text{O}_3$  0.01, сума 100.25. Рентгенограмма (интенс. л.): 2.405(53)(231), 1.996(29)(260), 1.535(76.7)(303), 1.413(100)(264), 1.260(51.8)(2.12.0), 1.068(36.2)(1.13.4), 1.039(60.7)(503), 0.999(59.1)(008), 0.941(34.8)(3.13.4). В скарновых породах м-ния Сянхуалинь, пров. Хунань (Китай) с флогопитом, хризобериллом, магнетитом, касситеритом, маргаритом и минералами группы нигерит—тааффеит. Назван в честь китайского метеоролога, геолога и педагога Чу Кохен (Chu Kochen, 1890—1974). *Rao C., Gu X., Wang R., Xia Q., Cai Y., Dong C., Hatert F., Hao Y.* Amer. Miner. 2022. N 5. P. 842—847.
- **29.** Цинконигерит-2*N*1*S* (zinconigerite-2*N*1*S*) ZnSn<sub>2</sub>Al<sub>12</sub>O<sub>22</sub>(OH)<sub>2</sub> ноланит-шпинелевая полисоматическая серия, гр. нигерита. Триг.с.  $P\overline{3}$ m1. a=5.7191, c=13.8380 Å. Z=1. Агрегаты суб- до эвгедральных призмат кристаллов до 100 мкм, удлиненных по [001]. Полупрозрачный до прозрачного. Цв. зеленый. Бл. стекл. Хрупкий. Изл. неправ. Плотн. 4.456 (выч.). Одноосный(+).  $n_o=1.83$ ,  $n_e=1.84$ . Дан рамановский спектр. Хим. (м.з., средн. из 20 опр.): Al<sub>2</sub>O<sub>3</sub> 54.42, SnO<sub>2</sub> 28.15, ZnO 7.71, Fe<sub>2</sub>O<sub>3</sub> 5.83, MnO 1.39, MgO 0.17, TiO<sub>2</sub> 0.05, SiO<sub>2</sub> 0.53, CaO 0.34, Na<sub>2</sub>O 0.36, H<sub>2</sub>O 1.73 (выч.), сумма 100.68. Рентгенограмма (интенс. л.): 2.841(74)(104), 2.431(100)(113), 1.851(25)(211), 1.834(34)(107), 1.646(74)(214), 1.545(81)(215), 1.428(32)(220), 1.417(27)(305), 1.365(28)(223), 1.050(39)(325). В скарнах м-ния Сянхуалинь, пров. Хунань (Китай) с флогопитом, хризоберилом, магнетитом, касситеритом, маргаритом и минералами гр. нигерит тааффеит. Назван в соответствии с номенклатурой гр. нигерита (Агтвргизter, 2002). *Rao C., Gu X., Wang R., Xia Q., Dong C., Hatert F., Dal Bo F., Yu X., Wang W.* Amer. Miner. 2022. Vol. 107. N 10. P. 1952—1959.

- **30.** Цинконигерит-6*N*6*S* (zinconigerite-6*N*6*S*) Zn<sub>3</sub>Sn<sub>2</sub>Al<sub>16</sub>O<sub>30</sub>(OH)<sub>2</sub> ноланит-шпинелевая полисоматическая серия, гр. нигерита. Триг.с.  $R\overline{3}$  m. a=5.7241, c=55.5393. Z=3. Агрегаты суб- до эвгедральных призмат кристаллов до 100 мкм, удлиненных по [001]. Полупрозрачный до прозрачного. Цв. зеленый. Бл. стекл. Хрупкий. Изл. неправ. Плотн. 4.438. (выч.). Одноосный(+).  $n_o=1.85$ ,  $n_e=1.87$ . Дан рамановский спектр. Хим. (м.з., средн. из 47 опр.): Al<sub>2</sub>O<sub>3</sub> 54.12, SnO<sub>2</sub> 20.54, ZnO 10.22, Fe<sub>2</sub>O<sub>3</sub> 8.65, MnO 2.95, MgO 0.96, TiO<sub>2</sub> 0.41, SiO<sub>2</sub> 0.07, CaO 0.35, Na<sub>2</sub>O, 0.36 H<sub>2</sub>O 1.45 (выч.), сумма 100.08. Рентгенограмма (интенс. л.): 2.846(34)(1.0.16), 2.436(100)(024), 2.424(39)(0.1.20), 1.650(100)(300), 1.646(100)(2.1.16), 1.553(62)(0.3.12), 1.430(61)(220), 0.955(27)(4.1.27), 0.935(41)(241). В скарнах м-ния Сянхуалинь, пров. Хунань (Китай) с флогопитом, хризоберилом, магнетитом, касситеритом, маргаритом и минералами гр. нигерит тааффеит. Назван в соответствии с номенклатурой гр. нигерита (Агтвргизter, 2002). *Rao C., Gu X., Wang R., Xia Q., Dong C., Hatert F., Dal Bo F., Yu X., Wang W.* Amer. Miner. 2022. Vol. 107. N 10. P. 1952—1959.
- **31.** Химанит-(Ce) [heamanite-(Ce)] ( $K_{0.5}Ce_{0.5}$ )Ті $O_3$  надгруппа перовскита. Куб.с.  $Pm\overline{3}m.~a=3.9129.~Z=1$ . Единичные кристаллы до 80 мкм. Полупрозрачный. Цв. коричневый. Бл. алмазн. Тв. 5.5. Плотн. 4.73. По аналогии с лопаритом-(Ce) хрупкий, изл. раков., сп. по {100}.  $n_{\text{средн}}=2.28$  (выч.). Хим. (м.з., средн. из 34 опр.): CaO 10.70,  $K_2O$  7.38,  $Na_2O$  0.16,  $Ce_2O_3$  13.77,  $La_2O_3$  8.22,  $Pr_2O_3$  0.84,  $Nd_2O_3$  1.59, SrO 6.69, BaO 2.96,  $ThO_2$  0.36, PbO 0.15,  $TiO_2$  45.77,  $Cr_2O_3$  0.32,  $Al_2O_3$  0.10,  $Fe_2O_3$  0.09,  $Nb_2O_5$  0.87,  $UO_2$  0.01, Cymma 99.98. Рентгенограмма (интенс. л.): 2.764(100)(110), 1.954(31)(200), 1.596(42)(211), 1.382(20)(220), 1.236(15)(310), 1.045(19)(321). Включения в алмазе на м-нии Гахчо Кью, Северо-Западные территории (Канада) с рутилом и кальцитом. Назван в честь канадского геолога Ларри Химана (Larry Heaman, b. 1955). *Anzolini C., Siva-Jothy W.K., Locock A.J., Nestola F., Balič-Žunić T., Alvaro M., Chinn I.L., Stachel T., Pearson D.G.* Amer. Miner. 2022. Vol. 107. N 8. P. 1635—1642.
- **32.** Оксииттробетафит-(Y) [охууttrobetafite-(Y)]  $Y_2Ti_2O_6O$  надгруппа пирохлора. Куб.с.  $Fd\overline{3}m$ . a=10.11090 Å. Z=8. Ангедральные зерна до 20-200 мкм. Полупрозрачный. Цв. коричневый. Черта белая. Бл. стекл. Тв. 5. Плотн. 5.54 (выч.). Изотропный. В пр. св. коричневый. n=2.3 (выч.). Хим. (м.з., EDS, средн.):  $Y_2O_3$  40.99,  $Sm_2O_3$  0.78,  $Eu_2O_3$  0.37,  $Gd_2O_3$  1.80,  $Tb_2O_3$  0.71,  $Dy_2O_3$  5.57,  $Ho_2O_3$  1.27,  $Er_2O_3$  2.76,  $Tm_2O_3$  2.19,  $Yb_2O_3$  3.27,  $Lu_2O_3$  0.34,  $TiO_2$  33.91,  $SnO_2$  0.61,  $Nb_2O_5$  0.14,  $Ta_2O_5$  4.38, FeO 0.76, сумма 99.85. Рентгенограмма (интенс. л.): 2.918(100)(222), 2.527(18)(400), 2.321(13)(331), 1.788(53)(440), 1.525(46)(622), 1.162(13)(662), 1.033(9)(844). В пегматите Соури Велли, преф. Миэ (Япония) с таленитом-(Y), синхизитом-(Y), а также с эшинитом-(Y), торианитом, торитом и гадолинитом-(Y). Назван в соответствии с номенклатурой надгруппы пирохлора (Atencio, 2021). *Nishio-Hamane D., Momma K., Ohnishi M., Inaba S.* J. Miner. Petrol. Scie., 2022. Vol. 117. N 1. P. 1—6.
- **33.** Шахдараит-(Y) [shakhdaraite-(Y)] ScYNb<sub>2</sub>O<sub>8</sub>. Монокл.с. P2/c. a=9.930, b=5.6625, c=5.2108 Å,  $\beta=92.38^\circ$ . Z=2. Отдельные редкие ангедральные зерна до 150 мкм и один таблитч. кристалл. Цв. темно-коричневый. Черта коричневая. Бл. полуметалл. Изл. неровн. до раков. Микротв. 436 (тв. 5). Плотн. 5.602 (выч.). В отр. св. светло-серый с умеренно низкими рефлексами. Анизотропия отчетливая.  $R_{\text{max}}$  и  $R_{\text{min}}$  на воздухе (%): 14.6 и 13.9 при 470 нм, 14.0 и 13.4 при 546, 13.9 и 13.3 при 589, 13.8 и 13.1 при 650 нм. Хим. (м.з., EDS и WDS, средн. из 7 опр.): WO<sub>3</sub> 0.79, Ta<sub>2</sub>O<sub>5</sub> 4.52, Nb<sub>2</sub>O<sub>5</sub> 50.70, UO<sub>2</sub> 3.30, ThO<sub>2</sub> 1.90, SnO<sub>2</sub> 1.54, TiO<sub>2</sub> 0.08, Ce<sub>2</sub>O<sub>3</sub> 0.21, Pr<sub>2</sub>O<sub>3</sub> 0.04, Nd<sub>2</sub>O<sub>3</sub> 0.27, Sm<sub>2</sub>O<sub>3</sub> 0.32, Eu<sub>2</sub>O<sub>3</sub> 0.07, Gd<sub>2</sub>O<sub>3</sub> 0.86, Tb<sub>2</sub>O<sub>3</sub> 0.22, Dy<sub>2</sub>O<sub>3</sub> 2.07, Ho<sub>2</sub>O<sub>3</sub> 0.29, Er<sub>2</sub>O<sub>3</sub> 1.33, Tm<sub>2</sub>O<sub>3</sub> 0.35, Yb<sub>2</sub>O<sub>3</sub> 2.80, Lu<sub>2</sub>O<sub>3</sub> 0.32, Y<sub>2</sub>O<sub>3</sub> 12.00, Sc<sub>2</sub>O<sub>3</sub> 11.35, PbO 0.24, FeO 0.01, MnO 1.38, CaO 1.01, сумма 97.97. Рентгенограмма (интенс. л.): 3.72(35)(210),

- $3.073(100)(\bar{2}11)$ , 2.990(85)(211), 2.832(20)(020),  $2.603(24)(00\bar{2})$ ,  $2.484(33)(0\bar{2}1)$ ,  $1.916(23)(02\bar{2})$ , 1.867(21)(420). В миароловом гранитном пегматите Лесхозовский, р. Шахдара, Юго-Западный Памир, Горно-Бадахшанская автономная обл. (Таджикистан) с кварцем, альбитом, пирохлор-микролитом, ферсманитом и Sc—Nd-окислом. Назван по месту находки. *Pautov L.A., Mirakov M.A., Sokolova E., Day M.C., Hawthorne F.C., Schodibekov M.A., Karpenko V.Yu., Makhmadsharif S., Faiziev A.R.* Canad. Miner. 2022. Vol. 60. N 2. p. 369—382.
- **34.** Сюйит (xuite)  $\text{Ca}_3\text{Fe}_2[(\text{Al},\text{Fe})\text{O}_3(\text{OH})]_3$  гр. граната. Куб.с.  $Ia\overline{3}d$ . a=12.5056. Z=8. Нанокристаллы до 800 мкм. Плотн. 3.53 (выч.). Дан ИК-спектр. Хим. (EDS TIM, средн. из 6 опр.):  $\text{Fe}_2\text{O}_3$  44.64, CaO 29.84,  $\text{Al}_2\text{O}_3$  12.98, MgO 1.87, TiO $_2$  1.23,  $\text{SiO}_2$  1.85, H $_2\text{O}$  7.59, сумма 100.00. Рентгенограмма (интенс. л.): 5.1062(15.7)(112), 4.4215(65.4)(022), 3.3420(24.0)(123), 3.1261(62.5)(004), 2.7959(100)(024), 2.6659(15.2)(233), 2.5524(63.1)(224). В базальтовом шлаке вулканического комплекса Менан, шт. Айдахо (США) с логуфэнитом, валлейитом и гематитом. Назван в честь американских ученых Хуйфан Сюй и Хуну Сюй (Huifang Xu and Hongwu Xu). Lee S., Guo X. Amer. Miner. 2022. Vol. 107. N 5. P. 930—935.
- **35. Казнахтит** (kaznakhtite)  $Ni_6Co_2^{3+}(CO_3)(OH)_{16}$  4H<sub>2</sub>O надгр. гидроталькита. Триг.с.  $R\overline{3}$  m. a = 3.0515, c = 23.180 Å. Z = 3/8. Пластинчатые зерна до 0.01 мм в мелкозернистых, порошковатых агрегатах, образующих уплощенные линзы до  $1.5 \times 0.5$  см и прожилки до 1 см толщиной до 1 мм. Прозрачный, в агрегатах полупрозрачный. Цв. светло-зеленый. Бл. земл. Сп. слюдоподобная по {001}. Плотн. 2.864 (выч.). Одноосный(–).  $n_0 = 1.657$ ,  $n_e = 1.676$ . В пр. св. болотно-зеленый до бесцветного. Плеохроизм слабый в зеленоватых оттенках. Дан ИК-спектр. Хим. (м.з., WDS, средн. из 10 опр.): MgO 2.15, NiO 47.40, ZnO 0.22, Al<sub>2</sub>O<sub>3</sub> 0.16, Cr<sub>2</sub>O<sub>3</sub> 0.98, Co<sub>2</sub>O<sub>3</sub> 17.42, Cl 0.63, CO<sub>2</sub> 5.05 (выч.), H<sub>2</sub>O 24.60, -O=Cl 0.14, сумма 98.47. Рентгенограмма (интенс. л.): 7.72(100)(003), 3.863(24)(006), 2.630(4)(101), 2.576(10)(012), 2.294(6)(015), 1.950(4)(018), 1.526(4)(110), 1.497(4)(113). В ультрабазитовом Казнахтинском массиве, Усть-Коксинский район, Алтай (Россия) с хризотилом, лизардитом, стихтитом, доломитом, бруситом, хромитом, хизлевудитом, манганохромитом, магнетитом и магнезиоферритом. Назван по месту находки. Kasatkin A.V., Britvin S.N., Krzhizhanovskaya M.G., Chukanov N.V., Škoda R., Göttlicher J., Belakovskiy D.I., Pekov I.V., Levitskiy V.V. Miner. Mag. 2022. Vol. 86. N 5. P. 841-848.
- **36.** Саккоит (saccoite)  $Ca_2Mn_2^{3+}F(OH)_80.5(SO_4)$ . Тетр.с. P4/ncc.~a=12.834,~c=5.622 Å. Z=4. Корочки, агрегаты мелких игольчатых войлокоподобных кристаллов. Прозрачный. Цв. оливково-зеленый. Черта белая. Бл. стекл. Плотн. 2.73 (выч.). Одноосный(—).  $n_o=1.705,~n_e=1.684$ . Плеохроизм отчетливый: по No- голубовато-зеленый, по Ne- желтовато-зеленый. Эмп. ф-ла (м.з., WDS, средн.)  $Ca_{2.06},~Mn_{1.78}^{3+}Cu_{0.10}Mg_{0.07}F_{0.97}(OH)_{8.02}(SO_4)_{0.39}$ . Рентгенограмма (интенс. л.): 9.0735(35)(110), 4.5370(95)(220), 4.0644(20)(310), 3.0105(100)(321), 2.8117(20)(002), 2.7242(75)(411), 1.9755(35)(611), 1.8142(20)(550). В гидротермально измененных марганцевых рудах (г.о. биксбиит и барит) на м-нии Н'Чванинг III, Калахари, Мп-рудное поле (ЮАР) с браунитом, гипсом, хлоритом, стурманитом и эттрингитом. Назван в честь африканских бизнесменов и геологов отца (Гвидо) и сына (Десмонда) Сакко (Guido Sacco, 1900—1994, Desmond Sacco, b. 1940), учавствовавших в открытии и разработке марганцевых м-ний Северо-Капской провинции ЮАР. Giester G., Lengauer C.L., Chanmuang N.C., Topa~D., Gutzmer~J., von~Bezing~K.-L., Miner. Mag. 2022. Vol. 86. N 5. P. 814—820.

## НИТРАТЫ, ФОСФАТЫ, АРСЕНАТЫ

- **37. Нитроплюмбит** (nitroplumbite) [Pb<sub>4</sub>(OH)<sub>4</sub>](NO<sub>3</sub>)<sub>4</sub>. Монокл.с. *Ia.* a=18.3471, b=17.3057, c=18.6698 Å,  $\beta=91.872^\circ$ . Z=16. Псевдокуб. кристаллы до 0.15 мм. Простые формы: {100}, {001}, {010}, {110}, {110}, {101}, {101}, {011}, {011}, {111}, {111}, {111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}, {1111}
- **38.** Рипхукхиллит (reaphookhillite)  $\mathrm{MgZn_2(PO_4)_2} \cdot 4\mathrm{H_2O}$   $\mathrm{Mg}$  аналог парагопеита. Трикл.с.  $P\overline{1}$ . a=5.7588, b=7.5341, c=5.2786 Å,  $\alpha=93.44^\circ$ ,  $\beta=91.27^\circ$ ,  $\gamma=91.30^\circ$ . Z=1. Клинообразные до тонких табличек кристаллы до 0.6 мм. Бесцветный. Сп. совершенная по  $\{010\}$ . Плотн. 3.09 (выч.). Двуосный(+).  $n_p=1.583$ ,  $n_m=1.596$ ,  $n_g=1.611$ ,  $2V=88.7^\circ$  (выч.). Хим. (м.з., средн.): ZnO 41.57, MgO 7.96, MnO 0.40,  $P_2O_5$  33.72,  $H_2O$  16.92 (выч.), сумма 100.57. Рентгенограмма (интенс. л.): 7.577(100)(010), 4.461(20)(11), 3.771(10)(100), 3.158(10)(100), 2.982(100), 2.880(100), 2.880(100), 2.775(100). На м-нии Рипхук Хилл (Юж. Австралия) с парагопеитом, шольцитом, лейкофосфитом и халькофанитом. Назван по месту находки. *Elliott P.* Miner. Mag. 2022. Vol. 86. N 4. p. 525—530.
- **39. Фторсигаиит** (fluorsigaiite)  $Ca_2Sr_3(PO_4)_3F$  надгр. апатита. Гекс.с.  $P6_3/m$ . a=9.6101, c=7.1311 Å. Z=2. Отдельные призмат., столбчатые или пластинчатые кристаллы до 50, редко до 100 мкм. Полупрозрачный до прозрачного. Бесцветный до желтовато-белого. Бл. стекл. Хрупкий. Изл. неровн. Тв. ~5. Плотн. 3.842 (выч.). Одноосный(—).  $n_o=1.64$ ,  $n_e=1.63$ . Дан рамановский спектр. Хим. (м.з., WDS, средн.):  $P_2O_5$  31.87,  $La_2O_3$  3.64,  $Ce_2O_3$  2.22,  $Pr_2O_3$  0.19,  $Nd_2O_3$  0.13,  $Sm_2O_3$  0.05,  $Gd_2O_3$  0.23, CaO 15.17, SrO 44.44,  $Na_2O$  0.75, F 1.91, OH 0.83, O=F 0.80, сумма 100.63. Рентгенограмма (интенс. л.): 3.563(14.5)(002), 3.275(14.9)(012), 3.144(18.6)(1 $\overline{3}$ 0), 2.876(100)(1 $\overline{3}$ 1), 2.861(96.2)(112), 2.772(27.4)(030), 1.991(16.5)(222), 1.895(23.2)(1 $\overline{3}$ 3). В микроклин-нефелиновой матрице в луявритах шелочного комплекса Саима, пров. Ляонин (Китай) с натролитом, эвдиалитом, фторапатитом, стронадельфитом и кальцитом. Назван по составу, корневая часть от китайских обозначений стронция "si" и кальция "gai". Wu B., Gu X.P., Rao C., Wang R.C., Xing X.Q., Zhong F.J., Wan J.J., Bonnetti C. Miner. Mag. 2022. Vol. 86. N 6. P. 940—947.
- **40.** Гидроксилпироморфит (hydroxylpyromorphite)  $Pb_5(PO_4)_3(OH)$ . Гекс.  $P6_3/m$ . a=9.7872, c=7.3070 Å. Z=2. Скопления случайно ориентированных гексагональных призматических кристаллов длиной около 20-35 и 6-10 мкм в сечении. Простые формы:  $\{100\}$  (призма),  $\{101\}$  (пирамида). Полупрозрачный. Бесцветный. Черта белая. Бл. стекл. Хрупкий. Изл. неправ. Тв. 3.5-4. Сп. неясная по  $\{001\}$ . Плотн. 7.32 и 7.33 (выч. по эмпир. и идеальной ф-лам). Одноосный(—).  $n_{\rm сред H}=2.04$  (выч.). Дан ИК-спектр. Хим. (м.з., средн. из 12 опр.): PbO 82.20,  $P_2O_5$  15.77, Cl 0.15, F 0.46,  $H_2O$  0.46 (выч. по стр-ре), -O=Cl 0.03, -O=F 0.19, сумма 98.82. Рентгенограмма (интенс. л.): 4.079(18)(111), 3.359(29)(102), 3.207(21)(120), 2.934(100)(121,112), 2.0355(21)(222), 1.9417(23)(320,213), 1.8340(25)(402,004), 1.5919(17)(420,331,214). В кварцевом включении на руднике Коппс, округ Гогебик, шт. Мичиган (США). Назван как OH-аналог пироморфита.

- Olds T.A., Kampf A.R., Rakovan J.F., Burns P.C., Mills O.P., Laughlin-Yurs C. Amer. Miner. 2021. Vol. 106. N 6. P. 922–929.
- **41.** Дондоэллит (dondoellite)  $Ca_2Fe(PO_4)_2 \cdot 2H_2O$  полиморф месселита. Трикл.с.  $P\overline{1}$ . a=5.4830, b=5.7431, c=13.0107 Å,  $\alpha=98.772^\circ$ ,  $\beta=96.209^\circ$ ,  $\gamma=108.452^\circ$ . Z=2. Сферические агрегаты до 2 см радиальных пластинок до  $0.8\times0.1\times0.03$  мм. Прозрачный. Бесцветный до бледно-желтого. Бл. стекл. Хрупкий. Тв. 3.5-4. Сп. совершенная по  $\{001\}$ . Плотн. 3.14 (изм.), 3.15 (выч.). Двуосный(+).  $n_p=1.649$ ,  $n_m=1.654$ ,  $n_g=1.672$ ,  $2V=55^\circ$ (изм.),  $58^\circ$ (выч.). Плеохроизм слабый от серого до светло-желтого. Дисперсия слабая, r>v. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 9 опр.):  $P_2O_5$  39.22, CaO 30.93, FeO 17.82, MgO 1.51, MnO 0.24,  $H_2O$  10.02 (выч.), сумма 99.74. Рентгенограмма (интенс. л.): 6.316(35)(002),  $3.149(100)(\overline{112})$ , 3.023(63)(103),  $2.669(100)(1\overline{22})$ , 2.628(26)(112),  $2.574(30)(\overline{1}14)$ ,  $1.782(25)(\overline{2}06)$ ,  $1.701(25)(\overline{03}4)$ . На м-нии Гризли Беар-Крик, Юкона (Канада) с гидроксилапатитом, сидеритом и кварцем. Назван в честь канадских медиков и любителей минералов Дональда В. Доэлля (отец) (Donald V. Doell, b. 1948) и Дональда М. Доэлля (сын) (Donald М. Doell, b. 1982). *Yang H., Gibbs R.B., McGlasson J.A., Jenkins R.A., Downs R.T.* Canad. Miner. 2022. Vol. 60. N 5. P. 837–847.
- **42. Ферробераунит** (ferroberaunite)  $Fe^{2+}Fe_5^{3+}(PO_4)_4(OH)_5\cdot 6H_2O$  серия бераунита. Монокл.с. C2/c. a = 20.8708, b = 5.1590, c = 19.2263 Å,  $\beta = 93.3186^{\circ}$ . Z = 4. Призмат., игольчатые до пластинчатых кристаллы до 400 мкм в длину уплощенные по {100} и удлиненные по b, хаотично растущие на "лимонитовой" матрице или образующие радиальные до сферических агрегаты. Простые формы:  $\{100\}$ ,  $\{201\}$ ,  $\{20\overline{1}\}$ ,  $\{112\}$  и  $\{\overline{1}1\overline{2}\}$ ; двойникование по {100} (даны чертежи). Прозрачный до полупрозрачного. Цв. темнозеленый до оливкового. Черта бледно-оливковая. Бл. стекл., перл. на пл. спайности. Сп. очень хорошая по {100}. Хрупкий. Изл. неровн. Тв. 3-4. Плотн. 2.94 (изм.) 2.907 (выч.). Двуосный(—). Nm= b,  $Np\approx$  a,  $Ng\approx$  c.  $n_p=1.736,\ n_m=1.765,\ n_g=1.786,\ 2V=$  $=68^{\circ}$  (изм.),  $79^{\circ}$  (выч.). Дисперсия сильная, r > v. Плеохроизм сильный: по Np голубовато-зеленый, по Ng зеленый, по Nm желтый. Дан рамановский спектр. Хим. (м.з., средн. из 6 опр.): FeO 6.00, CaO 0.05, MnO 0.16, Fe<sub>2</sub>O<sub>3</sub> 45.38, Al<sub>2</sub>O<sub>3</sub> 0.21, P<sub>2</sub>O<sub>5</sub> 31.60, Н<sub>2</sub>О 16.80 (выч.), сумма 100.20. Рентгенограмма (интенс. л.): 10.410(100)(200),  $9.606(14)(002), 7.271(11)(20\overline{2}), 5.203(4)(400), 3.467(12)(600), 3.325(6)(60\overline{2}), 3.201(6)(006),$ 2.600(4)(800). Гипергенный на м-нии Гравел Хилл, Перранцабулое (Англия) в прожилках и полостях "лимонитовой" железной руды. Назван по составу и за сходство с цинкобераунитом. Tvrdý J., Plášil J., Vrtiška L., Sejkora J., Škoda R., Dolníček Z., Petr M., Veselovský F. Miner. Mag., 2022. Vol. 86. N 3. P. 363–372.
- **43.** Магнезиоберманит (magnesiobermanite)  $\mathrm{MgMn_2^{3+}(PO_4)_2(OH)_2} \cdot 4\mathrm{H_2O}$ . Монокл.с.  $P2_1$ . a=5.4215, b=19.072, c=5.3889 Å,  $\beta=110.21^\circ$ . Z=2. Пластинч. до таблитч. кристаллы до 0.3 мм, их агрегаты до 1.2 мм. Простые формы:  $\{010\}$ ,  $\{100\}$ ,  $\{001\}$ ,  $\{10\overline{1}\}$  и  $\{111\}$  (дан чертеж). Полупрозрачный. Цв. оранжево-красный до коричневато-красного. Черта розовая. Хрупкий. Изл. заноз. Сп. совершенная по  $\{001\}$ . Тв. 3.5. Плотн. 2.75 (изм.), 2.73 (выч.). Двуосный(—).  $n_p=1.690$ ,  $n_m=1.719$ ,  $n_g=1.734$ ,  $2V=70.4^\circ$ (выч.). Плеохроизм сильный: по Np бледно-оранжево-красный, по Nm бледно-желтый, по Ng темно-оранжево-красный. Дан ИК-спектр. Хим. (м.з., средн.):  $\mathrm{Mn_2O_3}$  27.41,  $\mathrm{Fe_2O_3}$  8.84,  $\mathrm{MgO}$  9.59,  $\mathrm{Al_2O_3}$  0.18,  $\mathrm{P_2O_5}$  33.27,  $\mathrm{H_2O}$  20.94 (выч. по стр-ре), сумма 100.23. Рентгенограмма (интенс. л.): 9.533(100)(020), 5.089(8)(100,001), 4.772(21)(040),  $2.892(6)(1\overline{51})$ . Вторичный в гранитном пегматите в карьере Уайт Рок N 2 (Юж. Австралия) со фторапатитом, лейкофосфитом, джанситом-(NaFeMg), ушковитом, лауэитом, перловитом и митридатитом. Назван по составу и за сходство с берманитом. Elliott P. Miner. Mag. 2022. Vol. 86. N 1. P. 127-133.

- **44.** Томскуориит (tomsquarryite) NaMgAl<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub>·8H<sub>2</sub>O Триг.с.  $R\overline{3}m$  с гекс. параметрами a = 6.9865, c = 30.634 Å. Z = 3. Псевдогекс. кристаллы толщиной до 10 мкм, уплощенные по {001} и талькоподобные пластинки до нескольких мкм и толщиной до ~1 мкм. Простые формы: {001}, {100} и {110}. Бесцветный. Черта белая. Сп. совершенная по  $\{001\}$ . Плотн. 2.22 (выч.). Одноосный(+). Ng=c.  $n_o=1.490,\,n_e=1.497.$  Дан ИКспектр. Хим. (м.з., WDS, средн. из 8 опр.): Na<sub>2</sub>O 5.46, K<sub>2</sub>O 0.16, CaO 0.77, MgO 8.80, Al<sub>2</sub>O<sub>3</sub> 25.30, P<sub>2</sub>O<sub>5</sub> 24.60, F 8.16, H<sub>2</sub>O 30.00, -O=F 3.44, сумма 99.81. Рентгенограмма 10.24(100)(003), 5.944(34)(101), 5.643(32)(012), 4.755(23)(104), 3.499(34)(110), 3.015(26)(021), 2.888(33)(116), 2.818(23)(024), 1.749(24)(220). Вторичный на фосфатном проявлении Томскуори (Tom's quarry) Австралия (голотип)) и в мраморном карьере Пенрайс с пенрайсеитом, эллиоттитом, ангастонитом, миниюлитом и вавеллитом. Наван по месту находки. Elliott P., Grey I.E., Mumme W.G., MacRae C.M., Kampf A.R. Europ. J. Miner. 2022. Vol. 34. P. 375–383.
- **45.** Менгеит (mengeite) Ва(Mg,Mn<sup>2+</sup>)Mn<sup>3+</sup><sub>4</sub> (PO<sub>4</sub>)<sub>4</sub>(OH)<sub>4</sub>·4H<sub>2</sub>O. Трикл.с.  $P\overline{1}$ . a=5.4262, b=5.4274, c=16.387 Å,  $\alpha=87.61^\circ$ ,  $\beta=98.97^\circ$ ,  $\gamma=110.56^\circ$ . Z=1. Обособления до 0.8 мм в кварцевой матрице. Цв. оранжево-красный. Черта бледно-розовая. Бл. стекл. Хрупкий. Тв. ~3. Сп. отличная предположительно по (001). Из. неровн. Плотн. 3.40 (изм.), 3.43 и 3.35 (выч. по эмпир. и идеальной ф-лам). Двуосный(—).  $n_p=1.757$ ,  $n_m=1.776$ ,  $n_g=1.781$ ,  $2V=53.8^\circ$ (выч.). Плеохроизм: по Nm бледно-серый, по Np бледно-желтый, по Ng оранжевый. Дан ИК-спектр. Хим. (м.з., средн. из 8 опр.): ВаО 18.32, Mn<sub>2</sub>O<sub>3</sub> 33.45, MnO 2.02, MgO 2.54, CuO 0.87, Al<sub>2</sub>O<sub>3</sub> 0.11, CaO 0.04, Na<sub>2</sub>O 0.05, P<sub>2</sub>O<sub>5</sub> 31.57, As<sub>2</sub>O<sub>5</sub> 0.27, H<sub>2</sub>O 11.60 (выч. по идеальной ф-ле), сумма 100.84. Рентгенограмма (интенс. л.): 16.126(100)(001), 5.016(12)(010, 100, 101), 4.418(44)(111), 3.246(14)(00 $\overline{5}$ , 11 $\overline{3}$ ), 3.145(12)(01 $\overline{4}$ ), 2.796(25)(1 $\overline{13}$ , 1 $\overline{12}$ , 115), 2.680(12)(211, 120, 121, 210). На м-нии Спринг Крик (Юж. Австралия). Назван в честь австралийского геолога Иоганна Менге (Johann Menge, 1788—1852). *Elliott P.* Canad. Miner. 2022. Vol. 60. N 5. P. 815—824.
- **46.** Дендораит-(NH<sub>4</sub>) [dendoraite-(NH<sub>4</sub>)] (NH<sub>4</sub>)<sub>2</sub>NaAl(C<sub>2</sub>O<sub>4</sub>)(PO<sub>3</sub>OH)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>. Монокл.с.  $P2_1/n$ . a=10.695, b=6.285, c=19.227 Å,  $\beta=90.933^\circ$ . Z=4. Клинообразные пластинки до 0.1 мм в длину, уплощенные по {001} и удлиненные по [010], их агрегаты. Простые формы: {100}, {001}, {310} и {10.1.0} (дан чертеж). Бецветный. Черта белая. Хрупкий. Изл. заноз. Тв. ~2.5. Плотн. 2.122 и 2.066 (выч. по эмп. и идеальной ф-лам). Легко раств. в разбавл. НС1. Двуосный(—). Np=b.  $n_p=1.490$ ,  $n_m=1.540$ ,  $n_g=1.541$ ,  $2V=15.7^\circ$  (выч.). Дан рамановский спектр. Хим. (м.з., WDS, средн. из 6 опр., норм.): (NH<sub>4</sub>)<sub>2</sub>O 9.31, K<sub>2</sub>O 5.95, Na<sub>2</sub>O 7.18, Al<sub>2</sub>O<sub>3</sub> 11.87, Fe<sub>2</sub>O<sub>3</sub> 0.65, P<sub>2</sub>O<sub>5</sub> 34.38, C<sub>2</sub>O<sub>3</sub> 17.44 (по стр-ре), H<sub>2</sub>O 13.22 (по стр-ре), сумма 100.00. Рентгенограмма (интенс. л.): 9.65(100)(002), 9.29(54)(101), 4.738(28)( $\overline{1}$ 12, 112), 3.455(40)( $\overline{2}$ 13, 213), 3.106(75)(021, 303), 2.975(28)(121,  $\overline{3}$ 12), 2.825(33)(023,  $\overline{3}$ 13). На м-нии Роули, округ Марикопа, шт. Аризона (США) с антипинитом, флюоритом, миметитом, моттрамитом, релианситом-(К), роулиитом, нашатырем, струвитом, ванадинитом, виллемитом и вульфенитом. Название от Дендора Велли и Дендора Ранч, находящихся к западу от м-ния Роули. *Катрf A.R., Соорег М.А., Celestian A.J., Ma C., Marty J.* Miner. Mag. 2022. Vol. 86. N 4. P. 531—538.
- **47. Релиансит-(K)** [relianceite-(K)]  $K_4Mg(V^{4+}O)_2(C_2O_4)(PO_3OH)_4(H_2O)_{10}$ . Моно-кл.с. Pc. a=12.404, b=9.014, c=13.260 Å,  $\beta=100.803^\circ$ . Z=2. Призмат. кристаллы до 0.1 мм. Цв. небесно-голубой. Черта бледно-голубая. Бл. стекл. Хрупкий. Изл. заноз. Тв. 2.5. Плотн. 2.111 (выч.). Двуосный(+). Nm=b.  $n_p=1.528$ ,  $n_m=1.529$ ,  $n_g=1.562$ ,  $2V=22^\circ$ (выч.). Плеохроизм: по Np бесцветный, по Nm=Ng бледно-голубой. Эмп. ф-ла (м.з.)  $[K_{2.21}(NH_4)_{1.79}]_{\Sigma 4.00}Mg_{0.96}(V_{0.95}^{4+}O)_2(C_2O_4)[P_{1.03}O_{3.03}(OH)_{0.97}]_4(H_2O)_{10}$ . Рентгенограмма (интенс. л., d,I): 12.22(100), 6.56(21), 6.28(20), 3.435(19), 3.125(23), 3.039(19),

- 2.893(22), 2.718(21). На м-нии Роули, шт. Аризона (США) с дендораитом-( $\mathrm{NH_4}$ ), флюоритом, миметитом, моттрамитом, роулиитом, нашатырем, струвитом, ванадинитом, виллемитом, вульфенитом и по крайне мере еще одним новым минералом. Название от прежнего названия м-ния Релианс (Reliance). *Kampf A.R., Cooper M.A., Celestian A.J., Ma C., Marty J.* Miner.Mag. 2022. Vol. 86. N 4. P. 539—547; https://www.mindat.org/min-55442.html
- **48. Торасфит** (thorasphite)  $\mathrm{Th_2H}(\mathrm{AsO_4})_2(\mathrm{PO_4})$  6 $\mathrm{H_2O}$ . Ромб.с. *Pbcn.* a=13.673, b=9.925, c=10.222 Å. Z=4. Призмат. до игольчатых кристаллы до  $0.8\times0.002$  мм, их агрегаты. Полупрозрачный. Цв. коричневато-розовый до розового. Черта белая. Бл. стекл. Хрупкий. Плотн. 4.185 (выч.).  $n_{\mathrm{средH}}=1.805$  (выч.). Дан ИК-спектр. Хим. (м.з., WDS, средн. из 9 опр.):  $\mathrm{ThO_2}$  51.35,  $\mathrm{Na_2O}$  0.17,  $\mathrm{K_2O}$  0.20,  $\mathrm{Al_2O_3}$  0.35, FeO 0.90,  $\mathrm{Ce_2O_3}$  0.27,  $\mathrm{As_2O_5}$  19.65,  $\mathrm{P_2O_5}$  12.27,  $\mathrm{SiO_2}$  0.08, Cl 0.20,  $\mathrm{H_2O}$  13.58 (выч.), O=Cl 0.05, сумма 98.97. Рентгенограмма (интенс. л.): 8.007(100)(110), 5.127(57)(002), 4.934(71)(020, 211), 4.320(24)(112), 4.251(38)(121), 3.225(22)(130, 312), 3.189(27)(321), 2.926(27)(213). На заброшенном оловянном м-нии Элсмор, Новый Южный Уэльс (Австралия) с ярозитом в полостях кварц-мусковитовой матрицы. Назван по составу. *Elliott P.* Canad. Miner. 2022. Vol. 60. N 4. P. 719—727.
- **49.** Арсенудинаит (arsenudinaite) NaMg<sub>4</sub>(AsO<sub>4</sub>)<sub>3</sub>. Тетр.с.  $\overline{I4}2d$ . a = 6.8022, c = 19.1843 Å. Z = 4. Вместе с удинаитом составляет изоморфную серию со стр-рой типа джеффбенита. Агрегаты до 1 см тетр. кристаллов до 0.15 мм. Простые формы: {001} (пинакоид), {100} и {110 (призмы}. Прозрачный. Цв. бежевый, бледно-коричневатый, коричневато-желтоватый или серовато-коричневатый, самые мелкие кристаллы бесцветные. Черта белая. Бл. стекл. Хрупкий. Тв. 3.5. Изл. неровн. Плотн. 3.816 (выч.). В пр. св. бесцветный, не плеохроирует. Односный(–).  $n_o = 1.777$ ,  $n_e = 1.820$ . Хим. (SEM WDS, средн. из 6 опр.): Na<sub>2</sub>O 3.43,CaO 1.41, MgO 31.48, MnO 0.17, CuO 0.03, Fe<sub>2</sub>O<sub>3</sub> 0.09, SiO<sub>2</sub> 0.10, P<sub>2</sub>O<sub>5</sub> 1.33, V<sub>2</sub>O<sub>5</sub> 14.82, As<sub>2</sub>O<sub>5</sub> 46.34, SO<sub>3</sub> 0.14, сумма 99.34. Рентгенограмма (интенс.  $\pi$ .): 4.657(26)(103), 4.300(24)(112), 3.341(29)(105), 3.007(46)(211), 2.775(100)(204), 2.750(17)(213), 2.663(17)(116), 1.698(27)(400,228,325). В отложениях фумаролы Арсенатная, Второй шлаковый конус, Северный прорыв БТТИ, Камчатка (Россия) с удинаитом, ангидритом, диопсидом, гематитом, шеферитом, берцелиитом, свабитом, кальциойохиллеритом, тилазитом, резницкиитом, людвигитом, боратами гр. рабдоборита, форстеритом, магнезиоферритом, фторапатитом, плиниуситом и повеллитом. Назван по составу и за сходство с удинаитом. Pekov I.V., Koshlyakova N.N., Zubkova N.V., Belakovskiy D.I., Vigasina M.F., Agakhanov A.A., Ksenofontov D.A., Turchkova A.G., Britvin S.N., Sidorov E.G., Pushcharovsky D.Yu. Minerals. 2022. Vol. 12. N 7. paper 850. https://doi.org/10.3390/min12070850
- **50. Хреновит** (khrenovite)  $Na_3Fe_2^{3+}(AsO_4)_3$  надгр. аллюодита. Монокл.с. C2/c. a=12.2394, b=12.7967, c=6.6589 Å,  $\beta=112.953^\circ$ . Z=4. Призмат. кристаллы до  $0.2\times0.3\times0.8$  мм, их агрегаты до 1 мм. Прозрачный. Цв. медово-желтый, красный, оранжевый или желто-коричневый. Черта желтоватая. Бл. стекл. Хрупкий. Изл. неровн. Тв. 3.5. Плотн. 4.257 (выч.). Двуосный(+). Ng=b.  $n_p=1.825$ ,  $n_m=1.834$ ,  $n_g=1.845$ ,  $2V=80^\circ$  (изм.),  $85^\circ$  (выч.). Дисперсия сильная, r>v. Плехроизм: по Np желто-коричневатый, по  $Nm\approx Ng$  почти бесцветный. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 7 опр.):  $Na_2O$  11.47,  $K_2O$  1.23, CaO 0.18, CaO 0.01, CaO 0.01, CaO 0.10, CaO 0.10, CaO 0.17, CaO 0.19, CaO 0.17, CaO 0.19, CaO 0.19, CaO 0.19, CaO 0.19, CaO 0.10, CaO

- санидином, гематитом, касситеритом, рутилом и псевдобрукитом. Назван в честь русского вулканолога и геолога Анатолия Петровича Хренова (Anatoly Petrovich Khrenov, 1946—2016). *Pekov I.V., Koshlyakova N.N., Belakovskiy D.I., Vigasina M.F., Zubkova N.V., Agachanov A.A., Britvin S.N., Sidorov E.G., Pushcharovsky D.Yu.* Miner. Mag. 2022. Vol. 86. N 6. p. 897—902. https://www.mindat.org/min-52882.html
- **51.** Параберцелиит (paraberzeliite) NaCaCaMg $_2$ (AsO $_4$ ) $_3$  надгр. аллюодита. Монокл.с. C2/c. a=12.3143, b=13.0679, c=6.7717 Å,  $\beta=113.657^\circ$ . Z=4. Грубые искаженные призмат кристаллы до  $0.2 \times 0.2 \times 1$  мм, кустообразные агрегаты до  $3 \times 5$  мм. Прозрачный. Цв. (голотип) лиловато-коричневый, коричневато-пурпурный, светло-коричневый или красно-коричневый. Черта бледно-коричневатая до бледно-розоватой. Бл. стекл. Хрупкий. Изл. неровн. Тв. 3.5. Плотн. 3.811 (выч.). Двуосный(+).  $Nm = b.\ n_p =$ = 1.718,  $n_m$  = 1.728,  $n_g$  = 1.742, 2V = 85° (изм.), 81° (выч.). Плеохроизм слабый: по Nm серовато-фиолетовый, по Ng очень бледно-желтоватый, по Np бесцветный. Дисперсия очень сильная, r < v. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 10 опр.): Na<sub>2</sub>O 6.43, CaO 16.65, MgO 11.64, MnO 1.65, CuO 0.06, Fe<sub>2</sub>O<sub>3</sub> 2.45, V<sub>2</sub>O<sub>5</sub> 1.10, As<sub>2</sub>O<sub>5</sub> 59.46, сумма 99.44. Рентгенограмма (интенс. л.):  $3.642(25)(\overline{1}31)$ , 3.606(17)(310),  $3.243(29)(\overline{1}12)$ ,  $3.096(22)(221, 002), 2.986(34)(\overline{3}12, \overline{2}22), 2.888(22)(041), 2.822(100)(240, 400, 022),$ 2.658(29)(112, 132). В продуктах фумаролы Арсенатная, Второй шлаковый конус Северного прорыва БТТИ, Камчатка (Россия) с ангидритом, диопсидом, гематитом, свабитом, берцелиитом, шеферитом и др. Название отражает факт диморфизма этого минерала с берцелиитом. Pekov I.V., Koshlyakova N N., Belakovskiy D.I., Vigasina M.F., Zubkova N.V., Agakhanov A.A., Britvin S.N., Sidorov E.G., Pushcharovsky D.Yu. Miner. Mag. 2022. Vol. 86. N 1. P. 103-111.
- **52.** Ломбардоит (lombardoite)  $Ba_2Mn^{3+}(AsO_4)_2(OH)$ . Монокл.с.  $P2_1/m$ . a = 7.8636, b = 6.13418, c = 9.1197 Å,  $\beta = 112.660^\circ$ . Z = 2. Агрегаты до нескольких см субгедральных кристаллов до 0.5 мм. Полупрозрачный. Цв. темно-красно-коричневый. Черта-желтооранжевая. Бл. стекл. Тв. по аналогии с каносиоитом 6-6.5. Плотн. 5.124 (выч.). Хрупкий. Двуосный(+).  $n_{\text{средн}} = 1.86$  (выч.).  $2V = 78^{\circ}$  (изм.). Плеохроизм: по Np желто-коричневый, по Nm коричневый, по Ng красновато-коричневый. Даны ИК-, рамановский спектры и оптический спектр поглощения. Хим. (м.з., WDS, средн. из 5 опр.): As<sub>2</sub>O<sub>5</sub> 31.48, V<sub>2</sub>O<sub>5</sub> 3.33, P<sub>2</sub>O<sub>5</sub> 0.19, Mn<sub>2</sub>O<sub>3</sub> 7.70, Al<sub>2</sub>O<sub>3</sub> 0.50, Fe<sub>2</sub>O<sub>3</sub> 1.63, MgO 0.69, ВаО 47.30, SrO 2.84, CaO 0.14, PbO 1.26, Na<sub>2</sub>O 0.08, H<sub>2</sub>O 1.42 (выч.), сумма 98.56. Рентгенограмма (интенс. л.):  $6.985(39)(10\overline{1})$ , 3.727(33)(111),  $3.314(100)(21\overline{1})$ , 3.073(24)(020),  $3.036(33)(21\overline{2}, 10\overline{3}), 2.810(87)(12\overline{1}, 112), 2.125(20)(301, 11\overline{4}), 1.748(24)(321)$ . B метакварцитах из отвалов рудника Валлета, Пьемонт (Италия) с кварцем, эгирином, баритом, кальцитом, гематитом, мусковитом, криптомеланом, браунитом и манганберцелиитом. Назван в честь итальянского геолога и петролога Бруно Ломбардо (Bruno Lombardo, 1944–2014). Cámara F., Baratelli L., Ciriotti M.E., Nestola F., Piccoli G.C., Bosi F., Bittarello E., Hålenius U., Balestra C. Miner. Mag. 2022. Vol. 86. N 3. P. 447-458.
- **53.** Граулихит-(La) [graulichite-(La)] LaFe $_3^{3+}$  (AsO $_4$ ) $_2$ (OH) $_6$ . Триг.с.  $R\overline{3}m$ . a=7.252, c=16.77 Å. Z=3. Ромбоэдрические кристаллы до 0.1 мм. Цв. желтый. Черта светложелтая. Бл. смол. Хрупкий. Изл. неправ. Тв. ~3.5. Плотн. 3.907 и 3.962 (выч. для доменов 1 и 2). Плеохроизм слабый от светло-желтого до желтого.  $n_{\text{средн}}=1.889$  и 1.928 (выч. для доменов 1 и 2). Дан рамановский спектр. Хим. (м.з., EDS, средн. из 4 опр. для доменов 1 и 2): SO $_3$  3.90 и 4.40, P $_2$ O $_5$  3.65 и 4.89, As $_2$ O $_5$  18.55 и 14.48, Al $_2$ O $_3$  5.63 и 3.41, Fe $_2$ O $_3$  22.52 и 28.60, La $_2$ O $_3$  7.16 и 8.59, Ce $_2$ O $_3$  4.28 и 4.87, CaO 0.79 и 0.69, CuO 2.06 и 2.15, SrO 0.97 и 1.46, PbO 1.36 и 1.62, K $_2$ O 0.25 и 0.40, H $_2$ O 7.22 и 8.10 (выч), сумма 78.34 и 83.66. Рентгенограмма (интенс. л.): 5.88(60)(101), 3.626(37)(110), 3.042(100)(113), 2.238(24)(107), 1.960(24)(033), 1.813(23)(220). На м-нии Патт д'Уа, рудный район Бу-

- Скур (Марокко) с малахитом, агардитом-(La), конихальцитом и неопределенным редкоземельным карбонатом. Назван по составу и за сходство с граулихитом-(Ce). *Biagioni C., Ciriotti M.E., Favreau G., Mauro D., Zaccarini F.* Europ. J. Miner. 2022. Vol. 34. P. 365–374.
- **54.** Нафеасит (nafeasite) NaFe³+(AsO₃OH)₂ · H₂O. Монокл.с.  $C2.\ a=18.6876,\ b=8.6769,\ c=14.8100\ \text{Å},\ \beta=105.238°.\ Z=12.$  Агрегаты тесно сросшихся изометричных кристаллов. Прозрачный. Цв. розовый. Черта белая. Тв. ~2.5. Плотн. 3.23. Двуосный(+).  $n_p=1.679,\ n_m=1.682,\ n_g=1.730,\ 2V=27°.$  Дисперсия слабая, r< v. Эмп. ф-ла для голотипа Nа<sub>0.98</sub>K<sub>0.02</sub>Fe<sub>0.92</sub>Al<sub>0.07</sub>As<sub>2.00</sub>O<sub>9</sub>H<sub>4.01</sub>. Рентгенограмма (интенс. л., d,D): 9.04(20), 7.23(89), 4.33(30), 3.127(100), 3.085(33), 2.809(15), 2.518(15), 1.417(16). Вторичный на м-нии Торресильяс, пров. Икике (Чили) с ангидритом, гипсом, галитом, лавендуланом, магнезиокоритнигитом и натроярозитом. Название от основных компонентов Na, Fe и As. *Катрf A.R., Schlüter J., Malcherek T., Paulenz B., Pohl D., Ma C., Dini M., Molina Donoso A.A.* Miner. Mag. 2022. Vol. 86. N 6. P. 883–890. https://www.mindat.org/min-55953.html
- 55. Альдомариноит (aldomarinoite)  $Sr_2Mn^{3+}(AsO_4)_2(OH)$ . Монокл.с.  $P2_1/m$ . a== 7.5577, b = 5.9978, c = 8.7387 Å,  $\beta = 111.938^{\circ}$ . Z = 2. Агрегаты до нескольких см субгедральных кристаллов до 0.5 мм. Полупрозрачный. Цв. темно-оранжевый. Черта желто-оранжевая. Бл. стекл. Тв. по аналогии с каносиоитом 4.5-5. Хрупкий. Плотн. 4.679 (выч.). Двуосный(+).  $n_{\text{средн}} = 1.83$  (выч.).  $2V = 67^{\circ}$  (изм.). Плеохроизм: по Np коричневый, по Nm коричнева-оранжевый, по Ng желтовато-коричневый. Даны UK-, рамановский спектры и оптический спектр поглощения. Хим. (м.з., WDS, средн. из 4 опр.): As<sub>2</sub>O<sub>5</sub> 40.33, V<sub>2</sub>O<sub>5</sub> 1.03, P<sub>2</sub>O<sub>5</sub> 0.02, Mn<sub>2</sub>O<sub>3</sub> 7.30, Al<sub>2</sub>O<sub>3</sub> 3.40, Fe<sub>2</sub>O<sub>3</sub> 3.24, MgO 0.04, BaO 1.04, SrO 38.18, CaO 2.25, PbO 0.38, H<sub>2</sub>O 1.73 (выч.), сумма 98.94. Рентгенограмма (интенс. л.):  $3.191(89)(21\overline{1})$ , 2.997(45)(020),  $2.914(47)(21\overline{2}, 10\overline{3})$ , 2.715(100)(112),  $2.087(39)(12\overline{3}), 1.833(32)(32\overline{4}), 1.689(36)(321), 1.664(21)(132).$  В метакварцитах из отвалов рудника Валлета, Пьемонт (Италия) с кварцем, эгирином, баритом, кальцитом, гематитом, мусковитом, криптомеланом, браунитом и манганберцелиитом. Назван в честь итальянского коллекционера минералов Альдо Марино (Aldo Marino, b. 1942). Cámara F., Baratelli L., Ciriotti M.E., Nestola F., Piccoli G.C., Bosi F., Bittarello E., Hålenius U., Balestra C. Miner. Mag. 2022. Vol. 86. N 3. P. 447–458.
- **56.** Гарпенбергит (garpenbergite)  $Mn_6 \square As^{5+}Sb^{5+}O_{10}(OH)_2$ . Ромб.с. *Ibmm. a* = 8.6790, b=18.9057, c=6.1066 Å. Z=4. Раздробленные короткопризмат. по {010} обычно субгедральные кристаллы до 1.5 см. Полупрозрачный. Цв. черноватый до серовато-коричневого. Черта светло-коричневая. Бл. субалмаз. до жирн. Тв. ~5. Микротв. 650. Хрупкий. Изл. неровный до раков. Сп. отчетливая по {010}. Плотн. 4.47 (выч.). Раств. в 30% HCl при комн. т-ре.  $n_{\text{средн}}=1.847$  (выч.).  $R_2$  и  $R_1$  на воздухе (%): 9.20 и 8.67 при 470 нм, 9.04 и 8.49 при 546, 8.96 и 8.47 при 589, 8.90 и 8.48 при 650 нм. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 49 опр.):  $SiO_2$  0.11,  $Fe_2O_3$  0.71, MnO 41.93,  $SiO_3$  3.71 (выч.), MgO 8.89,  $SiO_3$  15.15,  $SiO_3$  23.63,  $SiO_3$  2.665,  $SiO_3$  2.667,  $SiO_3$  2.665,  $SiO_3$  2.665(100)(161), 2.616(40)(301), 2.586(25)(251), 1.545(45)(462). На м-нии Гарпенберг Норра, граф. Даларна (Швеция) с карлфрэнсиситом, стибарсеном, парадокразитом и филипстадитом. Назван по месту находки. *Holtstam D., Bindi L., Förster H.-J., Karlsson A., Gatedal K.* Miner. Mag. 2022, Vol. 86. N.1. P. 1—8.
- **57.** Голдхиллит (goldhillite)  $\text{Cu}_5\text{Zn}(\text{AsO}_4)_2(\text{OH})_6$  ·  $\text{H}_2\text{O}$ . Монокл.с.  $P2_1/c$ . a=12.3573, b=9.2325, c=10.7163 Å,  $\beta=97.346^\circ$ . Z=4. Таблитч. кристаллы, уплощенные по  $\{100\}$  до 1 мм, их агрегаты (розетки) до 1.5 мм. Прозрачный. Цв. яркий изумрудно-зеленый. Бл. стекл. Хрупкий. Изл. неровн. Сп. совершенная по  $\{100\}$ . Тв. 3.5. Плотн. 4.199 (выч.). Дан рамановский спектр. Хим. (м.з., средн.): CuO 48.91, ZnO 13.18,

As<sub>2</sub>O<sub>5</sub> 26.06, P<sub>2</sub>O<sub>5</sub> 3.25, H<sub>2</sub>O 8.97, сумма 100.37. Рентгенограмма (интенс. л., *d*, *I*): 4.09(28) (300), 3.41(23)(12\overline{7}, 221, 311), 2.57(100)(132, 11\overline{4}, 20\overline{4}), 2.17(18)(42\overline{3}, 332), 1.95(22)(432), 1.54(20)(13\overline{6}, 060). На м-нии Голд Хилл, шт. Юта (США) с микситом, корнваллитом и конихальцитом. Назван по месту находки. *Ismagilova R.M., Rieck B., Kampf A.R., Giester G., Zhitova E.S., Lengauer C.L., Krivovichev S.V., Zolotarev A.A., Ciesielczuk J., Mikhailova J.A., Belakovsky D.I., Bocharov V.N., Shilovskikh V.V., Vlasenko N.S., Nash B.P., Adams P.M. Miner. Mag. 2022. Vol. 86. N 3. P. 436—446. https://www.mindat.org/min-55547.html* 

## ВАНАДАТЫ, МОЛИБДАТЫ

- **58.** Псевдодиктомссенит (pseudodickthomssenite)  $Mg(VO_3)_2 \cdot 8H_2O$ . Трикл.с.  $P\overline{1}$ . a= = 7.3566, b= 9.4672, c= 9.5529 Å,  $\alpha=$  104.205°,  $\beta=$  100.786°,  $\gamma=$  100.157°. Z= 2. Агрегат игольчатых кристаллов. Цв. загара. Черта белая. Бл. шелк. Хрупкий, отчасти гибкий. Изл. осколоч. Тв. вероятно около 2. Сп. отличная по {011} и {01 $\overline{1}$ }. Плотн. 1.97 (изм.), 1.974 (выч.). Раств. в воде при комн. т-ре. Двуосный(+).  $Ng \approx a.$   $n_p=1.600,$   $n_m=1.620,$   $n_g=1.715,$  2V=51.6° (выч.). Хим. (м.з., WDS, средн. из 6 опр., норм.): MgO 10.86, CaO 0.11, V2O5 49.65, H2O 39.38, сумма 100.00. Рентгенограмма (интенс. л.): 8.971(100)(001, 010), 7.494(10)(0 $\overline{1}$ 1), 4.578(15)(0 $\overline{1}$ 2,0 $\overline{2}$ 1), 4.473(21)(020), 3.502(15)(200,  $\overline{2}$ 11), 2.979(31)( $\overline{2}$ 12,030, 2 $\overline{2}$ 1), 2.906(12)( $\overline{1}$ 22, 0 $\overline{3}$ 2, 121), 1.8633(10)(0 $\overline{1}$ 5, 0 $\overline{2}$ 5, 033,  $\overline{2}$ 34, 0 $\overline{5}$ 2), 1.8405(12)(2 $\overline{4}$ 3,  $\overline{4}$ 11). На м-нии Пиккет Соррал, Булл-Каньон, шт. Колорадо (США) с диктомссенитом, гипсом, хьюмалитом, ласалитом и требискиитом. Назван за сходство с диктомссенитом [Mg(VO3)2 · 7H2O] по внешнему виду, составу, структуре и нахождению. Kampf A.R., Hughes J.M., Ma C., Marty J. Canad. Miner. Vol. 60. N 5. P. 797—804.
- **59.** Удинаит (udinaite) NaMg<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub>. Тетр.с.  $I\overline{4}2d$ . a = 6.8011, c = 19.1839 Å. Z = 4. Вместе с арсенудинаитом составляет изоморфную серию со стр-рой типа джеффбенита. Агрегаты до 1 см тетр. кристаллов до 0.5 мм. Простые формы: {001} (пинакоид), {100} и {110 (призмы}. Прозрачный. Цв. бежевый, бледно-коричневатый, коричневато-желтоватый или серовато-коричневатый, самые мелкие кристаллы бесцветные. Черта белая. Бл. стекл. Хрупкий. Тв. 3.5. Изл. неровн. Плотн. 3.613 (выч.). В пр. св. бесцветный, не плеохроирует. Односный(–).  $n_o = 1.785, n_e = 1.830$ . Дан рамановский спектр. Хим. (SEM WDS, средн. из 6 опр.): Na<sub>2</sub>O 3.51, CaO 1.8, PbO 0.14, MgO 33.54, MnO 0.29, CuO 0.03, Fe<sub>2</sub>O<sub>3</sub> 0.21, SiO<sub>2</sub> 0.38, P<sub>2</sub>O<sub>5</sub> 4.11, V<sub>2</sub>O<sub>5</sub> 30.51, As<sub>2</sub>O<sub>5</sub> 24.75, SO<sub>3</sub> 0.22, сумма 99.49. Рентгенограмма (интенс. л.): 4.654(19)(103), 4.294(22)(112), 3.340(28)(105), 3.003(48)(211), 2.774(100)(204), 2.747(17)(213), 2.663(16)(116), 1.699(26)(400, 228, 325). B отложениях фумаролы Арсенатная, Второй шлаковый конус, Северный прорыв БТИ, Камчатка (Россия) с арсенудинантом, ангидритом, диопсидом, гематитом, шеферитом, берцелиитом, свабитом, кальциойохиллеритом, тилазитом, резницкиитом, людвигитом, боратами гр. рабдоборита, форстеритом, магнезиоферритом, фторапатитом, плиниуситом и повеллитом. Название от вулкана Удина, находящего недалеко от места находки. Pekov I.V., Koshlyakova N.N., Zunkova N.V., Belakovskiy D.I., Vigasina M.F., Agakhanov A.A., Ksenofontov D.A., Turchkova A.G., Britvin S.N., Sidorov E.G., Pushcharovsky D.Yu. Minerals. 2022. Vol. 12. N 7. paper 850.
- **60. Резницкиит** (reznitskyite) CaMg(VO<sub>4</sub>)F гр. тилазита. Монокл.с. C2/c. a=6.6912, b=8.9395, c=7.0587 Å,  $\beta=113.078^\circ$ . Z=4. Зоны до 0.05 мм в грубых призмат. кристаллах или в неправильных зернах V- и P-содержащего тилазита, или (реже) гомогенные зерна до 0.1 мм. Бесцветный. Прозрачный или полупрозрачный. Черта белая. Бл. стекл. Изл. неровн. Плотн. 3.453 (выч.). В отр. св. серый со слабым двуотражением и отчетливой анизотропией.  $R_1$  и  $R_2$  на воздухе (%): 7.4 и 7.1 при 470 нм, 6.9 и 6.4 при 546, 6.9 и 6.4 при 589, 7.1 и 6.5 при 650 нм. Дан рамановский спектр. Хим. (м.з.,

- WDS, средн. из 5 опр.): MgO 20.44, CaO 26.83,  $P_2O_5$  6.24,  $V_2O_5$  21.09,  $As_2O_5$  18.97,  $SO_3$  0.47, F 9.42, -O=F 3.97, сумма 99.49. Рентгенограмма (интенс. л.): 3.686(26)(021), 3.250(66)( $\overline{1}12$ , 002), 3.082(100)(200), 2.854(34)( $\overline{2}02$ ), 2.683(33)(130), 2.631(44)(022), 2.531(25)(220), 2.344(24)(131), 1.749(25)( $\overline{3}$ 32,  $\overline{2}$ 04). В отложениях фумаролы Арсенатная, Северный прорыв БТТИ, Камчатка (Россия) в полиминеральных инкрустациях сублиматов с минералами свабит-фтор-апатит-плиниуситовой системы и шеферит-берцеелитовой, тизит-изокитовой, вагнерит-арсеновагнеритовой, удинаит-арсеудинаитовой серий. Назван в честь российского минералога Леонида Зиновьевича Резницкого (Leonid Zinovievich Reznitsky, b. 1938). *Koshlyakova N.N., Pekov I.V., Vigasina M.F., Zubkova N.V., Agakhanov A.A., Britvin S.N., Sidorov E.G., Pushcharovsky D.Yu.* Miner. Mag. 2022. Vol. 86. N 2. P. 307—313.
- **61.** Плиниусит (pliniusite)  $Ca_5(VO_4)_3F$  гр. апатита. Гекс.с.  $P6_3/m$ . a = b = 9.5777, c = 6.9659 Å. Z = 2. Кластеры или изолированые гекс. призмы до  $0.05 \times 0.3$  мм. Хар-ка приводится для голотипа. Простые формы:  $\{10\overline{1}0\}$  (призма),  $\{10\overline{1}1\}$  (бипирамида),  $\{0001\}\$  (пинакоид), редко  $\{11\overline{2}1\}$  (гекс. бипирамида). Прозрачный до полупрозрачного. Бесцветный или беловатый. Черта белая. Бл. стекл. Хрупкий. Сп. несовершенная по (100). Изл. неровн. Микротв. 511 (тв. 5). Плотн. 3.402. В пр. св. бесцветный, не плеохроирует. Одноосный (–).  $n_o = 1.763, n_e = 1.738$ . Удлинение (–). Дан рамановский спектр. Хим. (м.з., средн. из 8 опр.): Na<sub>2</sub>O 0.33, K<sub>2</sub>O 0.01, CaO 48.04, SrO 0.58, FeO 0.26,  $SiO_2$  0.94,  $P_2O_5$  5.63,  $V_2O_5$  27.04,  $As_2O_5$  13.26,  $SO_3$  1.73, F 3.46, -O=F 1.46, сумма 99.82. Рентгенограмма (интенс. л.): 3.958(27)(111), 3.488(33)(002), 2.869(100)(211). 2.823(35)(112), 2.776(58)(300), 2.674(25)(202), 1.980(19)(222), 1.871(23)(213).В фумарольных отложениях вулкана Толбачик, Камчатка (Россия) — на горе 1004 (южное фумарольно поле) (голотип) с гематитом, теноритом, диопсидом, андрадитом, кайнотропитом, баритом и гипергенными фольбортитом, брошантитом, гипсом, опалом, и в фумароле Арсенатная (Второй шлаковый конус, Северный прорыв БТТИ). Установлен в пирометаморфических породах формации Хатрурим (Израиль) (котип). Назван в честь древнеримского натуралиста, философа Плиния Старшего (Pliny the Elder, 23— 79 н.э.). Pekov I.V., Koshlyakova N.N., Zubkova N.V., Krzątala A., Belakovskiy D.I., Galuskina I.O., Galuskin E.V., Britvin S.N., Sidorov E.G., Vapnik Y., Pushcharovsky D.Yu. Amer. Miner. 2022. Vol. 107. N 8. P. 1626-1634.
- **62.** Доноуэнсит (donowensite)  $Ca(H_2O)_3Fe_2^{3+}(V_2O_7)_2$ . Трикл.с.  $P\overline{1}$ . a=7.3452, b=9.929, c=10.0151 Å,  $\alpha=94.455^\circ$ ,  $\beta=98.476^\circ$ ,  $\gamma=100.779^\circ$ . Z=2. Игольчатые кристаллы до 1 мм с клинообразным окончанием (дан чертеж). Прозрачный. Цв. оранжевый. Черта желтая. Бл. субалмаз. Тв. 3. Хрупкий. Изл. заноз. Сп. совершенная по  $\{001\}$ , очень хорошая по  $\{100\}$  и по  $\{010\}$ . Плотн. 2.97 (изм.), 2.966 и 2.982 (выч. по эмп. и идеальной ф-лам). Двуосный(+).  $bNp=7^\circ$ , Ng=c.  $n_p$ ,  $n_m$ ,  $n_g>1.95$ ,  $2V=72^\circ$  (изм.).  $n_{\text{средн}}=1.958$  (выч.). Дисперсия умеренная, r>v. Плеохроизм: по Np коричнево-оранжевый, по Nm оранжево-желтый, по Ng желтый. Хим. (м.з., WDS, средн. из 8 опр.): CaO 8.41, Fe<sub>2</sub>O<sub>3</sub> 24.69, Mn<sub>2</sub>O<sub>3</sub> 0.10, P<sub>2</sub>O<sub>5</sub> 0.11, V<sub>2</sub>O<sub>5</sub> 59.52, H<sub>2</sub>O 8.70, сумма 101.53. Рентгенограмма (интенс. л., d,d): 9.88(100), 7.12(24), 4.176(17), 3.671(20), 3.283(44), 3.202(22), 3.110(19), 2.973(26). На ванадиевом м-нии Уилсон-Спрингс, шт. Арканзас (США) с майкговардитом на матрице из бокита и минерала гр. смектита. Назван в честь американского геолога Дона Оуэнса (Don Owens, 1937—2015). *Катрf A.R., Hughes J.M., Nash B.P., Smith J.B.* Canad. Miner. 2022. Vol. 60. N 3. P. 543—554.
- **63.** Майкговардит (mikehowardite)  $\mathrm{Fe_4^{3+}}(\mathrm{VO_4})_4(\mathrm{H_2O})_2~\mathrm{H_2O}$ . Трикл.с.  $P\overline{1}$ . a=6.6546, b=6.6689,  $c=9.003~\mathrm{\mathring{A}}$ ,  $\alpha=76.515^\circ$ ,  $\beta=84.400^\circ$ ,  $\gamma=75.058^\circ$ . Z=1. Изометричные кристаллы со слегка наклонным окончанием до 0.15 мм в диаметре (дан чертеж). Полупрозрачный. Цв. очень темно-коричневый, почти черный. Черта желто-оранжевая.

- Бл. субалмаз. Тв. 3.5. Сп. очень хорошая по  $\{100\}$  и две дополнительные с неопреленным направлением. Хрупкий. Изл. неправ. и ступенч. Плотн. 3.19 (изм.), 3.200 и 3.263 (выч. по эмп. и идеальной ф-лам).  $n_{\rm сред H}=2.034$  (выч.). Хим. (м.з., WDS, средн. из 10 опр.):  $\rm K_2O$  0.75, CaO 0.13,  $\rm Fe_2O_3$  41.83,  $\rm Mn_2O_3$  0.32,  $\rm P_2O_5$  3.28,  $\rm V_2O_5$  46.27,  $\rm H_2O$  7.72, сумма 100.30. Рентгенограмма (интенс. л., d,I): 8.80(86), 6.45(100), 3.693(29), 3.198(88), 2.982(50), 2.909(59), 2.792(31), 2.145(30). На ванадиевом м-нии Уилсон-Спрингс, шт. Арканзас (США) с донооуэнситом на матрице из бокита и минерала гр. смектита. Назван в честь американского геолога Джеймса Майкла (Майк) Говарда [James Michael (Міке) Ноward, b. 1949]. (*Катрf А.R., Hughes J.M., Nash B.P., Smith J.B.* Canad. Miner. 2022. Vol. 60. N 3. P. 543—554.
- **64.** Михальскиит (michalskiite)  $Cu^{2+}Mg_3Fe_{3,3}^{3+}(VO_4)_6$ , Mg аналог лионсита. Ромб.с.  $Pmcn.\ a=10.2356$ , b=17.3689, c=4.9406 Å. Z=2. Иссштрихованные призмы и иголочки до 0.2 мм, удлиненные по [001]. Прозрачный. Цв. коричнево-красный. Черта светло-оранжевая. Бл. алмаз. Хрупкий. Сп. очень хорошая по  $\{001\}$ . Изл. искривл. Тв.  $\sim 3.5$ . Плотн. 3.848 и 3.827 (выч. по эмпир. и идеальной ф-лам). Двуосный(—).  $Np=c.\ n_p=2.12$ ,  $n_m=2.16$ ,  $n_g=2.17$ ,  $2V=49^\circ$  (изм.),  $52.3^\circ$  (выч.). Хим. (м.з., WDS, средн. из 10 опр.): ZnO 0.07, CuO 10.10, MgO 10.80. NiO 1.16, TiO $_2$  1.09,  $Mn_2O_3$  0.49,  $Al_2O_3$  1.05,  $Fe_2O_3$  21.39,  $V_2O_5$  52.72,  $SiO_2$  0.12, сумма 98.99. Рентгенограмма (интенс. л.): 3.27(100)(221,150), 2.74(40)(241,151), 2.52(50)(331), 1.55(30)(282), 1.42(25)(063). Вторичный в отвалах открытой разработки Лихтенберг, урановый рудный район Роннебург, Тюрингия (Германия) с арканитом, эпсомитом, гематитом и сингенитом на матрице из кварца, к.п.ш. и слюды. Назван в честь немецкого коллеционера минералов Штеффена Михальски (Steffen Michalski, b. 1974).  $Kampf\ A.R.,\ Plášil\ J.,\ Škoda\ R.,\ Čejka\ J.\ J.$  Geosci. 2022. Vol. 67. N 1. P. 33-40.
- **65. Помит** (pomite)  $\text{Ca}_3[\text{V}_5^{4+}\text{V}_{10}^{5+}\text{O}_{37}(\text{CO}_3)] \cdot 37\text{H}_2\text{O}$ . Трикл.с.  $P\overline{1}$ . a=12.3668, b=12.9692, c=22.068 Å,  $\alpha=99.038^\circ$ ,  $\beta=95.689^\circ$ ,  $\gamma=103.249^\circ$ . Z=2. Исштрихованные лезвиеобразные кристаллы до 1 мм в длину. Прозрачный. Цв. темно-зелено-синий. Черта зелено-синяя. Бл. стекл. Хрупкий. Тв ~2. Изл. неправ., заноз. Сп. хорошая по  $\{010\}$  и  $\{001\}$ . Плотн. 2.19 (изм.), 2.176 и 2.171 (выч. по эмп. и идеальной ф-лам).  $n_{\text{средн}}=1.675$  (выч.). Хим. (м.з., WDS, средн. из 11 опр., норм): CaO 7.89, VO<sub>2</sub> 19.65, V<sub>2</sub>O<sub>5</sub> 40.26, CO<sub>2</sub> 2.00, H<sub>2</sub>O 30.20, сумма 100.00. Рентгенограмма (интенс. л.): 11.87(100)(001, 010, 100,  $0\overline{1}$ 1), 10.62(98)(002), 10.04(30)(011),  $9.06(37)(1\overline{11},0\overline{12},11)$ ,  $5.21(14)(0\overline{23},\overline{12}1)$ ,  $3.921(18)(2\overline{14},0\overline{24})$ ,  $3.075(19)(\overline{32}2)$ ,  $2.632(14)(\overline{307})$ . В монтрозеит-корвусит-содержащих песчаниках с псевдопомитом и кальцитом на м-нии Блю-Стрик, Булл-Каньон, шт. Колорадо (США). Название от аббревиатуры ПОМ (РОМ), обозначающей полиоксометалаты. *Катрf А.R., Hughes J.M., Marty J., Rose T.P.* Amer. Miner. 2022. Vol. 107. N 11. P. 2143—2149.
- **66.** Псевдопомит (pseudopomite)  $Ca_{3.5}[V_6^{4+}V_9^{5+}O_{37}(CO_3)] \cdot 32H_2O$ . Трикл.с.  $P\overline{1}$ . a=12.2910, b=12.6205, c=20.917 Å,  $\alpha=77.381^\circ$ ,  $\beta=85.965^\circ$ ,  $\gamma=64.367^\circ$ . Z=2. Исштрихованные призмы и пластинки до 1 мм длину. Прозрачный. Цв. темно-зелено-синий. Черта зелено-синяя. Бл. стекл. Хрупкий. Тв ~2. Изл. искривл. и неправ. Сп. несовершенная вероятно по  $\{100\}$  и  $\{001\}$ . Плотн. 2.40 (изм.), 2.419 (выч.).  $n_{\text{средн}}=1.736$  (выч.). Хим. (м.з., WDS, средн. из 10 опр., норм): CaO 9.42, VO<sub>2</sub> 23.85, V<sub>2</sub>O<sub>5</sub> 39.48, CO<sub>2</sub> 2.12, H<sub>2</sub>O 25.14, сумма 100.01. Рентгенограмма (интенс. л.): 10.94(100)(010, 100, 011), 10.00(73)(111),  $8.86(31)(0\overline{1}1$ ,  $\overline{11}1$ ), 5.32(16)(022, 201), 4.42(11)(124), 3.074(22)(240), 2.953(19)(136),  $2.890(18)(\overline{134})$ . В монтрозеит-корвусит-содержащих песчаниках с помитом и кальцитом на м-нии Блю-Стрик, Булл-Каньон, шт. Колорадо (США). Назван за схожесть с помитом, приставка псевдо отражает факт структурного отличия от

помита. *Kampf A.R.*, *Hughes J.M.*, *Marty J.*, *Rose T.P.* Amer. Miner. 2022. Vol. 107. N 11. P. 2143—2149.

- **67. Протокейсенит** (protocaseyite) [Al<sub>4</sub>(OH)<sub>6</sub>(H<sub>2</sub>O)<sub>12</sub>][V<sub>10</sub>O<sub>28</sub>] · 8H<sub>2</sub>O. Трикл.с.  $P\overline{1}$ . a=9.435, b=10.742, c=11.205 Å,  $\alpha=75.395^\circ$ ,  $\beta=71.057^\circ$ ,  $\gamma=81.286^\circ$ . Z=1. Тонкие пластинки до 0.2 мм в длину, уплощенные по {111}, удлиненные по [10 $\overline{1}$ ], их субпараллельные срастания. Простые формы: {111}, {010}, { $\overline{1}$ 11}, {11 $\overline{1}$ },{1 $\overline{2}$ 1} (дан чертеж). Цв. шафранно-желтый. Черта бледно-оранжевая. Бл. стекл. Хрупкий. Изл. искривл. Тв. 2. Сп. очень хорошая вероятно по {111} и по {010}. Плотн. 2.45 (изм.), 2.448 (выч.). Легко раств. в разбавленной НСІ. Двуосный (знак не опр).  $n_p=1.755$ ,  $n_m<1.80$ ,  $n_g>1.80$ . Плеохроизм: по Np и Nm желтый, по Ng оранжевый. Хим. (м.з., WDS, средн. из 7 опр., норм.): MgO 0.28, CaO 0.08, Al<sub>2</sub>O<sub>3</sub> 12.98, V<sub>2</sub>O<sub>5</sub> 59.51, H<sub>2</sub>O 27.15, сумма 100.00. Рентгенограмма (интенс. л.): 10.38(100)(010), 8.89(37)(100), 8.15(13)(011, 101), 7.24(38)(111), 5.922(17)( $\overline{1}$ 11), 2.177(11)( $\overline{4}$  $\overline{1}$ 2), 2.083(13)(025, 135, 235), 1.7851(11)( $\overline{5}$  $\overline{1}$ 2,  $\overline{5}$  $\overline{1}$ 1, 136). На руднике Бурро, округ Слик-Рок, шт. Колорадо (США) с аммониоциппеитом, гипсом, поститом и потенциально новым ванадатом Al. Назван за сходство с кейсеиитом. *Катрf A.R., Соорег М.А., Ниghes J.M., Ма С., Саѕеу W.Н., Наwthorne F.C., Marty J.* Amer. Miner. 2022. Vol. 107. N 6. P. 1181—1189.
- **68.** Медведевит (medvedevite)  $KMn^{2+}V_2^{5+}O_6Cl \cdot 2H_2O$ . Монокл.с.  $P2_1/c$ . a = 7.1863, b = 10.1147, c = 12.7252 Å,  $\beta = 106.243^\circ$ . Z = 4. Хорошо оформленные призмат. или игольчатые кристаллы до 0.15 мм. Прозрачный. Цв. ярко-красный. Черта красная. Бл. стекл. Сп. совершенная по  $\{010\}$ . Плотн. 2.69 (выч.). Двуосный(+). Nm = b.  $n_p = 1.782$ ,  $n_m = 1.786, n_g = 1.792, 2V = 41^\circ$  (выч.). Плеохроизм слабый: по Ng — темно-красный, по Np — ярко-красный. Даны FTIR- и рамановский спектры. Хим. (м.з., средн.): Na<sub>2</sub>O 0.26, SiO<sub>2</sub> 0.60, SO<sub>3</sub> 1.22, K<sub>2</sub>O 13.48, V<sub>2</sub>O<sub>5</sub> 49.15, MnO 19.06, Cl 9.52, H<sub>2</sub>O 10.16 (выч. по эмп. ф-ле), —O=Cl 2.15, сумма 101.30. Рентгенограмма (интенс. л.): 7.79(100)(011), 5.70(11)(110),  $4.75(14)(11\overline{2})$ , 3.89(29)(022), 3.25(53)(031, 023),  $2.958(79)(211, 21\overline{3})$ ,  $2.850(33)(220, 22\overline{2})$ . В продуктах фумаролы Толудского лавого поля, образовавшегося во время Толбачинского трещинного извержения 2012-2013 гг., Камчатка (Россия) с тенардитом, афтиталитом, леонитом, кизеритом, эугстеритом и сингенитом. Назван в честь русского геолога и химика Роберта Александровича Медведева (Robert Alexandrovich Medvedev, 1939–2005). Shablinskii A.P., Avdontseva M.S., Vergasova L.P., Filatov S.V., Avdontseva E.Yu., Povolotskiy A.V., Moskaleva S.V., Kargopoltsev A.A., Britvin S.N., Shorets O.U. Miner. Mag. Vol. 86. N 3. P. 478–485.
- **69. Кингсгейтит** (kingsgateite)  $ZгMo_2^{6+}O_7(OH)_2 \cdot 2H_2O$ . Тетр.с.  $I4_1cd$ . a=11.462, c=12.584 Å. Z=8. Квадратные таблитч. кристаллы до 0.12 мм. Цв. желтовато-зеленый до голубовато-серого. Черта белая. Бл. стекл. Изл. неровн. Плотн. 3.74 (выч.). Двуосный(+).  $n_p=1.88$ ,  $n_m=1.89$ ,  $n_g=1.96$ ,  $2V=42.6^\circ$  (выч.). Плеохроизм: по Np светлооранжевый, по Nm светло-желтый, по Ng красно-коричневый. Хим. (м.з., средн.):  $ZrO_2$  23.09,  $UO_2$  1.14,  $ThO_2$  0.76, FeO 0.62,  $MoO_3$  59.27,  $P_2O_5$  0.29,  $SO_3$  1.25, CI 0.16,  $H_2O$  11.62, -O=CI 0.04, сумма 98.16. Рентгенограмма (интенс. л., d,I): 5.734(52), 4.227(52), 3.626(44), 3.134(100), 2.606(19), 2.481(17), 1.911(25), 1.810(18). В полостях кварц-мусковитовой матрицы на м-нии Oлд 25 Пайп, Кингсгейт, Новый Южный Уэльс (Австралия) с молибденитом, джелозаитом и мамбертиитом. Назван по месту находки.  $Elliott\ P$ ,  $Kampf\ A.R$ . Miner. Mag. 2022. Vol. 86. N 3. P. 486—491. https://www.mindat.org/min-53887.html

## СУЛЬФАТЫ, СУЛЬФИТЫ, СЕЛЕНАТЫ, ТУЛЛУРАТЫ, ТУЛЛУРИТЫ

- **70.** Лаураниит (lauraniite)  $\mathrm{Cu_6Cd_2(SO_4)_2(OH)_{12}} \cdot 5\mathrm{H_2O}$ . Монокл.с.  $P2_1/c$ . a=7.3200, b=25.424, c=11.283 Å,  $\beta=91.62^\circ$ . Z=4. Пластинч. кристаллы до 110 мкм, уплощенные по {100}. Прозрачный. Цв. бледно-голубой. Черта белая. Бл. стекл. Сп. совершенная по {100}. Изл. неправ. Плотн. 3.40 (выч.). Двуосный(+).  $n_p=1.637$ ,  $n_m=1.638$ ,  $n_g=1.679$ ,  $2V=20^\circ$  (изм.),  $18.1^\circ$  (выч.). Дан FTIR-спектр. Хим. (м.з., WDS, средн. из 11 опр.): CuO 45.20, ZnO 1.82, CdO 19.28, SO<sub>4</sub> 14.58, Cl 0.18, H<sub>2</sub>O 18.52 (выч.), —O=Cl 0.04, сумма 99.54 (в оригинале 99.48). Рентгенограмма (интенс. л.): 7.34(100)(100), 7.04(35)(110), 3.626(52)(210),  $2.819(25)(\overline{172},004,172)$ , 2.774(34)(082),  $2.648(30)(\overline{104},\overline{114})$ , 2.581(37)(182),  $2.255(24)(\overline{2}14)$ . На м-нии Лаурани, деп. Ла-Пас (Боливия) со серпьеритом и брошантитом на матрице из теннантита и халькозина. Назван по месту находки. *Elliott P., Kampf A.R.* Canad. Miner. 2022. Vol. 60. N 5. P. 825—836.
- **71.** Бриджесит-(Се) [bridgesite-(Се)] CaCe<sub>2</sub>Cu<sub>6</sub>(SO<sub>4</sub>)<sub>4</sub>(OH)<sub>12</sub> · 8H<sub>2</sub>O. Монокл. с. C2/m. a=24.801, b=6.3520, c=11.245 Å,  $\beta=114.51^\circ$ . Z=2. Пучки и скопления игольчатых кристаллов до  $200\times20\times2$  мкм. Цв. небесно-голубой. Плотн. 2.847 (выч.). Двуосный(—).  $n_p=1.526$ ,  $n_m=1.564$ ,  $n_g=1.572$ ,  $2V=53.0^\circ$  (изм.),  $48.3^\circ$  (выч.). Хим. (м.з., средн. из 16 опр.): SiO<sub>2</sub> 0.21, Al<sub>2</sub>O<sub>3</sub> 0.23, P<sub>2</sub>O<sub>5</sub> 0.10, SO<sub>3</sub> 21.83, CaO 3.28, CuO 32.36, La<sub>2</sub>O<sub>5</sub> 2.92, Ce<sub>2</sub>O<sub>3</sub> 8.66, Y<sub>2</sub>O<sub>3</sub> 0.59, Pr<sub>2</sub>O<sub>3</sub> 1.27, Nd<sub>2</sub>O<sub>3</sub> 6.11, Sm<sub>2</sub>O<sub>3</sub> 1.48, Gd<sub>2</sub>O<sub>3</sub> 1.18, Dy<sub>2</sub>O<sub>3</sub> 0.30, H<sub>2</sub>O 17.28 (выч.), сумма 97.80. Рентгенограмма (интенс. л.): 11.300(100)(200), 6.391(15)(201), 4.858(5)(310), 3.194(6)(402), 2.770(8)(420). Гипергенный на м-нии Тайнботтом, граф. Камбрия (Великобритания) с брошантитом, малахитом, серпьеритом, девиллином, гипсом, арагонитом, ярозитом, пиритом, лантанитом-(Се) и неидентифицированными гидроокислами железа. Назван в честь английского химика, геологалюбителя Тревора Бриджеса (Тrevor Bridges, 1935-2015). *Rumsey M.S., Hawthorne F.C., Spratt J., Najorka J., Montgomery W.* Miner. Mag. 2022. Vol. 86. N 4. P. 570–576.
- **72.** Флэггит (flaggite)  $Pb_4Cu_4^{2+}Te_2^{6+}(SO_4)_2O_{11}(OH)_2(H_2O)$ . Трикл.с.  $P1.\ a=9.5610,\ b=9.9755,\ c=10.4449\ Å,\ \alpha=74.884^\circ,\ \beta=89.994^\circ,\ \gamma=78.219^\circ.\ Z=2$ . Таблитч. кристаллы до 0.5 мм. Цв. зеленый (лайм) до желто-зеленого. Черта очень бледно-зеленая. Бл. алмаз. Хрупкий. Изл. неправ. Тв. ~3. Сп. отличная по  $\{010\}$ . Плотн.  $6.137\ (выч.)$ . Двуосный(+).  $n_p=1.95,\ n_m=1.96,\ n_g=2.00,\ 2V=54^\circ$ . Плеохроизм: по Np зеленый, по Nm светло-желто-зеленый, по Ng почти бесцветный. Дан рамановский спектр. Эмп. ф-ла  $Pb_{3.88}Cu_{3.89}^{2+}Te_{2.08}^{6+}(SO_4)_2O_{11}(OH)_2(H_2O)$ . Рентгенограмма (интенс. л., d, I): 9.41(65),  $4.59(93),\ 4.34(49),\ 3.519(53),\ 3.070(99),\ 3.023(87),\ 2.724(100),\ 2.167(41)$ . На м-нии Гранд Сентрал, Мумстоун, шт. Аризона (США) с алунитом, ярозитом и родалкиларитом. Назван в честь американского горного инженера Артура Леонарда Флэгга (Arthur Leonard Flagg, 1883-1961). Kampf A.R., Mills S.J., Celestian A.J., Ma C., Yang H., Thorne B. Miner. Mag. 2022. Vol. 86. N 3. P. 397-404. https://doi.org/10.1180/mgm.2022.37
- 73. Ченоветит (chenowethite)  $\mathrm{Mg}(\mathrm{H}_2\mathrm{O})_6[(\mathrm{UO}_2)_2(\mathrm{SO}_4)_2(\mathrm{OH})_2]\cdot 5\mathrm{H}_2\mathrm{O}$ . Ромб.с. *Стет.*  $a=6.951,\,b=19.053,\,c=16.372\,\mathrm{\mathring{A}}$ . Z=4. Неправильные образования и субпараллельные группы длинных до 0.5 мм тонких пластинок, уплощенных по [010] и удлиненных по [100]. Простые формы:  $\{010\},\,\{001\}$  и  $\{101\}$  (дан чертеж). Цв. бледно-зелено-желтый. Черта белая. Бл. стекл. до шелк. Хрупкий. Изл. заноз. и ступенч. Сп. по  $\{010\}$  совершенная, по  $\{001\}$  хорошая. Тв. ~2. Плотн. 3.05 (изм.), 3.045 (выч.). Легко раств. в воде при комн. т-ре. Двуосный(—).  $Np=b,\,Nm=a,\,Ng=c.\,n_p=1.530,\,n_m=1.553,\,n_g=1.565,\,2V=72^\circ$  (изм.),  $70.7^\circ$  (выч.). Дисперсия слабая, r>v. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 8 опр.): (NH<sub>4</sub>)<sub>2</sub>O 0.60, MgO 0.96, FeO 0.67, CoO 0.35, NiO 0.29, SO0.3 0.29, SO0.3 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29,

- 3.762(29)(024), 3.476(41)(200, 114), 3.259(28)(220), 2.928(27)(115), 2.650(32)(204). В выцветах на стенках туннелей рудников Блю Лизард, Грин Лизард и Маркей, Красный Каньон, шт. Юта (США). Назван в честь американского геолога Уильяма Ченовета (William Chenoweth, 1928-2018). Kampf A.R., Plášil J., Olds T.A., Ma C., Marty J. Minerals. 2022. Vol. 12. N 12. paper 1594.
- 74. Гуржиит (gurzhiite) Al(UO<sub>2</sub>)(SO<sub>4</sub>)<sub>2</sub>F · 10H<sub>2</sub>O. Трикл.с.  $P\overline{1}$ . a = 7.193, b = 11.760,  $c = 11.792 \text{ Å}, \alpha = 67.20^{\circ}, \beta = 107.76^{\circ}, \gamma = 89.99^{\circ}, Z = 2$ . Прожилки до 50 см тонкозернистых агрегатов клинообразных кристаллов до 0.1 мм, уплощенных по {001}. Прозрачный. Цв. бледно-желтый в кристаллах, лимонно-желтый в агрегатах. Черта белая. Бл. стекл. Хрупкий. Изл. неправ. Сп. хорошая по {001}. Тв. ~2. Плотн. 2.52 (изм.), 2.605 (выч.). Флюоресцирует в ДУФ и КУФ в ярко-желто-зеленых цветах. В пр. св. бесцветный. Двуосный(-).  $n_p = 1.528$ ,  $n_m = 1.538$ ,  $n_g = 1.544$ ,  $2V = 80^{\circ}$  (изм.),  $75.1^{\circ}$  (выч.). Даны ИК- и рамановский спектры. Хим. (м.з., WDS, средн. из 9 опр.): Na<sub>2</sub>O 0.12, ZnO 0.63, Al<sub>2</sub>O<sub>3</sub> 6.93, Fe<sub>2</sub>O<sub>3</sub> 0.37, SO<sub>3</sub> 23.76, UO<sub>3</sub> 40.35, F 2.79, H<sub>2</sub>O 27.14 (выч.), -O=F 1.17, сумма 100.92. Рентгенограмма (интенс. л.): 10.24(100)(001),  $5.40(14)(\overline{11}1)$ , 5.11(54)(002),  $3.405(11)(\overline{2}11)$ ,  $3.065(11)(\overline{1}\overline{1}3)$ . На Белогорском урановом м-нии, Сев. Кавказ (Россия) с хадемитом, кварцем, неидентифицированным фторидом АІ. Назван в честь русского минералога и кристаллографа Владислава Владимировича Гуржия (Vladislav Vladimirovich Gurzhii, b. 1985). Kasatkin A.V., Plášil J., Chukanov N.V., Škoda R., Nestola F., Agakhanov A.A., Belakovskiy D.I. Miner. Mag. 2022. Vol. 86. N 3. P. 412-421. https://doi.org/10.1180/mgm.2022.34
- 75. **Нитчеит** (nitscheite)  $(NH_4)_2[(UO_2)_2(SO_4)_3(H_2O)_2] \cdot 3H_2O$ . Монокл.с.  $P2_1/n$ . a == 17.3982, b = 12.8552, c = 17.4054 Å,  $\beta$  = 96.649°. Z = 8. Призмат. кристаллы до 0.3 мм, удлиненные по[101], их субпараллельные и дивергентные срастания. Простые формы:  $\{100\}, \{001\}, \{010\}$  и  $\{11\overline{1}\}$  (дан чертеж). Прозрачный. Цв. желтый. Черта очень бледножелтая. Бл. стекл. Флюоресценция в ярко-зеленых тонах (при 405 нм). Тв. ~2. Хрупкий. Изл. искривл. Сп. хорошая по {010}. Плотн. 3.30 (изм.), 3.278 (выч.). Легко раств. в воде при комн. т-ре. Двуосный (–). Np = b,  $Ng \approx [101]$ .  $n_p = 1.560$ ,  $n_m = 1.582$ ,  $n_e = 1.583$ ,  $2V = 17^{\circ}$  (изм.), 23.8° (выч.). Плеохроизм: по Np бесцветный, по Nm и Ng желтый. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 5 опр.): (NH<sub>4</sub>)<sub>2</sub>O 5.42, UO<sub>3</sub> 59.75, SO<sub>3</sub> 25.12, H<sub>2</sub>O 9.41 (выч. по стр-ре), сумма 99.70 Рентгенограмма (интенс. л.):  $\overline{402}$ ), 3.214(40)(040, 422), 2.816(52)(305,  $\overline{3}25$ ), 2.591(30)(325, 044). На м-нии Грин Лизард, шт. Юта (США) с чинлеитом-(Y), гипсом, пиритом и Со-содержащим ритвельдитом. Назван в честь немецко-американского химика Эйно Нитче (Heino Nitsche, 1949–2014). Kampf A.R., Olds T.A., Plášil J., Nash B.P., Marty J. Amer. Miner. 2022. Vol. 107. N 6. P. 1174-1180.
- **76.** Сеникит (scenicite)  $[(UO_2)(H_2O)_2(SO_4)]_2 \cdot 3H_2O$ . Ромб.с.  $Pca2_1$ . a=21.2144, b=6.8188, c=11.2554 Å. Z=4. Клинообразные или призмат кристаллы до 0.1 мм. Прозрачный. Цв. светло-желто-зеленый. Черта белая. Хрупкий. Изл. неправ., искривл. Тв. ~2. Сп. отличная по  $\{100\}$  и хорошая по  $\{001\}$ . Плотн. 3.497 (выч.). Флюоресцирует в зеленовато-белых тонах. Двуосный(—). Np=c, Nm=a, Ng=b.  $n_p=1.556$ ,  $n_m=1.573$ ,  $n_g=1.576$ ,  $2V=45^\circ$ . Дисперсия сильная, r<v. Дан рамановский спектр. Эмп. ф-ла  $U_{1.996}S_{2.005}O_{19}H_{13.997}$ . Рентгенограмма (интенс. л.): 7.69(70)(201), 5.63(100)(111), 4.92(84)(202,310), 4.80(93)(401), 3.398(55)(020,120,511,601). Вторичный на зернистой кварцевой матрице на м-нии Грин Лизард, рудники Маркей и Сеник (Scenic), район Белый каньон, шт. Юта (США) с делиенситом, гипсом, натроциппеитом, ритвельдитом и шамвейитом. Назван по месту находки. Kampf A.R., Plášil J., Olds T.A., Ma C., Marty J. Miner. Mag. 2022. Vol. 86. N 5. P. 743-748.

- **77. Фрэнксаусаит** (franksousaite) PbCu(Se<sup>6+</sup>O<sub>4</sub>(OH))<sub>2</sub> Se<sup>6+</sup> аналог линарита. Монокл.с.  $P2_1/m$ . a=9.8208, b=5.7340, c=4.74980 Å,  $\beta=102.683^\circ$ . Z=2. Призмат. кристаллы до  $0.05\times0.02\times0.02$  мм. Прозрачный. Цв. голубой. Черта бледно-голубая. Бл. стекл. Хрупкий. Тв. 2—2.5. По аналогии с линаритом сп. совершенная по {100}. Плотн. 5.64 (выч.).  $n_{\text{средн}}=1.88$  (выч.). Дан рамановский спектр. Хим. (м.з., WDS, средн. из 5 опр.): PbO 51.17, CuO 17.42, SeO<sub>4</sub> 23.82, SO<sub>3</sub> 2.98, H<sub>2</sub>O 4.04, сумма 99.43. Рентгенограмма (интенс. л.): 9.548(22)(100), 4.917(24)(110), 4.578(35)( $\overline{1}$ 01), 3.602(60)(011), 3.193(100)(300), 3.150(50)( $\overline{2}$ 11). На м-нии Эль Драгон, деп. Потоси (Боливия) с Со-содержащим крутаит-пенрозеитом, халькоменитом, олзахеритом, фосгенитом, англезитом, и церусситом. Назван в честь американского ученого Френсиса (Фрэнка) Сауса [Francis (Frank) Sousa, b. 1951]. *Yang H., McGlasson J.A., Gibbs R.B., Downs R.T.* Miner. Mag. 2022. Vol. 86. N 5. P. 792—798.
- **78. Маттиасвайлит** (matthiasweilite) PbTe<sup>4+</sup>O<sub>3</sub>. Трикл.с.  $P\overline{1}$ . a = 7.0256, b = 10.6345, c = 11.9956 Å,  $\alpha = 78.513^{\circ}$ ,  $\beta = 83.104^{\circ}$ ,  $\gamma = 84.083^{\circ}$ . Z = 10. Агрегаты кристаллов до 0.35 мм. Цв. светло-желтый. Черта белая. Бл. алмаз. Хрупкий. Изл. раков. Тв. 2.5. Плотн. 7.282 и 7.313 (выч. по эмпир. и идеальной ф-лам). Медленно раств. в разбавленной НСІ при комнатной т-ре.  $n_{\text{средн}} = 2.18$  (выч.). Дан рамановский спектр. Хим. (м.з., WDS, средн. из 3 опр.): РьО 56.77, ТеО<sub>2</sub> 41.28, сумма 98.05. Рентгенограмма (интенс. л.): 3.270(77)(123),  $3.146(100)(0\overline{3}1)$ , 3.010(28)(220),  $2.815(33)(\overline{1}32)$ ,  $2.564(18)(1\overline{1}4)$ ,  $1.9523(31)(\overline{134}),$ 1.7843(18)(343). На м-нии Деламар, округ Линкольн, шт. Невада (США) с аданитом, чолоалитом, норстаритом и другими оксисолями в кварц-содежащей матрице. Назван в честь немецкого химика Маттиаса Вайла (Matthias Weil, b. 1970). Kampf A.R., Missen O.P., Mills S.J., Ma C., Housley R.M., Chorazewicz M., Marty J., Coolbaugh M., Momma K. Canad. Miner. 2022. Vol. 60. N 5. P. 805-814.
- **79.** Амгаит (amgaite)  $Tl_2^{3+}Te^{6+}O_6$ . Триг.с. P321. a=9.0600, c=4.9913 Å. Z=3. Криптозернистые, иногда гроздевидные агрегаты до 0.05 мм. Непрозрачный. Цв. темнокрасновато-коричневый до черного. Черта черная. Бл. субметал. Хрупкий. Изл. раков. Тв. 1.5—2. Плотн. 8.358 (выч.). Раств в азотной кислоте. Одноосный. Двупреломление очень высокое.  $n_{\rm средн}=1.78$ . В отр. св. серый с голубоватым оттенком. Анизотропия слабая. Внутренние рефлексы редкие, коричневато-красные.  $R_{\rm max}$  и  $R_{\rm min}$  на воздухе (%): 14.2 и 13.5 при 470 нм, 13.2 и 12.7 при 546, 12.7 и 12.3 при 589, 12.3 и 11.7 при 650 нм. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 7 опр.): MgO 0.43, CaO 1.62, Mn<sub>2</sub>O<sub>3</sub> 0.25, Fe<sub>2</sub>O<sub>3</sub> 0.16, Tl<sub>2</sub>O<sub>3</sub> 66.27, Sb<sub>2</sub>O<sub>3</sub> 3.48, TeO<sub>3</sub> 27.31, сумма 99.52. Рентгенограмма (интенс. л.): 3.352(100)(111), 3.063(15)(201), 2.619(49)(300), 2.065(18)(221), 1.804(28)(302). На золоторудном м-нии Хохойское, Якутия (Россия) с авиценнитом, карбонатами и антимонатами Тl. Название от р. Амга, в бассейне которой находится м-ние. *Kasatkin A.V., Anisimova G.S., Nestola F., Plášil J., Seikora J., Škoda R., Sokolov E.P., Kondratieva L.A., Kardashevskaia V.N.* Minerals. 2022. Vol. 12. N 9. paper 1064. https://doi.org/10.3390/min12091064
- **80.** Томиоллоит (tomiolloite)  $Al_{12}(Te^{4+}O_3)_5[(SO_3)_{0.5}(SO_4)_{0.5}](OH)_{24}$ . Гекс.с.  $P6_3/m$ . a=13.3360, c=11.604 Å. Z=2. Почти сферические агрегаты очень тонких иголочек, растущих от однородного ядра. Размер одной "сферы" до 100 мкм, иголочек до  $1\times50$  мкм, микрокристаллов ядра до 5 мкм. Белый, черта белая. Бл. перл. Тв. предположительно <3. Хрупкий. Изл. неров. Плотн. 3.374 (выч.). Одноосный(—).  $n_o=1.79$ ,  $n_e=1.71$  вычислены по  $n_{\text{средн}}=1.762$  (изм.). Плеохроизм слабый: по No серовато-голубой, по No коричневато-желтый. Приведен ИК-спектр. Хим. (м.з., WDS, средн. из 5 опр.):  $Al_2O_3$  29.69,  $SiO_2$  0.08,  $SO_2$  1.71,  $SO_3$  2.14, CI 0.22, CI FeI 1.36, CI 2.17, CI 2.26, CI 3.78, CI 2.27, CI 2.28, CI 2.29, CI 2.30, CI 2.30, CI 2.31, CI 2.32, CI 2.33, CI 2.43, CI 2.43, CI 3.46, CI 3.47, CI 3.47,

11.667(89)(100), 8.240(38)(101), 4.107(29)(202, 211, 121), 3.223(100)(203, 302, 130), 2.905(37)(213, 123, 222, 400). На руднике Бамболла теллурового комплекса Моктесума, Сонора (Мексика) с кварцем и теллуритом. Название от слова "томиолло" языка науатль, означающего пушистый, ворсистый и отражающего внешний вид образований минерала. *Missen O.P., Mills S.J., Rumsey M.S., Spratt J., Najorka J., Kampf A.R., Thorne B.* Amer. Miner. 2022. Vol. 107. N 12. P. 2167—2175.

#### КАРБОНАТЫ

**81.** Парамаркейит (paramarkeyite) —  $Ca_2(UO_2)(CO_3)_3 \cdot 5H_2O$ . Монокл.с.  $P2_1/n$ . a=17.9507, b=18.1030, c=18.3688 Å,  $\beta=108.029^\circ$ . Z=16. Таблитч. исштрихованные по [010] и [001] кристаллы до 0.11 мм, уплощенные по {100}, обычно параллельно сросшиеся. Простые формы: {100}, {010}, {001}, {110}, {101}, {101} и {011} (дан чертеж). Прозрачный. Цв. зелено-желтый. Черта белая. Бл. стекл. Очень хрупкий. Изл. неправ, искривл. Тв. 2.5. Сп. отличная по {100} и возможно две хорошие по {010} и {001}. Плотн. 2.91 (изм.), 2.905 (выч.). Мгновенно раств. со вскипанием в разбавл. HCl. Двуосный(—). Nm=b.  $n_p=1.550$ ,  $n_m=1.556$ ,  $n_g=1.558$ ,  $2V=60^\circ$  (изм.),  $59.8^\circ$  (выч.). Дан рамановский спектр. Хим. (м.з., WDS, средн. из 10 опр.): Na2O 1.05, CaO 17.06, SrO 0.46, UO3 47.44, CO2 21.90 (выч.), H2O 15.05 (выч.), сумма 102.96. Рентгенограмма (интенс. л, d,I): 8.54(100), 6.31(91), 5.66(45), 5.52(46), 4.759(45), 4.371(97), 3.544(41), 2.858(38). На м-нии Маркей, Сан Хуан, шт. Юта (США) с андерсонитом, кальцитом, гипсом и натромаркейитом. Назван за сходство с маркейитом. Kampf A.R., Olds T.A., Plášil J., Burns P.C., Skoda R., Marty J. Miner. Mag. 2022. Vol. 86. N 1. P. 27—36. https://www.mindat.org/min-55538.html

## СИЛИКАТЫ

- **82.** Эльгоресиит (elgoresyite)  $(Mg_5Si_2)O_9$ . Монокл.с. C2/m. a=9.3946, b=2.7640, c=11.0804 Å,  $\beta=94.233^\circ$ . Z=2. Субгедральные кристаллы до нескольких мкм. Цвет, блеск, твердость, плотность и оптические свойства не определены из-за малого размера зерна. Плотн. 4.315 (выч.).  $n_{\rm средн}=1.95$ . Эмп. ф-ла  $(Mg_{3.38}Si_{1.95}Fe_{1.60}^{2+}Al_{0.05}Na_{0.03}Ca_{0.02})_{\Sigma=7.03}O_9$ . Найден в метеорите Суйчжоу (Suizhou) L6, пров. Хубэй (Китай) с рингвудитом и стеклом состава  $MgSiO_3$ . Назван в честь немецкого минералога Ахмеда Эль Гореси (Ahmed El Goresy, 1935-2019) из Гайдельберга. *Bindi L., Sinmyo R., Bykova E., Ovsyannikov S.V., McCammon C., Kupenko I., Ismailova L., Dubrovinsky L., Xie X*. ACS Earth and Space Chemistry. 2021. Vol. 5. N. 8. P. 2124–2130.
- **83.** Беннешерит (bennesherite)  $Ba_2Fe^{2+}Si_2O_7$  гр. мелилита. Тетр.с.  $P\overline{4}2_1m$ . a=8.2334, c=5.2854 Å. Z=2. Кристаллы до 80 мкм. Прозрачный. Цв. светло-желтый до лимонно-желтого. Черта белая. Бл. стекл. Хрупкий. Микротв. 540 (тв. 5). Изл. раков. Сп. хорошая по (001). Плотн. 4.39 (выч.). Одноосный(—).  $n_o=1.711$ ,  $n_e=1.708$ . Хим. (м.з., WDS, средн. из 11 опр.):  $SiO_2$  25.10,  $Fe_2O_3$  0.07,  $Al_2O_3$  0.55, BaO 55.23, SrO 0.93, ZnO 0.26, FeO 12.21, MnO 0.28, CaO 2.95, MgO 0.74,  $K_2O$  0.16,  $Na_2O$  0.17, сумма 98.66. Рентгенограмма (интенс. л., d,I): 3.913(15), 3.682(13), 3.248(39), 3.021(100), 2.604(21), 2.147(22), 1.868(15), 1.855(18). В окрестностях горы Бен Нешер в ранкинитовых паралавах пирометаморфического комплекса Хатрурим, пустыня Негев (Израиль) с гуримитом, уолстромитом, гексацельзианом или цельзианом, задовитом и баритом. Назван по месту находки. Krzatala A.,  $Kr\ddot{u}$ ger B.,  $Galuskina\ I$ .,  $Vapnik\ Y$ .,  $Galuskin\ E$ . Amer. Miner. 2022. Vol. 107. N 1. P. 138—146. https://www.mindat.org/min-54030.html
- **84.** Цоизит-(Pb) [zoisite-(Pb)] CaPbAl<sub>3</sub>(SiO<sub>4</sub>)(Si<sub>2</sub>O<sub>7</sub>)O(OH). Ромб.с. *Рпта.* a=16.3978, b=5.5953, c=10.1953 Å. Z=2. Прозрачный. Субгедральные призмы, удлиненные по [010] до 0.3 мм. Цв. бледно-розовый. Черта белая. Хрупкий. Тв. предполо-

- жительно 6—7. Сп. совершенная по  $\{010\}$ . Плотн. 4.13 (выч.). Двуосный(+).  $n_{\text{средн}} = 1.752$  (выч.).  $2V > 60^\circ$ . Плеохроизм от бесцветного до бледно-розового. Дан рамановский спектр. Хим. (м.з., WDS, средн. из 10 опр.):  $\text{SiO}_2$  30.11,  $\text{Al}_2\text{O}_3$  24.57,  $\text{Fe}_2\text{O}_3$  1.32, CaO 10.25,  $\text{Mn}_2\text{O}_3$  0.50, MnO 0.14, BaO 0.05, PbO 32.23,  $\text{Na}_2\text{O}$  0.07,  $\text{H}_2\text{O}$  1.50 (выч.), сумма 100.74. Рентгенограмма (интенс. л.): 8.658(100)(101), 8.199(38)(200), 4.905(40)(011), 4.209(35)(211), 3.672(57)(112), 3.651(52)(311), 3.102(32)(312), 2.904(89)(013), 2.758(53)(502), 2.726(67)(511). На м-нии Якобсберг, Вермланд (Швеция) с кальцитом, цельзианом, диопсидом, гроссуляром, ханкокитом, гиалофаном, сам. свинцом, флогопитом и везувианом. Назван по составу и за сходство с цоизитом. *Perchiazzi N., Mauro D., Vignola P., Zaccarini F., Eldjarn K.* Minerals. 2022. Vol. 12. N 1. paper 51.
- **85.** Бортоланит (bortolanite)  $Ca_2(Ca_{1.5}Zr_{0.5})$  Na(NaCa)Ti( $Si_2O_7)_2(FO)F_2$  гр. ринкита. Трикл.с.  $P\overline{1}$ . a=9.615, b=5.725, c=7.316 Å,  $\alpha=89.91^\circ$ ,  $\beta=101.14^\circ$ ,  $\gamma=100.91^\circ$ . Z=1. Удлиненные агрегаты до 1.5 мм призмат. пойкилитовых кристаллов. Цв. бледно-желтый до коричневого. Черта бледно-желтая до бежевой. Бл. стекл. Хрупкий. Изл. неровн. Тв. 5. Сп. совершенная по {100}. Флюоресценция в УФ (при  $\lambda$  100—280 мкм) в слабо-желтых тонах. Плотн. 3.195 (выч.). Двуосный(+).  $n_p=1.673$ ,  $n_m=1.677$ ,  $n_g=1.690$ ,  $2V=56^\circ$  (изм.), 58.4° (выч.). Хим. (м.з., средн. из 10 опр.): Nb<sub>2</sub>O<sub>5</sub> 1.07, HfO<sub>2</sub> 0.20, ZrO<sub>2</sub> 6.70, TiO<sub>2</sub> 9.94, SiO<sub>2</sub> 32.49, Gd<sub>2</sub>O<sub>3</sub> 0.12, Nd<sub>2</sub>O<sub>3</sub> 0.37, Ce<sub>2</sub>O<sub>3</sub> 1.25, La<sub>2</sub>O<sub>3</sub> 0.65, Y<sub>2</sub>O<sub>3</sub> 0.31, FeO 0.59, MnO 1.46, CaO 31.15, Na<sub>2</sub>O 8.36, F 6.95, —O=F 2.93, сумма 98.68. Рентгенограмма (интенс. л.): 3.086(61)(300), 2.2975(100)(012), 2.639(30)( $\overline{21}$ 2), 2.510(24)(310), 1.908(31)( $\overline{41}$ 2), 1.829(26)( $\overline{10}$ 4). В карьере Бортолан, массив Посос-де-Калдас, шт. Минас-Жерайс (Бразилия) с гетценитом, нефелином, щелочным п.ш., эгирином, натролитом, анальцимом и марганцевым пектолитом. Назван по месту находки. Day M.C., Sokolova E., Hawthorne F.C., Horváth L., Pfenninger-Horváth E. Miner. Mag. 2022. Vol. 60. N 4. P. 699—712.
- **86. Козловскии**т (kozłowskiite)  $Ca_4(Fe^{2+}Sn_3)(Si_2O_7)_2(Si_2O_6OH)_2$ . Трикл.с.  $C1.\ a=10.0183,\ b=8.3861,\ c=13.3395\ Å,\ \alpha=89.956^\circ,\ \beta=109.039^\circ,\ \gamma=89.979^\circ.\ Z=2$ . Участок в ядре зонального силезияит-кристиансенитового кристалла. Бледно-коричневатый. Плотн. 3.775 (выч.).  $n_{\text{средн}}\sim 1.727$ . Хим. (м.з., средн.):  $SiO_2$  39.46,  $ZrO_2$  0.35,  $ZrO_2$  0.35,  $ZrO_2$  0.35,  $ZrO_2$  0.35,  $ZrO_2$  0.35,  $ZrO_2$  0.36,  $ZrO_2$  0.36,  $ZrO_2$  0.37,  $ZrO_2$  0.37,  $ZrO_2$  0.38,  $ZrO_2$  0.39,  $ZrO_2$  0.39, ZrO
- **87.** Увит (uvite)  $CaMg_3(Al_5Mg)(Si_6O_{18})(BO_3)_3(OH)_3(OH)$  надгр. турмалина. Триг.с. R3m. a = 15.9519, c = 7.2222 Å. Z = 3. Массивные субгедральные зерна и редкие эвгедральные кристаллы до 1 см. Простые формы: {1120} и {1010} (призмы) и {1011} и {1011} (пирамиды). Цв. коричневый. Черта серая. Бл. стекл. Хрупкий. Изл. раков. Тв. ~7.5. Плотн. 3.115 (выч.). В пр. св. прозрачный. Одноосный(—).  $n_o = 1.660, n_e = 1.640.$ Плехроизм: по No зеленовато-коричневый, по Ne бледно-желтый. Даны мессбауэровский, FTIR-спектры и оптический сектр поглощения. Хим. (м.з., WDS, средн. из 15 опр.): SiO<sub>2</sub> 35.45, TiO<sub>2</sub> 1.40, B<sub>2</sub>O<sub>3</sub> 10.45 (выч. по стехиометрии), Al<sub>2</sub>O<sub>3</sub> 27.30, V<sub>2</sub>O<sub>3</sub> 0.12, Fe<sub>2</sub>O<sub>3</sub> 2.52, FeO 3.41, MgO 11.19, CaO 3.43, Na<sub>2</sub>O 1.10, F 0.11, H<sub>2</sub>O 3.30 (выч. по стехиометрии), -O=F 0.04, сумма 99.74 (в оригинале 99.63). Рентгенограмма (интенс. л.): 3.994(51)(220), 3.497(57)(012), 4.237(49)(211), 2.973(88)(122), 2.584(100)(051), 2.047(53)(152). В карьере Факкьятоя (Facciatoia), Сан-Пьеро-ин-Кампо, о-в Эльба

- (Италия). Назван по провинции Ува на Цейлоне (Шри Ланка), где ранее предполагалось нахождение минерала (Kunitz, 1929). Bosi F., Biagioni C., Pezzotta F., Skogby H., Hålenius U., Cempirek J., Hawthorne F.C., Lussier A.J., Abdu Y.A., Day M.C., Fayek M., Clark C.M., Grice J.D., Henry D.J. Miner. Mag. 2022. Vol. 86. N 5. P. 767—776.
- **88.** Алюминооксироссманит (alumino-oxy-rossmanite)  $\square$ Al<sub>3</sub>Al<sub>6</sub>(Si<sub>5</sub>AlO<sub>18</sub>)(BO<sub>3</sub>)<sub>3</sub>(OH)<sub>3</sub>O надгр. турмалина. Триг.с.  $R3m.\ a=15.803,\ c=7.088\ \text{Å}.\ Z=3$ . Призмат. кристаллы в доли мм. Цв. розовый. Черта белая. Бл. стекл. Хрупкий. Тв. 7. Изл. раков. Плотн. 3.07 (изм.), 3.092 (выч.). Одноосный (—).  $n_o=1.648,\ n_e=1.628$ . Плеохроизм: по No розовый, по Ne почти бесцветный. Дан ИК-спектр и оптический спектр поглощения. Хим. (м.з., SIMS, средн.): SiO<sub>2</sub> 33.96, TiO<sub>2</sub> 0.10, Al<sub>2</sub>O<sub>3</sub> 47.08, B<sub>2</sub>O<sub>3</sub> 11.77, FeO 0.08, Fe<sub>2</sub>O<sub>3</sub> 0.23, MnO 0.52, Mn<sub>2</sub>O<sub>3</sub> 1.70, CaO 0.04, Li<sub>2</sub>O 0.25, ZnO 0.03, Na<sub>2</sub>O 1.51, H<sub>2</sub>O 2.79, F 0.09, —O=F 0.04, сумма 100.11. Рентгенограмма (интенс. л.): 6.294(28)(101), 4.17.83(61)(211), 3.9508(85)(220), 2.9236(78)(122), 2.5534(100)(051), 2.4307(55)(012), 2.0198(39)(152), 1.8995(30)(342). В небольшом пегматите Молданубиан в амфиболитах и биотитовых парагнейсах (Австрия) с кварцем, альбитом, микроклином и апатитом. Назван по составу и за сходство с россманитом.  $Ertl\ A.$ ,  $Hughes\ J.M.$ ,  $Prowatke\ S.$ ,  $Ludwig\ T.$ ,  $Lengauer\ C.L.$ ,  $Meyer\ H.-P.$ ,  $Giester\ G.$ ,  $Kolitsch\ U.$ ,  $Prayer\ A.$  Amer. Miner. 2022. Vol. 107. N 2. P. 157—166.
- **89.** Принчиваллент (princivalleite)  $Na(Mn_2Al)Al_6(Si_6O_{18})(BO_3)_3(OH)_3O$  надгр. турмалина. Триг.с. R3m. a=15.9155, c=7.11660 Å. Z=3. Субгедральные кристаллы до 10 мм. Цв. лазоревый. Черта белая. Бл. стекл. Тв. ~7. Хрупкий. Изл. раков. Плотн. 3.168 (выч.). Одноосный (—).  $n_o = 1.650$ ,  $n_e = 1.635$ . Даны FTIR- и мессбауэровский спектры. Хим. (м.з., WDS, средн. из 6 опр.): SiO<sub>2</sub> 33.71, B<sub>2</sub>O<sub>3</sub> 10.46, Al<sub>2</sub>O<sub>3</sub> 41.19, FeO 2.29, MnO 5.96, MgO 0.08, ZnO 0.55, CaO 0.60, Na<sub>2</sub>O 1.68, Li<sub>2</sub>O 0.12, F 0.42, H<sub>2</sub>O 2.55, -O=F 0.18, cymma 99.43. 4.198(43)(211), 3.974(50)(220), Рентгенограмма (интенс. л.): 3.441(67)(012). 2.934(78)(122), 2.567(100)(051), 2.028(51)(152). В пегматитовом прожилке в районе Ведаска Валли, Варезе (Италия) с мусковитом, к.п.ш., плагиоклазом, пиритом и кордиеритом. Назван в честь итальянского минералога Франческо Принчивалле (Francesco Princivalle, b. 1956). Bosi F., Pezzotta F., Skogby H., Altieri A., Hålenius U., Tempesta G., Cempirek J. Miner. Mag. 2022. Vol. 86. N 1. P. 78-86.
- **90. Челлериит** (celleriite)  $\square$ (Mn<sub>2</sub><sup>2+</sup>Al<sub>6</sub>(Si<sub>6</sub>O<sub>18</sub>)(BO<sub>3</sub>)<sub>3</sub>(OH)<sub>3</sub>(OH) надгр. турмалина. Триг.с. R-3m. a = 15.9518, c = 7.1579 Å (для голотипа). Z = 3. Химически гомогенные зоны до 3 мм в кристалле зонального турмалина. Цв. фиолетовый (|c|) и серо-голубой ( $^{\perp}c$ ). Черта белая. Бл. стекл. Тв. ~7. Хрупкий. Изл. раков. Плотн. 3.13 (выч.). Одноосный(–).  $n_o=1.643,\,n_e=1.628.$  Плеохроизм: по No бледно-фиолетовый, по Ne бледно-серо-голубой. Даны мессбауэровский и рамановский спектры. Хим. (м.з., Li µ-LIBS, средн. из 10 опр.): SiO<sub>2</sub> 36.62, TiO<sub>2</sub> 0.09, B<sub>2</sub>O<sub>3</sub> 10.62 (выч. по стехиометрии), Al<sub>2</sub>O<sub>3</sub> 37.08, FeO 1.14, Fe<sub>2</sub>O<sub>3</sub> 0.05, MnO 10.01, MgO 0.06, Na<sub>2</sub>O 1.34, Li<sub>2</sub>O 0.42, F 0.05, H<sub>2</sub>O 3.34 (выч. по стехиометрии), -O=F 0.02, сумма 100.80. Рентгенограмма (интенс. л.) (для котипа): 6.3264(53)(101), 4.2060(54)(211), 3.9801(75)(220), 3.4497(57)(012), 2.9417(53)(123), 2.5725(100)(051), 2.0343(33)(152). В пегматите Розина, о-в Эльба (Италия) (голотип) с кварцем, альбитом, к.п.ш., лепидолитом, поллуцитом, петалитом, турмалинами (эльбаитом, фторэльбаитом, россманитом), бериллом, касситеритом, колумбитом-(Мп), "ломонтитом", "стильбитом" и "гейландитом". Установлен также в пегматите Пикарец, Моравия (Чехия) (котип) с альбитом, кварцем, к.п.ш, турмалинами (эльбаитом, фторэльбаитом, принчиваллеитом). Назван в честь итальянского геолога и минералога Луиджи Г. Челлери (Luigi G. Celleri, 1828—1900). Bosi F., Pezzotta F., Altieri A., Andreozzi G.B., Ballirano P., Tempesta G., Cempírek J., Škoda R., Filip J., Čopjakova R., Novák M., Kampf A.R., Scribner E.D., Groat L., Evans R.J. Amer. Miner. 2022. Vol. 107. N 1. P. 31-42.
- **91. Золотаревит** (zolotarevite)  $Na_5Zr[Si_6O_{15}(OH)_3]$  2-3 $H_2O$  гр. ловозерита. Триг.с.  $R\overline{3}m$ . a=10.294, c=13.115 Å. Z=3. Ангедральные зерна до 1 мм. Прозрачный. Цв. виш-

нево-красный. Хрупкий. Изл. неровн. Плотн. 2.75 (изм.), 2.85 (выч.). Аномально двуосный (—).  $n_p=1.580,\ n_m=1.600,\ n_g=1.602,\ 2V<10^\circ$  (изм.), 35.1° (выч.). Дан FTIR-спектр. Хим. (м.з., WDS, средн.): SiO<sub>2</sub> 52.46, TiO<sub>2</sub> 1.34, ZrO<sub>2</sub> 11.33, Fe<sub>2</sub>O<sub>3</sub> 0.55, CaO 0.42, MnO 3.49, Na<sub>2</sub>O 20.41, H<sub>2</sub>O 10.20 (выч.), сумма 100.20. Рентгенограмма (интенс. л.): 7.37(69)(101), 5.26(56)(012), 3.686(64)(202), 3.330(79)(113), 3.265(99)(211), 2.640(100)(024), 2.576(60)(220). В лейкократовых нефелиновых сиенитах г. Кедыкверпахк, Ловозерский щелочной массив, Кольский п-ов (Россия) с микроклин-пертитом, нефелином, содалитом, эгирином, лампрофиллитом, луешитом, умбозеритом, ломоносовитом, настрофитом, минералом серии казаковит — тисиналит, сфалеритом и лёллингитом. Назван в честь русского кристаллографа Андрея А. Золотарева (Andrey A. Zolotarev, b. 1982). *Мікhailova J.A., Selivanova E.A., Krivovichev S.V., Pakhomovsky Y.A., Chukanov N.V., Yakovenchuk V.N.* Miner. Mag. 2022. Vol. 86. N 2. P. 263—271.

- 92. Ферритарамит (ferri-taramite) Na(CaNa)(Mg<sub>3</sub>Fe<sub>2</sub><sup>3+</sup>)(Si<sub>6</sub>Al<sub>2</sub>)O<sub>22</sub>(OH)<sub>2</sub> надгр. амфиболов. Монокл.с. C2/m. a = 9.89596, b = 18.015, c = 5.32164 Å,  $\beta = 105.003^{\circ}$ . Z = 2. Субгедральные призмат. кристаллы до 5 мм, образующие плотные агрегаты. Полупрозрачный. Цв. темно-коричново-черный, в осколках зеленовато-желтый до коричневого. Черта желтовато-серая. Бл. стекл. Хрупкий. Изл. неровн. до заноз. Сп хорошая по {110}. Тв. ~6. Микротв. 919. Плотн. 3.227 (выч.). Двуосный (—).  $n_p = 1.670, n_m = 1.680,$  $n_g = 1.685, 2V = 70^\circ$  (изм.),  $70.2^\circ$  (выч.). Плеохроизм сильный: по Np бледно-желтый, по Np темно-коричневый, по Ng желтовато-коричневый. Даны FTIR-, рамановский, мессбауэровский спектры и оптический спектр поглощения. Хим. (LA-ICP-MS, средн. из 16 опр.): Na<sub>2</sub>O 5.66, MgO 12.14, Al<sub>2</sub>O<sub>3</sub> 11.59, SiO<sub>2</sub> 41.25, K<sub>2</sub>O 0.84, CaO 8.01, TiO<sub>2</sub> 0.46, MnO 4.57, Fe<sub>2</sub>O<sub>3</sub> 11.51, FeO 1.53, ZnO 0.15, PbO 0.27, BaO 0.05, H<sub>2</sub>O 2.02 (выч.), сумма 100.05. Рентгенограмма (интенс. л.): 8.44(60)(110), 3.392(25)(131),  $3.281(39)(240), 3.140(100)(310), 2.816(45)(330), 2.7104(38)(151), 1.44502(33)(\overline{661})$ . B ckapнах марганцевого м-ния Якобсберг, Вермланд (Швеция) с цельзианом, флогопитом, эгирин-авгитом, андрадитом, ханкокитом, меланотекитом, микроклином, кальцитом, баритом, пренитом, македонитом и оксиплюмборомеитом. Назван по составу и за сходство с тарамитом. Holstam D., Cámara F., Karlsson A., Skogby H., Zack T. Europ. J. Miner. 2022. Vol. 34. N 5. P. 451–462.
- **93.** Ферроферрихолмквистит (ferro-ferri-holmquistite)  $\Box$ Li<sub>2</sub>(Fe<sub>3</sub><sup>2+</sup>Fe<sub>2</sub><sup>3+</sup>)Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> надгр. амфиболов. Ромб.с. *Рпта.* a=18.5437, b=17.9222, c=5.3123 Å. Z не указан. Игольчатые агрегаты и/или изолированные кристаллы до  $0.11\times0.04\times0.015$ . Цв. голубой. Черта голубовато-серая. Бл. стекл. Тв. 5.5. Сп. совершенная по  $\{210\}$ . Плотн. 3.32 (изм.), 3.317 (выч.). Двуосный(+).  $n_p=1.685, n_m=1.713, n_g=1.727, 2V=45-75^\circ$  (изм.),  $70^\circ$  (выч.). Плеохроизм: по Np бледно-голубой, по Nm бледно-желтовато-голубой, по Ng темно-синий, почти синевато-фиолетовый. Хим. (м.з., средн. из 52 опр.): SiO<sub>2</sub> 53.63, TiO<sub>2</sub> 0.10, Al<sub>2</sub>O<sub>3</sub> 3.04, Fe<sub>2</sub>O<sub>3</sub> 12.39, FeO 22.63, MnO 0.37, MgO 0.99, CaO 0.04, Na<sub>2</sub>O 0.35, K<sub>2</sub>O 0.03, Li<sub>2</sub>O 3.26, F 0.16, H<sub>2</sub>O 1.95 (выч.), -O=F 0.07, сумма 98.87. Рентгенограмма (интенс. л.): 8.256(100)(210), 4.487(15.1)(040), 3.346(10.6)(250), 3.043(87.6)(610), 2.745(14.6)(630). В альбитизированных гранитах о-ва Иваги, преф. Эхимэ (Япония) с кварцем, альбитом и к.п.ш. Назван по составу в соответствии с номенклатурой надгруппы амфиболов (Наwthorne et al., 2012).*Nagashima M., Imaoka T., Kano T., Kimura J., Chang Q., Matsumoto T.*Europ. J. Miner. 2022. Vol. 34. N 5. P. 425–438.
- **94.** Паратоберморит (paratobermorite)  $Ca_4(Al_{0.5}Si_{0.5})_2Si_4O_{16}(OH) \cdot 2H_2O$  (Ca  $3H_2O$ ) надгр. тоберморита. Монокл.с.  $C112_1/m$ . a=11.2220, b=7.3777, c=22.9425 Å,  $\beta=89.990^\circ$ . Z=4; политип 2M. Хорошо образованные призмат. до игольчатых кристаллы до  $1\times1.5\times8$  мм, удлиненные по [010], их агрегаты. Простые формы: {100}, {01} (призма) и {011} (окончание) (дан чертеж). Прозрачный. Бесцветный, бледно-желто-

ватый, бледно-бежевый или розоватый. Черта белая. Бл. стекл. Хрупкий. Сп. совершенная по (001). Изл. ступенч. Тв. 3.5. Плотн. 2.51 (изм.), 2.533 (выч.). Двуосный(+).  $Np=c,\ Nm=b,\ Ng=a.\ n_p=1.565,\ n_m=1.566,\ n_g=1.578,\ 2V=25^\circ$  (изм.), 32° (выч.). Дан ИК-спектр. Хим. (м.з., WDS, средн. из 4 опр.): Na<sub>2</sub>O 0.40, K<sub>2</sub>O 0.28, CaO 36.60, MnO 0.04, BaO 0.07, Al<sub>2</sub>O<sub>3</sub> 6.46, SiO<sub>2</sub> 42.32, H<sub>2</sub>O 14.10, сумма 100.27. Рентгенограмма (интенс. л.): 11.52(100)(002), 5.46(24)(201, 112,  $\overline{1}$ 12), 3.562(17)(205), 3.088(51)(220,  $\overline{2}$ 20,  $\overline{3}$ 13), 2.982(50)(222,  $\overline{2}$ 22), 2.838(20)(207), 2.013(14)(425,  $\overline{4}$ 25), 1.848(22)(427, $\overline{4}$ 27, 040). На Баженовском м-нии хризотил-асбеста, Центральный Урал (Россия) с пренитом, пектолитом, томсонитом-Са и кальцитом. Название из-за близости к тобермориту.  $Pekov\ I.V.,\ Zub-kova\ N.V.,\ Chukanov\ N.V.,\ Merlino\ S.,\ Yapaskurt\ V.O.,\ Belakovskiy\ D.I.,\ Loskutov\ A.B.,\ Novgorodova\ E.A.,\ Vozchikova\ S.A.,\ Britvin\ S.N.,\ Pushcharovsky\ D.Yu.\ Amer.\ Miner.\ 2022.\ Vol.\ 107.\ N\ 12.\ P.\ 2272-2281.$ 

- **95.** Ферропапикеит (ferro-papikeite) NaFe<sub>2</sub><sup>2+</sup> (Fe<sub>3</sub><sup>2+</sup>Al<sub>2</sub>)(Si<sub>5</sub>Al<sub>3</sub>)O<sub>22</sub>(OH)<sub>2</sub> надгр. амфиболов. Ромб.с. *Рпта. a* = 18.628, b = 17.888, c = 5.3035 Å. Z = 4. Субгедральные зерна до 0.4-3.0 мм. Полупрозрачный. Цв. бледно-коричневый. Черта от бесцветной до бледно-коричневой. Хрупкий. Изл. заноз. Тв. ~6. Сп. хорошая по {210}. Плотн. 3.488. Двуосный(+).  $Np \parallel a$ ,  $Nm \parallel b$ ,  $Ng \parallel c$ .  $n_p = 1.674$ ,  $n_m = 1.692$ ,  $n_g = 1.716$ ,  $2V = 86.2^{\circ}$  (изм.),  $88.3^{\circ}$  (выч.). Дисперсия слабая, r < v. Плеохроизм: по Np очень бледно-коричневый, по Nm и Ng медово-коричневый. Хим. (м.з., средн. из 10 опр.): SiO<sub>2</sub> 36.50, TiO<sub>2</sub> 0.09, Al<sub>2</sub>O<sub>3</sub> 22.24, Fe<sub>2</sub>O<sub>3</sub> 1.15, FeO 30.50, MnO 0.65, MgO 5.48, CaO 0.08, Na<sub>2</sub>O 2.35, F 0.22, -O=F 0.09, H<sub>2</sub>O 1.85, сумма 101.02 (в оригинале 100.88). Рентгенограмма (интенс. л.): 3.223(39)(440), 3.057(68)(610), 2.824(28)(251), 2.572(56)(161,621), 2.549(38)(202), 2.501(50)(261,451), 2.158(25)(502), 1.991(31)(661). B метавулканических породах в муниц. Филипстад, Вермланд (Швеция) с биотитом, хлоритом, кварцем, альбитом, цирконом. Назван в честь американского кристаллографа и геохимика Джеймса Папике (James J. Papike, 1937-2020) и в соответствии с номенклатурой амфиболов. Hawthorne F.C., Day M.C., Fayek M., Linthout K., Lustenhouwer W.J., Oberti R. Amer. Miner. 2022. Vol. 107. N 2. P. 306–312.
- **96.** Иллокит-(Ce) [illoqite-(Ce)]  $Na_2NaBaCeZnSi_6O_{17}$  надгр. нордита. Ромб.с. *Рсса.* a=14.5340, b=5.2213, c=19.8270 Å. Z=4. Эвгедральные кристаллы 150 мкм или радиальные агрегаты до 200 мкм. Цв. розовый. Черта белая. Бл. тусклый. Плотн. 3.65 (выч.).  $n_{\rm средн}$  между 1.519 и 1.682. Флюоресцирует в коричневато-желтых тонах. Хим. (м.з., WDS, средн. из 15 опр.):  $SiO_2$  43.04,  $La_2O_3$  6.00,  $Ce_2O_3$  13.49,  $Pr_2O_3$  0.87,  $Nd_2O_3$  1.84, BaO 10.80, SrO 3.94, CaO 0.25, ZnO 4.08, MnO 0.78, FeO 2.97,  $Na_2O$  11.28,  $Li_2O$  0.25 (LA-ICP-MS), сумма 99.59. Рентгенограмма (интенс. л.): 7.266(79)(200), 4.688(44)(104), 4.241(64)(210), 3.486(79)(114), 3.340(52)(312), 2.986(67)(206), 2.882(100)(314), 2.789(44)(016). В сверхшелочной уссингитовой жиле в шелочном комплексе Иллимауссак (Гренландия) с эгирином, арфведсонитом, минералом гр. бритолита, эпистолитом, чкаловитом, луешитом, Мп-содержащим минералом гр. пектолита и стенструпином-(Ce). Название от гренладского слова illoq (двоюродный брат), которое отражает родство минерала с группой нордита. *Gulbransen E., Friis H., Dal Bo F., Erambert M.* Miner. Mag. 2022. Vol. 86. N 1. P. 141—149.
- **97.** Гармит (garmite) CsLiMg<sub>2</sub>(Si<sub>4</sub>O<sub>10</sub>)F<sub>2</sub> гр. слюд. Монокл.с. C2/m, C2 или Cm, поитип 1M. a=5.234, b=9.042, c=10.780 Å,  $\beta=99.73^\circ$ . Z=2. Пластинчатые зерна от 0.2 мм в поперечнике, до 20 мкм толщиной, их веерообразные сростки. Бесцветный. Бл. стекл., перл. Черта белая. Сп. весьма совершенная по (001). Гибкий. Тв. 2.5. Микротв. 90. Плотн. 3.34 (изм.), 3.336 (выч.). Двуосный(—).  $n_p=1.582$ ,  $n_m=1.601$ ,  $n_g=1.602$ ,  $2V=-10^\circ$  (изм.),  $-26^\circ$  (выч.). Дисперсия слабая, r>v. Люминесцирует в КУФ в бледно-желтым тонах. Хим. (м.з., Li и H SIMS, средн.): SiO<sub>2</sub> 47.39, Al<sub>2</sub>O<sub>3</sub> 0.71, TiO<sub>2</sub> 0.71,

- $Nb_2O_5$  0.12, FeO 2.12, MnO 0.85, MgO 9.01, ZnO 2.23,  $K_2O$  0.16, CsO 26.98, Li<sub>2</sub>O 3.57,  $H_2O$  0.08, F 7.23, -O=F 3.04, сумма 98.12 (в оригинале 99.90). Рентгенограмма (интенс. л.): 4.48(35)(110), 3.70(70)( $\overline{1}$ 12), 3.45(44)(022), 2.608(70)( $\overline{2}$ 01, 130), 2.580(100)(200, $\overline{1}$ 31), 2.241(45)(220), 2.187(80)( $\overline{1}$ 33). В кварцевых глыбах щелочного массива Дараи-Пиез, Раштский, ранее Гармский район (Центральный Таджикистан) с эгирином, кварцем, пектолитом. Назван по месту находки. *Паутов Л.А., Агаханов А.А., Пеков И.В., Карпенко В.Ю., Сийдра О.И., Соколова Е.В., Хоторн Ф.К., Файзиев А.Р.* Записки РМО. 2022. Ч. 151. Т. 4. С. 18–32.
- **98.** Гидроксимакглассонит-(K) [hydroxymcglassonite-(K)] KSr<sub>4</sub>Si<sub>8</sub>O<sub>20</sub>(OH) · 8H<sub>2</sub>O. Гр. апофиллита. Тетр.с. P4/mnc.~a=9.0792,~c=16.1551 Å. Z=2. Гранулы до 0.05 мм. Бесцветный. Черта белая. Бл. стекл. Хрупкий. Тв. 4.5—5. Сп. совершенная по {010}. Плотн. 2.60 (изм.), 2.614 (выч.). Одноосный(—).  $n_o=1.555,~n_e=1.567$ . Дан рамановский спектр. Хим. (м.з., средн.): SiO<sub>2</sub> 45.99, K<sub>2</sub>O 4.56, CaO 5.52, SrO 29.66, H<sub>2</sub>O 14.67 (выч. по стр-ре), сумма 100.40. Рентгенограмма: 8.008(93.8)(011), 4.539(42)(020), 3.940(49.6)(121), 3.638(80.9)(122), 3.212(33.6)(220), 3.055(34.4)(015), 2.800(28.2)(131), 2.538(100)(133), 2.146(29)(135). В образце из шахты Весселс, марганцеворудное поле Калахари (ЮАР) с мейеритом, сугилитом, эгирином, пектолитом и др. Назван в честь американского геолога Джеймса (Джима) А. Макглассона (James (Jim) А. McGlasson). Yang~H.,~Gu~X.,~Scott~M.M. Amer. Miner. 2022. Vol. 107. N 9. P. 1818—1822. https://www.mindat.org/min-55309.html
- **99.** Брейит (breyite)  $Ca_3Si_3O_9$ . Трикл.  $P\overline{1}$ . a=6.6970(4), b=9.2986(7), c=6.6501(4),  $\alpha=83.458(6)$ ,  $\beta=76.226(6)$ ,  $\gamma=69.581(7)$ . Включения в алмазах  $140\times150\times100$  мкм. Прозрачный. Бесцветный. Плотн. 3.072 (выч.). Дан рамановский спектр. Эмп. ф-ла  $Ca_{3.01}Si_{2.98}O_{2.98}$ . Рентгенограмма (интенс. л.): 5.01(32)(101), 3.15(40)(112), 3.03(58)(220), 2.90(100)(030),  $2.63(24)(\overline{2}10)$ ,  $1.79(18)(2\overline{3}1)$ . В алмазах из аллювиальных отложений Сан-Луис, район Жуина, штат Мату-Гросу, Бразилия. Назван в честь немецкого минералога, петролога Герхарда Петера Брея (Gerhard Peter Brey, b. 1947). *Brenker F.E.*, *Nestola F., Brenker L., Peruzzo L., Harris J.W.* Amer. Miner. 2021. Vol. 106. N 1. P. 38–43.
- **100.** Дейвмаоит (davemaoite) CaSiO<sub>3</sub>. Куб.с. *Рм*¬3*m. a* = 3.591(2) Å. Включения в алмазах до 4—6 × 4—16 мкм. Даны ИК- и рамановский спектры. Хим.ан. (XRT<sup>TM</sup> ICP и ESL New Wave<sup>TM</sup> UP193FX): Ca 18.27, K 8.71, Na 2.6, Fe 4.7, Al 3.32, Mg 2.43, Cr 1.8, Ti 0.30, Mn 0.23, Si 42.2. Рентгенограмма (интенс. л., *d,I*): 2.539(100), 2.073(50), 1.795(84), 1.466(43), 1.270(48), 1.136(19), 1.037(15), 0.960(22). В кимберлитовой трубке АК-8, Летлхакане, Центральный округ, Ботсвана. Назван в честь китайско-американского геолога Хо-Квана (Дейва) Мао [Но-Кwang (Dave) Мао, b. 1941]. *Tschauner O., Huang S., Yang S., Humayun M., Liu W., Gilbert Corder S.N., Bechtel H.A., Tischler J., Rossman G.R.* Science. 2021. Vol. 374. N 6569. P. 891—894; https://doi.org/10.1126/science.abl8568
- **101.** Водегонгджеит (wodegongjieite) KCa<sub>3</sub>(Al<sub>7</sub>Si<sub>9</sub>)O<sub>32</sub> полевошпатовый полиморф кокчетавита. Гекс.с.  $P6/mcc.\ a=10.2,\ c=14.9\ \text{Å}.\ Z=2.$  Физ. и опт. св-ва не определены. Предположительно беловатый до бесцветного, прозрачный, тв. ~6, хрупкий,  $n\approx1.57-1.59$ . Плотн. 2.694 (выч.). Хим. (EDX, средн.): SiO<sub>2</sub> 49.11, Al<sub>2</sub>O<sub>3</sub> 34.09, K<sub>2</sub>O 2.56, CaO 11.71, SrO 2.53, сумма 100.00. Рентгенограмма (интенс. л., d,d): 4.42(73), 3.80(91), 3.73(68), 3.26(49), 2.85(100), 2.55(71), 2.20(17), 2.12(26). Включения в корунде в хромитовых рудах м-ния Луобуса, Тибет (Китай) с баденчжуитом, чжициньитом, осборнит-хамрабаевитом и др. d0, d1, d2, d3, d3, d4, d4, d5, d5, d5, d6, d6, d7, d8, d8, d9, d9,
- **102.** Сапожниковит (sapozhnikovite)  $Na_8(Al_6Si_6O_{24})(HS)_2$  гр. содалита. Куб.с.  $P\overline{4}3n$ . a=8.9146. Z=1. Изолированные зерна до 1, редко до 5 мм. Цв. бледно-серый.

Черта белая. Бл. стекл. Хрупкий. Тв. 5.5. Сп. несовершенная по (110). Плотн. 2.25 (изм.), 2.255 (выч.). Изотропный. n=1.499. Интенсивная фотолюминесценция в ДУФ в оранжевых тонах, в КУФ — в слабо-желто-оранжевых тонах. Даны ИК-, ЭСР, рамановский спектры и спектры фотолюминесценции. Хим. (м.з., средн. из 5 опр.): Na<sub>2</sub>O 25.05, Al<sub>2</sub>O<sub>3</sub> 32.44, SiO<sub>2</sub> 37.58, HS 4.33, Cl 2.22, H<sub>2</sub>O 0.30, -O=(Cl,HS) 1.55, сумма 100.37. Рентгенограмма (интенс. л.): 6.30(37)(110), 3.638(100)(211), 2.821(14)(310), 2.572(18)(222), 2.382(16)(321), 2.101(29)(411). В гидротермально измененных уртитоподобных породах г. Карнасурт, Ловозерский щелочной массив, Кольский п-ов (Россия) с нефелином, эгирином, калишпатом, альбитом, кианоксалитом, натролитом, фторапатитом, ломоносовитом (частично или полностью измененным до мурманита) и лопаритом-(Се). Назван в честь русского минералога и кристаллографа Анатолия Николаевича Сапожникова (Anatoly Nikolaevich Sapozhnikov, b. 1946). *Chukanov N.V., Zubkova N.V., Pekov I.V., Shendrik R.Yu., Varlamov D.A., Vigasina M.F., Belakovskiy D.I., Britvin S.N., Yapaskurt V.O., Pushcharovsky D.Yu.* Miner. Mag. 2022. Vol. 86. N 1. P. 49—59.

**103.** Болотинаит (bolotinaite) —  $(Na_7\Box)(Al_6Si_6O_{24})F \cdot 4H_2O$  — гр. содалита. Куб.с. *I*-43*m*. a=9.027. Z=1. Изолированные двойники по (111) псевдогекс. габитуса до  $1.3\times0.3$  мм. Цв. бледно-желтый до почти бесцветного или розоватого. Черта белая. Бл. стекл. Слабая флюоресценция (при  $\lambda=330$  нм) в оранжево-желтых тонах). Хрупкий. Тв. 5. Изл. неровн. Плотн. 2.27 (изм.), 2.291 (выч.). В пр.св. бесцветный. Изотропный. n=1.488. Даны ИК- и рамановский спектры. Хим. (м.з., средн.):  $Na_2O$  18.30,  $K_2O$  3.87, CaO 0.57,  $Al_2O_3$  28.85,  $CaC_3$  37.97,  $CaC_3$  1.66 (выч. по ИК-спектроскопии),  $CaC_3$  1.37,  $CaC_3$  1.60,  $CaC_3$  1.60,  $CaC_3$  1.67 (110), 4.502(10)(200), 3.679(100)(211), 2.851(28)(310), 2.603(29)(222), 2.126(18)(330). В ежектитах пемзового карьера Деллен палеовулканического района Эйфель (Германия) с санидином, нефелином, аннитом и цирконом. Назван в честь русского кристаллохимика Надежды Борисовны Болотиной (Nadezhda Borisovna Bolotina, b. 1949). *Сhukanov N.V., Zubkova N.V., Schäfer C., Pekov I.V., Shendrik R.Yu., Vigasina M.F., Belakovskiy D.I., Britvin S.N., Yapaskurt V.O.* Miner. Mag. 2022. Vol. 86. N 6. P. 920—928.

**104.** Штойделит (steudelite) —  $(Na_3\Box)[(K,Na)_{17}Ca_7]Ca_4(Al_{24}Si_{24}O_{96})(SO_3)_6F_6\cdot 4H_2O$  гр. канкринита. Гекс.с. P-62c. a=12.89529, c=21.2778 Å. Z=1. Толстотаблитч., изометричные и короткопризмат. кристаллы до 7 мм. Бесцветный. Простые формы:  $\{0001\}, \{10\overline{1}0\}$  и  $\{11\overline{2}0\}$ . Сп. отчетливая по  $\{10\overline{1}0\}$ . Хрупкий. Изл. неровн. Тв. 5. Плотн. 2.51 (изм.), 2.511 (выч.). Флюоресценция в ДУФ в бледно-голубых тонах, в КУФ в малиновых тонах. Одноосный (+).  $n_o = 1.518, n_e = 1.519$ . В пр. св. бесцветный. Дан ИКспектр. Хим. (м.з., средн.): Na<sub>2</sub>O 7.40, K<sub>2</sub>O 8.42, CaO 13.54, Al<sub>2</sub>O<sub>3</sub> 26.46, Fe<sub>2</sub>O<sub>3</sub> 0.18, SiO<sub>2</sub> 30.96, SO<sub>2</sub> 4.74, SO<sub>3</sub> 5.18 (опр. по стр-ре), F 1.66, Cl 0.84, H<sub>2</sub>O 1.60, -O=Cl, F 0.89, сумма 100.09. Рентгенограмма (интенс. л.): 11.15(28)(100), 4.799(25)(104), 3.973(16)(105), 3.721(47)(300), 3.305(100)(214,303,400), 2.661(17)(008), 2.149(21)(330). В сиенитовых ежектитах палеовулкана Сакрофано, Лацио (Италия) с санидином, диопсидом, андрадитом, биотитом, лейцитом, гаюином, сакрофанитом, бьякеллаитом, лиоттитом и вторичным диоктаэдрическим смектитом. Назван в честь немецкого химика Ральфа Штойделя (Ralf Steudel, 1937—2021). Chukanov N.V., Zubkova N.V., Varlamov D.A., Pekov I.V., Belakovskiy D.I., Britvin S.N., Van K.V., Ermolaeva V.N., Vozchikova S.A., Pushcharovsky D.Yu. Phys. Chem. Miner. 2022. Vol. 49. N 1. article number 1.

## ОРГАНИЧЕСКИЕ И МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

**105.** Лазараскейт (lazaraskeite) —  $\mathrm{Cu}(\mathrm{C_2H_3O_3})_2$ . Монокл.с.  $P2_1/n$ . Представлен двумя политипами  $M_1$  и  $M_2$ . a=5.1049, b=8.6742, c=7.7566 Å,  $\beta=106.834^\circ$  для  $M_1$ , a=5.1977, b=7.4338, c=8.8091 Å,  $\beta=101.418^\circ$  для  $M_2$ . Z=2. Эвгедральные кристаллы до  $0.2\times0.2\times0.8$  мм, их агрегаты. Прозрачный. Цв. зеленовато-голубой. Черта белая. Бл. стекл.

Хрупкий. Тв. 2. Сп. совершенная по  $\{101\}$ . Плотн. (изм. и выч.) 2.12 и 2.138 для  $M_1$  и 2.10 и 2.086 для  $M_2$ . Лазараске<br/>ит- $M_1$  двуосный(—).  $cNp=42^\circ,\ Nm=b.\ n_p=1.595,\ n_m=1.595$  $= 1.629, n_g = 1.645, 2V = 69^{\circ}$  (изм.),  $67^{\circ}$  (выч.). Плеохроизм: по Np = Ng светло-сине-зеленый, по Nm сине-зеленый. Дисперсия слабая, r < v. Лазараскаит- $M_2$  двуосный(—).  $cNp = 36^{\circ}$ , Nm = b.  $n_p = 1.520$ ,  $n_m = 1.578$ ,  $n_g = 1.610$ ,  $2V = 73^{\circ}$  (изм.),  $70^{\circ}$  (выч.). Плеохроизм: по Np = Ng – бледно-голубой, по Nm – зеленовато-голубой. Дисперсия слабая, r < v. Даны рамановские спектры для обоих политипов. Хим. для политипа  $M_1$  (м.з., WDS, средн. из 6 опр.): Cu 30.17, C 22.60, H 2.84, O 45.23, сумма 100.84; Хим. для политипа M<sub>2</sub> (м.з., WDS, средн. из 7 опр.): Cu 29.98, C 22.20, H 2.83, O 44.94, сумма 99.95. Рентгенограмма для  $M_1$  (интенс. л.): 5.650(100)(011), 4.771(51.9)(10 $\overline{1}$ ), 3.344(63.2)(111),  $3.230(25.2)(11\overline{2})$ ,  $2.223(25.3)(13\overline{2})$ ,  $2.086(22.2)(2222\overline{2})$ . Рентгенограмма для  $M_2$  (интенс. л.): 5.622(100)(011),  $4.816(32.6)(10\overline{1})$ , 4.190(22.5)(110), 3.550(30.2)(111),  $3.289(20.4)(11\overline{2})$ , 2.732(14.3)(121), 2.209(24.2)(211). На одном из возвышений гор Санта Каталина, Тусон, шт. Аризона (США) с хризоколлой, малахитом, вульфенитом, миметизитом, гидроксилпироморфитом, гематитом, микроклином, мусковитом и кварцем. Назван в честь американских любителей поисков камней, нашедших минерал, г-на Уорена Лазара(Warren Lazar, b. 1950) и г-жи Беверли Раскин Росс (Beverly Raskin Ross, b. 1956). Yang H., Gu X., Gibbs R.B., Evans S.H., Downs R.T., Jibrin Z. Amer. Miner. 2022. Vol. 107. N 3. P. 509-516.

**106.** Марчеттиит (marchettiite) —  $C_5H_7N_5O_3$ . Трикл.с.  $P\overline{1}$ . a=3.6533, b=10.2046, c=10.5837 Å,  $\alpha=113.809^\circ$ ,  $\beta=91.313^\circ$ ,  $\gamma=92.44^\circ$ . Z=2. Агрегаты пластинчато-призмат. кристаллов до 200 мкм. Непрозрачный. Цв. бледно-розовый до белого. Черта белая. Бл. тускл. Хрупкий. Тв. 2—2.5. Сп. хорошая по {001}. Плотн. 1.69 (выч.). Двуосный(+).  $n_p=1.54$ ,  $n_m=1.55$ ,  $n_g=1.57$ ,  $2V=70^\circ$  (изм.),  $71.3^\circ$  (выч.). Даны ИК- и рамановский спектры. Хим. (м.з., средн. из 15 опр., Н и О выч. по стехиометрии): С 32.3, N 37.2, Н 3.8, О 25.9, сумма 99.2. Рентгенограмма (интенс. л.):  $8.685(37)(01\overline{1})$ , 5.666(75)(011),  $3.495(38)(01\overline{3})$ ,  $3.452(100)(10\overline{1})$ , 3.358(54)(110), 3.248(30)(003),  $3.150(52)(1\overline{11})$ ,  $3.010(49)(1\overline{2}1)$ . В расщелине г. Червандоне, Пьемонт (Италия) с альбитом, калишпатом, мусковитом, кварцем и уэвеллитом. Назван в честь нашедшего минерал итальянского коллекционера Джианфранко Марчетти (Gianfranco Marchetti). *Guastoni A., Nestola F., Zorzi A., Gentile P., Lorenzetti A.* Miner. Mag. 2022. Vol. 86. N 6. P. 996—974.

#### ВОПРОСЫ КЛАССИФИКАЦИИ И НОМЕНКЛАТУРЫ МИНЕРАЛОВ

**Силициды Fe** — обзор всех природных (как земных, так и внеземных) находок, описанных в литературе до 2021 включительно. *Rappenglück M.A.* Minerals. 2022. Vol. 12. N 2. paper 188.

**Кальциртита группа** — proposal IMA — CNMNC 21-G. Группа включает кальциртит, хиернеит, тажеранит. Решена стр-ра хиернеита, новая формула  $Ca_2Zr_4Mn^{3+}SbTiO_{16}$  вместо  $(Ca,Na,Mn^{2+})_2(Zr,Mn^{3+})_5(Sb,Ti,Fe^{3+})_2O_{16}$ . *Holtstam D., Bindi L.* Miner. Mag. 2022. Vol. 86. N 2. P. 314—318.

**Сигизмундит** — восстановление первоначального исторического названия вместо арроядита-(BaFe) (proposal IMA 22-C). *De Wit F., Mills S.J.* Europ. J. Miner. 2022. Vol. 34. N 3. P. 321—324.

Ангастонит — переопрелен как аморфный минерал (proposal IMA 21-J). *Grey I.E., Elliot P., Mumme N.G., MacRae C.M., Kampf A.R., Mills S.J.* Europ. J. Miner. 2022. Vol. 34. N 2. P. 215–221.

**Бераунит** — переопределен, идентичен элеонориту. Ф-ла (PO<sub>4</sub>)<sub>4</sub>O(OH)<sub>4</sub>·6H<sub>2</sub>O (proposal 21-D) IMA. *Vrtiška L., Tvrdý J., Plášil J., Sejkora J., Škoda R., Chukanov N.V., Massanek A., Filip J., Dolníček Z., Veselovský F.* Europ. J. Miner. 2022. Vol. 34. N 2. P. 223–238.

Вагнерит — арсеновагнерит — новый изоморфный ряд. Кошлякова Н.Н., Пеков И.В., Вигасина М.Ф., Агаханов А.А., Назаров М.А. Докл. РАН. 2022. Т. 507. № 1. С. 59—60.

**Филипсбергит** — переопределение как промежуточного члена изоморфной серии голдхиллит — филипсбергит — кипушит. Ф-ла  $Cu_5Zn[(AsO_4)(PO_4)](OH)_6H_2O$ . Ismagilova R.M., Rieck B., Kampf A.R., Giester G., Zhitova E.S., Lengauer C.L., Krivovichev S.V., Zolotarev A.A., Ciesielczuk J., Mikhailova J.A., Belakovvsky D.I., Bocharov V.N., Shilovskich V.V., Vlasenko N.S., Nash B.P., Adams P.M. Miner. Mag. 2022. Vol. 86. N 3. P. 436—446.

**Грандвьюит** — новая ф-ла Cu<sub>3</sub>Al<sub>2</sub>(SO<sub>4</sub>)(OH)<sub>10</sub>·H<sub>2</sub>O и триклинная сингония (proposal IMA 21-K). *Jiří Sejkora; Gwladys Steciuk; Maria Florencia Marquez-Zavalia; Jakub Plášil; Zdeněk Dolníček* Miner. Mag. 2022. Vol. 86. N 5. P. 730—742.

Велерита группа — дана номенклатура и классификационная схема. Новая ф-ла гиортдалита  $Na_2Ca_4(Ca_{0.5}Zr_{0.5})Zr(Si_2O_7)_2OF_3$ . Dal Bo F., Friis H., Mills S.J. Miner. Mag. 2022. Vol. 86. N 4. P. 661—676.

Эвдиалита группа — предложен новый алгоритм быстрого определения названия минералов этой группы по хим. составу. *Mikhailova J.A., Stepenshchikov D.G., Kalash-nikov A.O., Aksenov S.M.* Minerals. 2022. Vol. 12. N 2. paper 224.

**Бранчит** — восстановлено название, как имеющее приоритет перед идентичным ему хартитом (или гартитом) (proposal IMA 21-A). Последний дискредитирован. *Bonaccorsi E., Farina S., Biagioni C., Pasero M.* Miner. Mag. 2022. Vol. 86. N 3. P. 405—411.

#### НОВЫЕ РАЗНОВИДНОСТИ. НОВЫЕ ФОРМУЛЫ. НОВЫЕ СТРУКТУРЫ

**Перовскит** — кубическая разновидность из геленит-содержащих пород пиромета-морфического комплекса Хатрурим (Израиль). *Britvin S.N., Vlasenko N.S., Aslandukov A., Aslandukova A., Dubrovinsky L., Gorelova L.A., Krzhizhanovskaya M.G., Vereshchagin O.S., Bocharov V.N., Shelukhina Y.S., Lozhkin M.S., Zaitsev A.N., Nestola F. Amer. Miner. 2022. Vol. 107. N 10. P. 1936—1945.* 

**Хиернеит** — новая  $\phi$ -ла Ca<sub>2</sub>Zr<sub>5</sub>Ti<sub>2</sub>O<sub>16</sub>. *Holtstam D., Bindi L.* Miner. Mag. 2022. Vol. 86. N 2. P. 314—318.

**Мерриллит** — первая находка в земных условиях — включения в алмазах нижней мантии в районе Рио Серисо, Бразилия. *Kaminsky F.V., Zedgenizov D.A.* Amer. Miner. 2022. Vol. 107. N 8. P. 1652—1655.

**Уранотунгстит** — первое описание структуры. *Steciuk G., Kolitsch U., Goliáš V., Škoda R., Plášil1 J., Franz Xaver Schmidt F.X.* Amer. Miner. 2022. Vol. 107. N 9. P. 1709—1716.

**Тэнчунит** — новая пр. гр.  $C222_1$ , новая ф-ла  $Ca(UO_2)_6(MoO_4)_2O_5$ ·12 $H_2O$ . Li T., Fan G., Ge X., Wang T., Yu A., Deng L. Canad. Miner. 2022. Vol. 60. N 3. P. 533–542.

Шкатулкаит — решена стр-ра в трикл. сингонии P новая ф-ла  $Na_2Nb_2Na_3$ .  $Ti(Si_2O_7)_2O_2(FO)(H_2O)_4(H_2O)_3$ . Sokolova E., Day M.C., Hawthorne F.C., Cámara F. Canad. Miner. 2022. Vol. 60. N 3. P. 493—512.

## ДИСКРЕДИТАЦИЯ МИНЕРАЛОВ

Элеонорит — идентичен берауниту (proposal IMA 21-D). Vrtiška L., Tvrdý J., Plášil J., Sejkora J., Škoda R., Chukanov N.V., Massanek A., Filip J., Dolníček Z., Veselovský F. Europ. J. Miner. 2022. Vol. 34. N 2. P. 223—238.

Ферротеллурит — тождественен кейстоуниту (proposal IMA 19-G). Missen O.P., Back M.E., Mills S.J., Andrew C., Roberts A.C., LePage Y., Pinch W.W., Mandarino J.A. Canad. Miner. 2021. Vol. 59. N 2. P. 355—364.

**Гартит (или хартит)** — тождественен бранчиту (proposal IMA 21-A). *Bonaccorsi E., Farina S., Biagioni C., Pasero M.* Miner. Mag. 2022. Vol. 86. N 3. P. 405–411.

# СПИСОК МИНЕРАЛОВ, РАССМОТРЕННЫХ В ДАННОМ ОБЗОРЕ И УТВЕРЖДЕННЫХ КНМ ММА ДО ОПУБЛИКОВАНИЯ<sup>1</sup>

Альдомариноит (55)  $Sr_2Mn^{3+}(AsO_4)_2(OH)$ Алюминооксироссманит (88)  $\square Al_3Al_6(Si_5AlO_{18})(BO_3)_3(OH)_3O$ Амгаит (79)  $Tl_2^{3+}Te^{6+}O_6$ Аргентотетраэдрит-(Zn) (19)  $Ag_6(Cu_4Zn_2)Sb_4S_{13}$ Арсенудинаит (49) NaMg<sub>4</sub>(AsO<sub>4</sub>)<sub>3</sub> Беннешерит (83) Ba<sub>2</sub>Fe<sup>2+</sup>Si<sub>2</sub>O<sub>7</sub> Болотинаит (103) ( $Na_7\square$ )( $Al_6Si_6O_{24}$ ) $F \cdot 4H_2O$ Бортоланит (85)  $Ca_2(Ca_{1.5}Zr_{0.5})Na(NaCa)Ti(Si_2O_7)_2(FO)F_2$ Брейит (99) — Ca<sub>3</sub>Si<sub>3</sub>O<sub>9</sub> Бриджесит-(Ce) (71) CaCe<sub>2</sub>Cu<sub>6</sub>(SO<sub>4</sub>)<sub>4</sub>(OH)<sub>12</sub> · 8H<sub>2</sub>O Водегонгджеит (101)  $KCa_3(Al_7Si_9)O_{32}$ Гармит (97)  $CsLiMg_2(Si_4O_{10})F_2$ Гарпенбергит (56)  $Mn_6 \square As^{5+}Sb^{5+}O_{10}(OH)_2$ *Гачингит* (22) Au(Te<sub>1-x</sub>Se<sub>x</sub>), при  $0.2 \approx x \leq 0.5$ Гидроксилпироморфит  $(40) - Pb_5(PO_4)_3(OH)$ Гидроксимакглассонит-(K) (98)  $KSr_4Si_8O_{20}(OH) \cdot 8H_2O$ Голдхиллит (57)  $Cu_5Zn(AsO_4)_2(OH)_6 \cdot H_2O$ Граулихит-(La) (53) LaFe<sub>3</sub><sup>3+</sup> (AsO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub> Гуит-(27)  $Co^{2+}Co_2^{3+}O_4$ Гунгерит (13) TlAs<sub>5</sub>Sb<sub>4</sub>S<sub>13</sub> Гуржиит (74)  $Al(UO_2)(SO_4)_2F \cdot 10H_2O$ Дейвмаоит (100) —  $CaSiO_3$ Дендораит- $(NH_4)$  (46)  $(NH_4)_2NaAl(C_2O_4)(PO_3OH)_2(H_2O)_2$ Дондоэллит (41)  $Ca_2Fe(PO_4)_2 \cdot 2H_2O$ Доноуэнсит (62)  $Ca(H_2O)_3Fe_2^{3+}(V_2O_7)_2$ Золенскиит (10)  $FeCr_2S_4$ Золотаревит (91) Na<sub>5</sub>Zr[Si<sub>6</sub>O<sub>15</sub>(OH)<sub>3</sub>] 2-3H<sub>2</sub>O Иллокит-(Ce) (96) Na<sub>2</sub>NaBaCeZnSi<sub>6</sub>O<sub>17</sub> Казнахтит (35) Ni<sub>6</sub>Co<sub>2</sub><sup>3+</sup>(CO<sub>3</sub>)(OH)<sub>16</sub> · 4H<sub>2</sub>O Кингсгейтит (69)  $ZrMo_2^{6+}O_7(OH)_2 \cdot 2H_2O$ Козловскийт (86)  $Ca_4(Fe^{2+}Sn_3)(Si_2O_7)_2(Si_2O_6OH)_2$ Лазараскеит (105)  $Cu(C_2H_3O_3)_2$ Лаураниит (70)  $Cu_6Cd_2(SO_4)_2(OH)_{12} \cdot 5H_2O$ Лигоуит (26) WO<sub>3</sub> Ломбардоит (52)  $Ba_2Mn^{3+}(AsO_4)_2(OH)$ 

Курсивом выделены названия минералов, открытых учеными России и СНГ, а также изученных ими совместно с учеными других стран. Цифры в скобках после названия указывают на порядковый номер минерала в данном обзоре.

Магнезиоберманит (43)  $MgMn_2^{3+}(PO_4)_2(OH)_2 \cdot 4H_2O$ 

Майкговардит (63)  $Fe_4^{3+}(VO_4)_4(H_2O)_2 \cdot H_2O$ 

Марчеттиит (106) (NH<sub>4</sub>) $C_5H_3N_4O$ 

Маттиасвайлит (78)  $PbTe^{4+}O_3$ 

Медведевит (68)  $\textit{KMn}^{2+}\textit{V}_2^{5+}\textit{O}_6\textit{Cl} \cdot 2\textit{H}_2\textit{O}$ 

Менгеит (45)  $Ba(Mg,Mn^{2+})Mn_4^{3+}(PO_4)_4(OH)_4\cdot 4H_2O$ 

Михальскиит (64)  $Cu^{2+}Mg_3Fe_{3.33}^{3+}(VO_4)_6$ 

Муонионалустаит (24) —  $Ni_3(OH)_4Cl_2\cdot 4H_2O$ 

*Назаровит* (7) Ni<sub>12</sub>P<sub>5</sub>

Нафеасит (54) NaFe<sup>3+</sup>(AsO<sub>3</sub>OH)<sub>2</sub> · H<sub>2</sub>O

Николаиит (5) FeMoP

Нитроплюмбит (37)  $[Pb_4(OH)_4](NO_3)_4$ 

Нитчеит (75)  $(NH_4)_2[(UO_2)_2(SO_4)_3(H_2O)_2] \cdot 3H_2O$ 

Оксииттробетафит-(Y) (32)  $Y_2Ti_2O_6O$ 

*Орищинит* (6) (Ni,Fe,Mo)<sub>2</sub>P

Параберцелиит (51) NaCaCaMg<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>

Парадиморфит (9)  $\beta$ -As<sub>4</sub>S<sub>3</sub>

Парамаркейит (81)  $Ca_2(UO_2)(CO_3)_3 \cdot 5H_2O$ 

 $\Pi$ аратоберморит (94)  $Ca_4(Al_{0.5}Si_{0.5})_2Si_4O_{16}(OH)$  2 $H_2O$  (Ca 3 $H_2O$ )

Пертолдит (25) GeO<sub>2</sub>

Пирадокетосит (12)  $Ag_3SbS_3$ 

 $\Pi$ линиусит (61)  $Ca_5(VO_4)_3F$ 

Помит (65)  $Ca_3[V_5^{4+}V_{10}^{5+}O_{37}(CO_3)]$  37 $H_2O$ 

 $\Pi$ оходяшинит (14) CuTlSb<sub>2</sub>(Sb<sub>1-x</sub>Tl<sub>x</sub>)AsS<sub>7-x</sub>

Принчиваллеит (89)  $Na(Mn_2Al)Al_6(Si_6O_{18})(BO_3)_3(OH)_3O$ 

Протокейсеиит (67) [Al<sub>4</sub>(OH)<sub>6</sub>(H<sub>2</sub>O)<sub>12</sub>][V<sub>10</sub>O<sub>28</sub>] · 8H<sub>2</sub>O

Псевдодиктомссенит (58)  $Mg(VO_3)_2 \cdot 8H_2O$ 

Псевдопомит (66)  $Ca_{3.5}[V_6^{4+}V_9^{5+}O_{37}(CO_3)] \cdot 32H_2O$ 

Радваницеит (8) GeS<sub>2</sub>

Pезницкиит (60)  $CaMg(VO_4)F$ 

Релиансит-(K) (47)  $K_4Mg(V^{4+}O)_2(C_2O_4)(PO_3OH)_4(H_2O)_{10}$ 

Рипхукхиллит (38)  $\mathrm{MgZn_2(PO_4)_2} \cdot 4\mathrm{H_2O}$ 

Pумоиит (1) —  $AuSn_2$ 

Саккоит (36)  $Ca_2Mn_2^{3+}F(OH)_8 0.5(SO_4)$ 

Canoжниковит (102)  $Na_8(Al_6Si_6O_{24})(HS)_2$ 

Светланаит (21) SnSe

Сёсамбецуит (2) —  $Ag_3Sn$ 

Служеникинит (3)  $Pd_{15}(Sb_{7-x}Sn_x)$ ,  $3 \le x \le 4$ 

Стибиоголдфилдит (17)  $Cu_{12}(Sb_2Te_2)S_{13}$ 

Сеникит (76)  $[(UO_2)(H_2O)_2(SO_4)]_2$   $3H_2O$ 

Стибиоусталечит (18)  $Cu_6Cu_6(Sb_2Te_2)Se_{13}$ 

Сюйит (34)  $Ca_3Fe_2[(Al,Fe)O_3(OH)]_3$ 

Tамураит (11) —  $Ir_5 Fe_{10} S_{16}$ 

```
Теннантит-(Cu) (15) Cu_{12}As_4S_{13}
Теннантит-(Cd) (16) Cu<sub>6</sub>(Cu<sub>4</sub>Cd<sub>2</sub>)As<sub>4</sub>S<sub>13</sub>
Томиоллоит (80) Al_{12}(Te^{4+}O_3)_5[(SO_3)_{0.5}(SO_4)_{0.5}](OH)_{24}
Томскуориит (44) NaMgAl<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub>·8H<sub>2</sub>O
Торасфит (48) Th_2H(AsO_4)_2(PO_4) 6H_2O
Увит (87) CaMg_3(Al_5Mg)(Si_6O_{18})(BO_3)_3(OH)_3(OH)
Удинаит (59) NaMg<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub>
Ферритарамит (92) {}^{A}Nа{}^{B}(CaNa) {}^{C}(Mg<sub>3</sub>Fe<sub>2</sub><sup>3+</sup>)(Si<sub>6</sub>Al<sub>2</sub>)O<sub>22</sub>{}^{W}(OH)<sub>2</sub>
Ферробераунит (42) Fe^{2+}Fe_5^{3+}(PO_4)_4(OH)_5.6H_2O
Ферропапикеит (95) NaFe<sub>2</sub><sup>2+</sup>(Fe<sub>3</sub><sup>2+</sup>Al<sub>2</sub>)(Si<sub>5</sub>Al<sub>3</sub>)O<sub>22</sub>(OH)<sub>2</sub>
Ферроферрихолмквистит (93) \Box \text{Li}_2(\text{Fe}_3^{2+}\text{Fe}_2^{3+})\text{Si}_8\text{O}_{22}(\text{OH})_2
Феррофеттелит (20) [Ag_6As_2S_7][Ag_{10}FeAs_2S_8]
Флэггит (72) Pb_4Cu_4^{2+}Te_2^{6+}(SO_4)_2O_{11}(OH)_2(H_2O)
Фрэнксаусаит (77) PbCu(Se^{6+}O<sub>4</sub>(OH)<sub>2</sub>
Фторсигаиит (39) Ca_2Sr_3(PO_4)_3F
Химанит-(Ce) (31) (K_{0.5}Ce_{0.5})TiO<sub>3</sub>
Холениусит-(Ce) (23) CeOF
Хреновит (50) Na_3Fe_2^{3+}(AsO_4)_3
Цзинсуйит (4) TiB<sub>2</sub>
Цинконигерит-2N1S (29) ZnSn<sub>2</sub>Al<sub>12</sub>O<sub>22</sub>(OH)<sub>2</sub>
Цинконигерит-6N6S (30) Zn<sub>3</sub>Sn<sub>2</sub>Al<sub>16</sub>O<sub>30</sub>(OH)<sub>2</sub>
Цоизит-(Pb) (84) CaPbAl_3(SiO_4)(Si_2O_7)O(OH)
Челлериит (90) \square (Mn<sub>2</sub><sup>2+</sup>Al<sub>6</sub>(Si<sub>6</sub>O<sub>18</sub>)(BO<sub>3</sub>)<sub>3</sub>(OH)<sub>3</sub>(OH)
Ченоветит (73) Mg(H_2O)_6[(UO_2)_2(SO_4)_2(OH)_2] \cdot 5H_2O
Чукохенит (28) (Li_{0.5}Al_{0.5})Al_2O_4
Шахдараит (33) ScYNb<sub>2</sub>O<sub>8</sub>
Штойделит (104) (Na<sub>3</sub>\square)[(K,Na)<sub>17</sub>Ca<sub>7</sub>]Ca<sub>4</sub>(Al<sub>24</sub>Si<sub>24</sub>O<sub>96</sub>)(SO<sub>3</sub>)<sub>6</sub>F<sub>6</sub>·4H<sub>2</sub>O
Эльгоресиит (82) — (Mg_5Si_2)O_9
```

Работа выполнена в рамках Базовой темы Лаборатории петрографии ИГЕМ РАН "Петрология и минерагения магматизма конвергентных и внутриплитных обстановок: история формирования крупных континентальных блоков", регистрационный № ЕГИСУ НИОКТР 121041500222-4.

#### New Minerals, LXXVII

#### V. N. Smolyaninova\*

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Moscow, Russia \*e-mail: smolvernik@yandex.ru

The paper displays review of new minerals published in 2022. Data for each one mineral include its crystal-chemical formula, unit cell parameters, principal physical properties, chemical composition, type locality, etymology of its name, reference of the first publishing about it. In total, the review includes data on 106 newly discovered minerals approved by the IMA. There are also references for publications on questions of classification and nomenclature of minerals, improvements of composition and structure of known mineral species.

Keywords: new minerals