=МИНЕРАЛЫ И ПАРАГЕНЕЗИСЫ МИНЕРАЛОВ—

САНТАБАРБАРАИТ ИЗ КАМЫШ-БУРУНСКОГО ЖЕЛЕЗОРУДНОГО МЕСТОРОЖДЕНИЯ, КРЫМ

© 2024 г. Д. чл. Ю. Д. Гриценко^{1, 2, *}, Л. П. Огородова^{1, **}, М. Ф. Вигасина¹, Д. А. Ксенофонтов¹, С. К. Дедушенко³, Л. В. Мельчакова¹, И.П. Большиянов⁴

¹Московский государственный университет имени М.В. Ломоносова, геологический факультет, Ленинские Горы, 1, Москва, 119991 Россия ²Минералогический музей им. А.Е. Ферсмана РАН, Ленинский пр., 18, Москва, 119692 Россия ³Национальный исследовательский технологический университет МИСИС, Ленинский пр., 4, Москва, 119049 Россия ⁴Палеонтологический институт им. А.А. Борисяка РАН, Профсоюзная, 123, Москва, 117647 Россия *e-mail: ygritsenko@rambler.ru **e-mail: logor48@mail.ru

> Поступила в редакцию: 12.03.2024 г. После доработки: 08.04.2024 г. Принята к публикации: 10.04.2024 г.

В образцах из Камыш-Бурунского месторождения (Керченский железорудный бассейн, Крым) изучен сантабарбараит состава ($Fe_{2.74}^{3+}Mg_{0.09}Na_{0.14}K_{0.03})_{\Sigma=3.00}(PO_4)_{2.00}(OH)_{2.57} ×$ $×5.02H_2O, образующий полные и частичные псевдоморфозы по кристаллам вивиа$ нита. Комплексное физико-химическое исследование проведено методами порошковой рентгенографии, электронно-зондового и термического анализов, ИК и мёссбауэровской спектроскопии. На микрокалориметре Кальве методом растворения $в расплаве состава <math>2PbO \cdot B_2O_3$ получены первые данные по энтальпии образования изученного сантабарбараита ($-4849 \pm 12 \text{ кДж/моль}$) и сантабарбараита идеального состава $Fe_3^{3+}(PO_4)_2(OH)_3 \cdot 5H_2O$ ($-4900 \pm 12 \text{ кДж/моль}$); для них оценены значения энтропии ($489 \text{ и } 494 \text{ Дж/(моль} \cdot K$) и энергии Гиббса образования (-4223 ± 12 и $-4257 \pm 12 \text{ кДж/моль}$) соответственно. Расчет энергии Гиббса реакций окисления вивианита подтвердил возможность образования сантабарбараита непосредственно по вивианиту, без образования на промежуточной стадии метавивианита.

Ключевые слова: сантабарбараит, метавивианит, мёссбауэровская спектроскопия, ИК спектроскопия, термический анализ, электронно-зондовый анализ, микрокалориметрия Кальве, энтальпия, энергия Гиббса, Камыш-Бурунское месторождение **DOI**: 10.31857/S0869605524040048, **EDN**: PDFNDL

введение

Сантабарбараит — рентгеноаморфный минерал с идеализированной формулой Fe_3^{3+} (PO₄)₂(OH)₃·5H₂O (Pratesi et al., 2003). Он давно известен в окисленных железных рудах Керченского бассейна в Крыму, где псевдоморфно замещает вивианит (Чуканов, 2005). Псевдоморфозы по друзам вивианита описывались под названием «оксикерченит», а массивные и порошковатые разновидности этого минерала известны под названием «босфорит». Как самостоятельный минеральный вид сантабарбараит был описан и утвержден Комиссией по новым минералам ММА только в 2003 году на образцах из рудников Санта Барбара, Кастельнуово де Саббиони, Каврилья, в провинции Ареццо,

область Тоскана, Италия (Pratesi et al., 2003). Химическая формула сантабарбараита аналогична формуле алланпрингита, обнаруженного в 1999 году в Германии, изученного в работе (Kolitsch et al., 2006) и утвержденного ММА в 2004 году. По мнению исследователей, моноклинный алланпрингит может рассматриваться как полиморфная модификация аморфного сантабарбараита. Последний является фосфатным аналогом рентгено-аморфного минерала феррисимплезита $Fe_3^{3+}(AsO_4)_2(OH)_3$ ·5H₂O. История находок сантабарбараита в России подробно описана в опубликованных работах (Чуканов, 2005; Пономарев и др., 2017). Обнаруженные в начале прошлого века на Керченском полуострове водные фосфаты двух и трехвалентного железа были названы керченитами (Попов, 1938). Конечный продукт окисления керченского вивианита — аморфный водный фосфат трехвалентного железа, называемый ранее оксикерченитом (Пономарев и др., 2017), идентичен сантабарбараиту.

Сантабарбараит образует псевдоморфозы по кристаллам вивианита $Fe_3^{2+}(PO_4)_2 \cdot 8H_2O$ в процессе его окисления. Некоторыми авторами отмечается образование промежуточных фаз, в том числе метавивианита $Fe_2^{2+}Fe_2^{3+}(PO_4)_2(OH)_2 \cdot 6H_2O$ (Попов, 1938; Чуканов, 2005; Prot et al., 2021), однако убедительных доказательств этому не приводится.

Сантабарбараиту посвящено всего несколько статей. В работе (Pratesi et al., 2003) методами термического анализа, инфракрасной спектроскопии и спектроскопии ХАΝЕЅ изучен сантабарбараит из Италии (Вальдарно, Тоскано) и Австралии (водопад Ваннон, Виктория). В работе (Frost et al., 2016) методами термогравиметрии, ИК и КР спектроскопии исследован образец из Италии. В работе (Пономарев и др., 2017) теми же методами изучен сантабарбараит из зоны окисления Меднорудянского месторождения (Средний Урал). В публикации (Fagel et al., 2005) приведены ИК спектры вивианита и сантабарбараита из донных отложений озера Байкал.

Настоящая работа посвящена комплексному исследованию сантабарбараита. Она продолжает серию физико-химических исследований природных водо- и гидроксилсодержащих фосфатов различного генезиса с широким катионным составом: Na, Ca, Mg, Cu, Fe²⁺, Fe³⁺, Al (Ogorodova et al., 2017; Огородова и др., 2018a, 6; 2020; 2022; Гриценко и др., 2022; 2023). Подобные исследования для крымского сантабарбараита проводятся впервые.

ОБЩИЕ СВЕДЕНИЯ О МЕСТОРОЖДЕНИИ

В качестве объекта исследования был выбран образец сантабарбараита из Камыш-Бурунского месторождения (Керчь, Крым). История геологического изучения керченских железорудных месторождений и многочисленных минералов фосфатов железа насчитывает уже несколько столетий. В первых описаниях руд из окрестностей сел Камыш-Бурун и Яныш-Такил, сделанных К. Габлицем и П. С. Палласом в 1795 г., отмечались оолитовое («гороховое») строение железной руды, присутствие в ней «синей вохры» (т. е. вивианита) и остатков ископаемой фауны. Добыча руды на месторождениях Керченского бассейна началась в конце XIX века. В 1994 году она была полностью прекращена. Основные рудные запасы Керченского железорудного бассейна сосредоточены в шести крупных мульдах: Камыш-Бурунской, Эльтиген-Ортельской, Акманайской, Чегене-Салынской, Катерлизской и Кыз-Аульской.

Керченский железорудный бассейн объединяет несколько месторождений осадочных оолитовых железных руд, приуроченных к крупным мульдам широтного простирания протяженностью до 40 км и шириной от 1.5 до 13 км. Железные руды практически всех мульд можно наблюдать в обнажениях вдоль побережья Керченского пролива и Азовского моря (Юрк и др., 1960).

Железорудный горизонт приурочен к морским отложениям плиоцена и представлен пологозалегающими пластами песчано-глинистых киммерийских пород с оолитовыми железными рудами, которые подстилаются известняками и глинами и перекрываются песчанистыми породами. Мощность рудных залежей от 0.5 м в краевых и до 40 м в центральных частях мульды. В составе рудного горизонта выделяются: а) первичные руды (табачные и карбонатные), б) вторичные руды (коричневые), образовавшиеся при окислении табачных руд, и конкреционные, которые образовались при окислении карбонатных руд; в) икряные руды, залегающие среди табачных и коричневых руд и являющиеся результатом их перемыва в бассейне осадконакопления (Малаховский, 1956).

Табачные руды, характерные для нижних и относительно глубоко залегающих частей рудного пласта, образовались при диагенетическом преобразовании материала, поступившего в опресненные лагуны с суши вместе с органическим веществом. Табачные руды представляют собой плотные оолитовые породы и состоят в основном из Fe-, Mn- силикатов и карбонатов, гётита, а также содержат вивианит, реже анапаит. Оолиты сложены чередующимися слоями с преобладанием силикатного и гётитового состава. Вторичные (коричневые) руды образовались за счет табачных руд при их окислении. Главную роль в составе коричневых руд играет гётит (Малаховский, 1956). Икряные руды получили свое название из-за внешнего сходства с черной икрой. Как правило, они образовывались в перемещающейся в периоды регрессий прибойной зоне киммерийских лагун путем переотложения оолитов с их дроблением и окатыванием. По внешнему виду — это черные или буровато-черные рыхлые или слабо сцементированные массы, в составе которых оолиты по объему резко преобладают над цементом. Они залегают среди табачных или коричневых руд и связаны с ними постепенными переходами.

Среди табачных руд наиболее типичны находки вивианита, в то время как сантабарбараит обнаруживается в основном в сильно окисленных вторичных рудах.

Кристаллизация вивианита проходила в полостях внутри конкреций, в раковинах моллюсков, а также на контакте с плотными серовато-зелеными конкрециями сидерита. Наиболее крупные линзовидные полости с друзами вивианита, достигающие 30—40 см в длину, возможно, первоначально образовывались как газовые пузыри в результате разложения органических остатков в иле древнего Киммерийского моря (Чуканов, 2005). Возможно, вивианит образовывался при взаимодействии сидерита из конкреций с фосфорной кислотой, просачивавшейся через железорудные толщи.

Одним из продуктов окисления вивианита является метавивианит с идеализированной формулой $Fe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2GH_2O$. Впервые метавивианит был найден и описан как новый минерал (триклинный диморф вивианита) в пегматите на руднике Биг Чиф (Глендейл, Южная Дакота, США) в виде мельчайших кристалликов в ассоциации с крыжановскитом и трифилином (Ritz et al., 1974). В Керченском железорудном бассейне метавивианит часто обогащен марганцем. В образцах из Керченского железорудного бассейна метавивианит был диагностирован рентгенографически (Чуканов, 2005). Он встречается в виде корок и сталактитоподобных образований длиной до 5 см в крупных линзовидных полостях в табачных рудах, образует плотные порошковатые агрегаты насыщенного синего цвета, иногда слагает большую часть радиальных агрегатов или их центральные части.

Сантабарбараит известен только в глубоко окисленных коричневых рудах, где он нередко сопровождается гидроксидами железа и марганца, митридатитом и гипсом. Замещая вивианит, сантабарбараит наследует все морфологические особенности его агрегатов (Чуканов, 2005). Сантабарбараит, заместивший кристаллический вивианит, обычно имеет плотное сложение и блестящую поверхность агрегатов и коричневый цвет разных оттенков — от желто-коричневого до шоколадного и печеночно-бурого. Псевдоморфозы по порошковатому вивианиту имеют вид охряно-желтых или бурых рыхлых масс.

ОПИСАНИЕ ОБРАЗЦОВ

Изученные нами образцы сантабарбараита были отобраны в 2008 году на восточном борту карьера А Камыш-Бурунского месторождения. В борту карьера, на высоте один метр выше уровня воды обнажается слой окисленных коричневых оолитовых руд, содержащих отдельные мелкозернистые плотные конкреции зеленовато-серого сидерита, по верхнему контакту которых развиты вытянутые уплощенные полости

Рис. 1. Уплощенная полость с радиально-лучистыми и сноповидными агрегатами пластинчатых кристаллов сантабарбараита охряно-коричневого цвета, наросших на тонкую корку сидерита черного цвета с синеватым отливом среди окисленных коричневых руд.

а — положение полостей с сантабарбараитом *in situ* в борту карьера; б — увеличенный фрагмент фото а;
 в — сферолитовые и сноповидные агрегаты сантабарбараита;
 г — сноповидные агрегаты сантабарбараита;
 к — сноповидные агрегаты сантабарбараита.
 Восточный борт карьера А, Камыш-Бурунское месторождение, Керчь. Фото: А.А. Околотков.

Fig. 1. A flattened cavity with radiated and sheaf-shaped aggregates of lamellar crystals of ochre-brown santabarbaraite, overgrown on a thin crust of black siderite with a bluish tint among oxidized brown ores. a – position of cavities with santabarbaraite *in situ* on the side of the quarry; δ – enlarged fragment of photo a; e – spherulitic and sheaf-shaped aggregates of santabarbaraite; e – sheaf-shaped aggregates of santabarbaraite. Eastern side of the quarry A, Kamysh-Burunskoye deposit, Kerch. Photo by A.A. Okolotkov.

до 40 см в поперечнике, содержащие радиально-лучистые и сноповидные агрегаты пластинчатых кристаллов сантабарбараита охряно-коричневого цвета, наросшие на тонкую корку сидерита черного цвета с синеватым отливом (рис. 1). В редких случаях в западной части карьера A и в карьере B среди окисленных и табачных руд встречаются полости, содержащие частичные псевдоморфозы сантабарбараита по пластинчатым кристаллам вивианита (рис. 2), друзовые, радиально-лучистые и сталактитоподобные агрегаты пластинчатых кристаллов вивианита, а также голубые и ярко синие порошковатые агрегаты вивианита более поздних генераций. Западнее в карьере Е встречается, в основном, вивианит, редко — метавивианит, диагностированный нами рентгенографическим и ИК-спектроскопическим методами; сантабарбараит здесь установлен не был.

Для физико-химического изучения были отобраны однородные фрагменты псевдоморфоз сантабарбараита по крупным кристаллам вивианита из друзовых агрегатов, извлеченных из описанных выше полостей.

Рис. 2. Частичная псевдоморфоза сантабарбараита (охряно-бурый) по пластинчатым кристаллам вивианита (темно-синий до черного) на корке сидерита (черный с синеватым отливом), покрывающем оолитовые окисленные руды (бурый).

а — ширина поля зрения 5 см; *б* — увеличенный фрагмент рис. *а*.

Fig. 2. Partial pseudomorphosis of santabarbaraite (ochre-brown) on plate-like crystals of vivianite (dark blue to black) on a siderite crust (black with a bluish tint) covering oolitic oxidized ores (brown). a – field of view width is 5 cm; δ – enlarged fragment of Fig. a.

МЕТОДЫ ИССЛЕДОВАНИЯ

Рентгенографическое изучение выполнено на порошковом дифрактометре STOE-STADI MP (Германия) с изогнутым монохроматором Ge (III), обеспечивающим строго монохроматическое Cu-K α -излучение ($\lambda = 1.541874$ Å). Сбор данных осуществлялся в режиме поэтапного перекрывания областей сканирования с помощью позиционно-чувствительного линейного детектора с углом захвата 5° по углу 2 Θ с шириной канала 0.02°.

ИК-спектроскопическое исследование проведено на Фурье-спектрометре ФСМ-1201, точность определения волновых чисел $\pm 2 \text{ см}^{-1}$ при накоплении по 20 сканированиям в режиме пропускания при комнатной температуре на воздухе на образцах, приготовленных в виде суспензии в вазелиновом масле, нанесенной на пластинку KBr.

Термический анализ минерала осуществлен на дериватографе Q — 1500D (Венгрия) в интервале температур от комнатной до 800 °C со скоростью нагревания 20 °/мин, масса образца составляла 192.0 мг.

Гамма-резонансное исследование выполнено на мёссбауэровском спектрометре MS-1104Em (Россия) с использованием источника 57 Co/Rh активностью 0.10 ГБк. Моделирование спектра осуществлялось с применением российской компьютерной программы HappySloth (www.happysloth.ru). Изомерные сдвиги представлены относительно сдвига α -железа при комнатной температуре.

Химический состав минерала определен на сканирующем электронном микроскопе JSM-6480LV (JEOL Ltd., Japan) с W термоэмиссионным катодом с энергодисперсионным спектрометром X-Max-50 (Oxford Instruments Ltd., GB) при ускоряющем напряжении

49

20 кВ, силе тока 10.05 ± 0.05 нА. Обработка данных была проведена в программе INCA (Oxford Instruments, v. 22).

Термохимическое исследование проведено на высокотемпературном теплопроводящем микрокалориметре Тиана—Кальве Setaram (Франция) методом растворения в расплаве состава 2PbO·B₂O₃ с использованием термохимического цикла, включающего растворение минерала и составляющих его компонентов. Эксперименты были выполнены методом «сброса» образцов массой 4—8 ($\pm 2 \cdot 10^{-2}$) мг от комнатной температуры в калориметр с расплавом — растворителем, находящимся при *T* = 973 К. Зарегистрированный в ходе опыта тепловой эффект был суммой приращения энтальпии образца [(H^0 (973 K) — H^0 (298.15 K)] и энтальпии его растворения $\Delta_{\text{раств}}H^0$ (973 K). При осуществлении 6—8 экспериментов в одной порции расплава (30—35 г) соотношение растворенное вещество — растворитель соответствовало бесконечно разбавленному раствору с пренебрежимо малой энтальпией смешения. Для калибровки микрокалориметра использовалось эталонное вещество — платина, величина приращения энтальпии которой [(H^0 (973 K) — H^0 (298.15 K)] заимствовалась в (Robie, Hemingway, 1995).

Исследования на мёссбауэровском спектрометре MS1104Em проводились на кафедре технологии материалов электроники НИТУ МИСИС, исследования на прочем аналитическом оборудовании — на геологическом факультете МГУ.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгенография. Порошковая рентгенограмма изученного образца не содержит выраженных пиков, что характерно для аморфных фаз, в том числе и для сантабарбараита (Pratesi et al., 2003).

ИК спектроскопия. Спектр инфракрасного поглощения изучаемого образца сантабарбараита (рис. 3, *a*) имеет простую форму, характерную для водосодержащего вещества, находящегося в аморфном состоянии. Очень интенсивная широкая полоса с максимумом поглощения при 3250 см⁻¹ относится к валентным колебаниям O–H связей в молекулах воды и в отдельных гидроксильных группах; полоса поглощения при 1637 см⁻¹ соответствует деформационным колебаниям молекул H₂O; интенсивная нерасщепленная полоса в диапазоне 840—1260 см⁻¹ с максимумом при 1030 см⁻¹ относится к валентным симметричным и асимметричным колебаниям анионов (PO₄)^{3–}; слабо расщепленная полоса поглощения в спектральной области ниже 700 см⁻¹ с максимумами при 468 и 550 см⁻¹ соответствует деформационным колебаниям PO₄-тетраэдров. В целом, полученный спектр ИК поглощения идентичен спектру сантабарбараита из зоны окисления Меднорудянского месторождения, Урал (Пономарев и др., 2017).

Термический анализ. Кривые нагревания изученного сантабарбараита, представленные на рис. 4, идентичны таковым для образца из Меднорудянского месторождения (Пономарев и др. 2017). На термогравиметрических кривых ТГ и ДТГ наблюдается два этапа потери массы: в интервале 60—300 °C с максимумом при ~ 150 °C и в интервале 300—800 °C с максимумами при ~375 и ~420 °C. Первый диапазон температур соответствует удалению молекулярной воды, второй — удалению оставшейся воды и ОНгрупп. Суммарная потеря массы составила 23.5 мас. %. Кривая ДТА зафиксировала два эндотермических эффекта, связанных с процессами дегидратации и дегидроксилирования сантабарбараита и экзотермические эффекты в интервале 630—800 °C.

На ИК спектре образца после нагревания до 800 °С (рис. 3, б) зарегистрировано полное отсутствие в нем воды и гидроксильных групп, а также присутствие вновь образованной фазы Fe₃³⁺O₃(PO₄), спектр которой согласуется со спектром № Р490 минерала граттаролаита из рудника Санта-Барбара, Италия (Chukanov, Chervonnyi, 2016). Наличие в спектре расщепленных линий поглощения указывает на то, что образовавшееся вещество кристаллическое, а не аморфное. Полоса поглощения с максимумами

** — область поглощения вазелинового масла.

Fig. 3. IR spectra of studied santabarbaraite (a) and products of its heating to 800 °C (6).

** - vaseline oil absorption region.

при 1100, 1057 и 1020 см⁻¹ соответствует расщепленной трижды вырожденной моде валентных колебаний PO_4 -тетраэдров, что указывает на понижение симметрии тетраэдров в структуре граттаролаита; компонента с максимумом при 931 см⁻¹ относится к симметричным валентным колебаниям тетраэдров; дублет при 569 и 600 см⁻¹ соответствует расщепленной трижды вырожденной моде деформационных колебаний;

Рис. 4. Кривые нагревания изученного сантабарбараита. **Fig. 4**. Heating curves of studied santabarbaraite.

низкочастотная полоса поглощения при 430 см⁻¹ приписывается дважды вырожденной деформационной моде колебаний.

Рентгенограмма образца, прокаленного при 850 °С, содержит рефлексы трех фаз, соответствующих гематиту (карточка № 01-089-0597), родоликоиту FePO₄ (карточка № 00-050-1635) и граттаролаиту Fe₃³⁺O₃(PO₄) (карточка № 00-050-1634), диагностированных в соответствии с базой данных ICDD (The International Centre for Diffraction Data, 2013).

Мёссбауэровская спектроскопия. Мёссбауэровский спектр образца сантабарбараита, полученный при комнатной температуре (рис. 5), представляет собой две уширенные линии одинаковой интенсивности и полуширины. Аналогичный спектр был получен в работе (Платонов и др., 1972) для оксикерченита (после 2003 года — сантабарбараит); авторами было установлено, что в этом минерале железо присутствует только в степени окисления +3 и находится в искаженных октаэдрических позициях. В этой же работе отмечалось, что в структуре вивианита, в результате окисления которого образуется сантабарбараит, присутствуют два типа Fe-октаэдров с различным составом лигандов — Fe³⁺(1) O₂(H₂O)₄ и Fe³⁺(2,3) O₄(H₂O)₂, причем последние октаэдры спарены по ребру O–O. Кристаллическим аналогом аморфного сантабарбараита является минерал алланпрингит (Kolitsch et al., 2006). В его структуре трехвалентное железо присутствует в трех кристаллографических позициях в равных количествах. На основании результатов исследований, изложенных в работах (Платонов и др., 1972; Kolitsch et al., 2006), полученный спектр исследованного в настоящей работе образца

Рис. 5. Мёссбауэровский спектр изученного сантабарбараита при комнатной температуре. Точками показаны экспериментальные данные, сплошной линией — результирующий спектр.

Fig. 5. Mössbauer spectrum of studied santabarbaraite at room temperatureto Dots show experimental data, solid line shows the resulting spectrum.

сантабарбараита был описан двумя дублетами с соотношением интенсивностей 1:2 и равными изомерными сдвигами. Такая модель привела к хорошему результату: ${}^{RT}IS_{\alpha-Fe} = 0.39(1) \text{ MM} \cdot \text{c}^{-1}, {}^{RT}QS_1 = 0.56(4) \text{ MM} \cdot \text{c}^{-1}, FWHM_1 = 0.38 \text{ MM} \cdot \text{c}^{-1}, {}^{RT}QS_2 = 0.87(2) \text{ MM} \cdot \text{c}^{-1}, FWHM_2 = 0.58 \text{ MM} \cdot \text{c}^{-1}, \chi^2 = 1.1(1).$ Разные квадрупольные расщепления можно объяснить разным составом лигандов в полиэдре Fe³⁺(1), с одной стороны, и в паре одинаковых по составу полиэдров Fe³⁺(2) и Fe³⁺(3) — с другой. Полученные данные подтверждают, что в изученном образце сантабарбараита все железо находится в степени окисления +3. Признаки магнитных взаимодействий в веществе не зафиксированы.

Химический состав. В составе изученного сантабарбараита (табл. 1) установлены примеси калия и натрия (до 1.2 мас. % Na_2O и до 0.4 мас. % K_2O). Подобные содержания щелочных элементов описаны в образцах сантабарбараита из Меднорудянского месторождения на Среднем Урале (Пономарев и др., 2017). В образцах из Италии и Австралии, описанных в работе (Pratesi et al. 2003), отмечается также присутствие незначительных количеств Ca, Mg, Mn.

На основании результатов электронно-зондового микроанализа (средние значения из 5 измерений), термического анализа и мёссбауэровской спектроскопии была рассчитана химическая формула изученного сантабарбараита (Fe³⁺_{2.74} Mg_{0.09}Na_{0.14}K_{0.03}) $_{\Sigma=3.00}$ (PO₄)_{2.00}(OH)_{2.57}·5.02H₂O, расчет проводился на сумму катионов, равную 5 атомам на формулу. Полученная формула близка к идеальной формуле сантабарбараита Fe³⁺₃ (PO₄)₂(OH)₃·5H₂O.

Таблица 1. Содержание основных компонентов	(мас. %)) в изученном (образце сан	габарбараита
по данным электронно-зондового анализа				

Table 1. Contents of main components (wt %) of studied santabarbaraite sample according to electron probe data

N⁰	Na ₂ O	K ₂ O	MgO	Fe ₂ O ₃	P ₂ O ₅	Сумма
1	1.15	0.28	0.74	47.22	30.84	80.23
2	1.16	0.25	0.67	46.68	30.15	78.91
3	0.88	0.40	0.65	46.82	30.31	79.06
4	0.94	0.40	1.04	46.10	30.93	79.41
5	0.64	0.37	0.85	46.49	20.06	78.41
Среднее	0.95	0.34	0.79	46.66	30.46	79.20

Термохимическое исследование. Среднее из 7 экспериментов значение измеренного на микрокалориметре Кальве суммарного теплового эффекта [$H^{\circ}(973 \text{ K})$ – $-H^{\circ}(298.15 \text{ K})$ + $\Delta_{\text{раств}}H^{\circ}(973 \text{ K})$] составило 1263.0 ± 11.2 Дж/г = 610.9 ± 5.4 кДж/моль (M = 483.69 г/моль), погрешности определены с вероятностью 95%.

С использованием полученных калориметрических данных и реакций (1), (4) и уравнений (2), (3), (5) и (6) была рассчитана энтальпия образования из элементов изученного образца сантабарбараита:

$$2.74/2 \text{ Fe}_{2}O_{3} + 0.09 \text{MgO} + 0.14/2 \text{ Na}_{2}O + 0.03/2 \text{ K}_{2}O + P_{2}O_{5} + 12.61/3 \text{ Al}(\text{OH})_{3} = = (\text{Fe}_{2.74}^{3+} \text{Mg}_{0.09} \text{Na}_{0.14} \text{K}_{0.03})_{\Sigma=3.00} (\text{PO}_{4})_{2.00} (\text{OH})_{2.57} \cdot 5.02 \text{H}_{2}O + 12.61/6 \text{ Al}_{2}O_{3},$$
(1)

$$\Delta_{\text{p-ции(1)}} H^{\circ}(298.15 \text{ K}) = 2.74/2 \Delta H \text{Fe}_2 \text{O}_3 + 0.09 \Delta H \text{MgO} + 0.14/2 \Delta H \text{Na}_2 \text{O} + 0.03/2 \Delta H \text{K}_2 \text{O} + \Delta H \text{P}_2 \text{O}_5 + 12.61/3 \Delta H \text{Al}(\text{OH})_3 - 0.000 \text{ C} \text{O}_3 + 0.000 \text{ C}$$

$$-\Delta H (Fe_{2.74}^{3+} Mg_{0.09} Na_{0.14} K_{0.03})_{\Sigma=3.00} (PO_4)_{2.00} (OH)_{2.57} \cdot 5.02 H_2 O - 12.61/6 \Delta HAl_2 O_3, \quad (2)$$

$$\Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ W} \text{ S} \text{ Y} \text{ Call adaptical polarity} = \Delta_{p-1100(1)}H^{\circ}(298.15 \text{ K}) \text{ H}^{\circ}(298.15 \text{ K}) \text{ K}^{\circ} + 2.74/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ Fe}_{2}\text{O}_{3} + 0.09 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ MgO} + 0.14/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ Na}$$

$$+ 0.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ PO} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ K} \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ O} + 4.03/2 \Delta_{f}H^{\circ}(29$$

$$(0.03/2 \Delta_f \Pi (298.13 \text{ K}) \text{K}_2 \text{O} + \Delta_f \Pi (298.13 \text{ K}) \text{F}_2 \text{O}_5 + \Omega_5 \text{O}_5 \text{O}_5$$

 0

+ 12.61/3
$$\Delta_f H^{\circ}$$
 (298.15 K)Al(OH)₃-12.61/6 $\Delta_f H^{\circ}$ (298.15 K)Al₂O₃, (3)

и сантабарбараита идеального состава:

$$3/2 \operatorname{Fe}_{2}O_{3} + P_{2}O_{5} + 13/3 \operatorname{Al}(OH)_{3} = \operatorname{Fe}_{3}^{3+}(PO_{4})_{2}(OH)_{3} \cdot \operatorname{5H}_{2}O + 13/6 \operatorname{Al}_{2}O_{3}, \qquad (4)$$

$$\Delta_{\text{p-цин(4)}} H^{\circ}(298.15 \text{ K}) = 3/2 \Delta H \operatorname{Fe}_{2}O_{3} + \Delta H P_{2}O_{5} + 13/3 \Delta H \operatorname{Al}(OH)_{3} - - \Delta H \operatorname{Fe}_{3}^{3+}(PO_{4})_{2}(OH)_{3} \cdot \operatorname{5H}_{2}O - 13/6 \Delta H \operatorname{Al}_{2}O_{3}, \qquad (5)$$

$$\Delta_{f}H^{\circ}(298.15 \text{ K})$$
сантабарбараит = $\Delta_{p-ции(4)}H^{\circ}(298.15 \text{ K}) + 3/2 \Delta_{f}H^{\circ}(298.15 \text{ K})$ Fe₂O₃ +

+
$$\Delta_{f}H^{\circ}(298.15 \text{ K})P_{2}O_{5}$$
 + 13/3 $\Delta_{f}H^{\circ}(298.15 \text{ K})Al(OH)_{3}$ -13/6 $\Delta_{f}H^{\circ}(298.15 \text{ K})Al_{2}O_{3}$, (6)

где $\Delta H = [H^{\circ}(973 \text{ K}) - H^{\circ}(298.15 \text{ K}) + \Delta_{\text{раств}}H^{\circ}(973 \text{ K})]$ — термохимические данные для оксидов железа, фосфора, алюминия, магния, натрия, калия и гидроксида алюминия (табл. 2); $\Delta_{f}H^{\circ}(298.15 \text{ K})$ — значения энтальпий образования из элементов компонентов реакций (1) и (4) (табл. 2), взятые из справочного издания (Robie, Hemingway, 1995). Расчет энтальпии образования сантабарбараита идеального состава проводился с использованием пересчитанных на его молекулярную массу (M = 498.58 г/моль). калориметрических данных для изученного природного образца. Полученные данные по $\Delta_{f}H^{\circ}(298.15 \text{ K})$ приведены в табл. 3.

Таблица 2. Термохимические данные (кДж/моль), использованные в расчетах энтальпий образования сантабарбараита и метавивианита

Table 2. Thermochemical data (kJ/mol) used in the calculation of enthalpy of the formation of santabarbaraite and metavivianite

Компонент	$H^{\circ}(973 \text{ K}) - H^{\circ}(298.15 \text{ K}) + \Delta_{\text{pactb}}H^{\circ}(973 \text{ K})$	$-\Delta_{f}H^{\circ}(298.15 \text{ K})*$
Na ₂ O (к.)	$-111.8 \pm 0.8^{2*}$	414.8 ± 0.3
К ₂ О (к.)	$-193.7 \pm 1.1^{2*}$	363.2 ± 2.1
MgO (периклаз)	$36.38 \pm 0.49^{3*}$	601.6 ± 0.3
FeO (к.)	$-60.5 \pm 2.4^{4*}$	272.0 ± 2.1
Al ₂ O ₃ (корунд)	$107.38 \pm 0.59^{5*}$	1675.7 ± 1.3
Fe ₂ O ₃ (гематит)	$171.6 \pm 1.9^{6*}$	826.2 ± 1.3
Al(OH) ₃ (гиббсит)	$172.6 \pm 1.9^{7*}$	1293.1 ± 1.2
Р ₂ О ₅ (к.)	$-326.48 \pm 1.21^{8*}$	1504.90.5

* Справочные данные (Robie, Hemingway, 1995); ^{2*} — по данным (Kiseleva et al., 2001); ^{3*,5*,6*} — рассчитано с использованием справочных данных по [$H^{\circ}(973 \text{ K}) - H^{\circ}(298.15)$] (Robie, Hemingway, 1995) и экспериментальных данных по растворению $\Delta_{\text{расть}} H^{\circ}(973 \text{ K})$: ^{3*} (Navrotsky, Coons, 1976); ^{5*} (Ogorodova et al., 2003), ^{6*} (Киселева, 1976); ^{4*} — по данным (Огородова и др., 2005); ^{7*} — по данным (Огородова и др., 2011); ^{8*} — по данным (Ushakov et al., 2001).

Таблица 3. Термодинамические свойства водных фосфатов железа из окисленных руд Камыш-Бурунского месторождения (Крым) при T = 298.15 К*

Table 3. Thermodynamic properties of hydrous iron phosphates from oxidized ores of the Kamysh-Burun deposit, Crimea at T = 298.15 K

Минерал	$-\Delta_{\!_f} H^\circ,$ кДж/моль	<i>S</i> ^{° 2} *, Дж/(моль∙К)	$-\Delta_{\!\!f}G^{\circ 3*},$ кДж/моль
Вивианит ^{4*} Fe ₃ ²⁺ (PO ₄) ₂ ^{.8} H ₂ O Fe _{2.32} ²⁺ Fe _{0.33} Mg _{0.35} (PO ₄) ₂ (OH) _{0.33} ^{.7.67} H ₂ O	5119 ± 19 5217 ± 11	571 558	4439 ± 19 4540 ± 11
Mетавивианит $Fe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2$ ·6H ₂ O	4967 ± 16 ⁵ *	520	4309 ± 16
Сантабарбараит ($Fe_{2.74}^{3+}Mg_{0.09}Na_{0.14}K_{0.03}$)(PO_4) _{2.00} (OH) _{2.57} · 5.02H ₂ O $Fe_3^{3+}(PO_4)_2$ (OH) ₃ ·5H ₂ O	$\begin{array}{l} 4849 \pm 12^{6*} \\ 4900 \pm 12^{7*} \end{array}$	489 494	4223 ± 12 4257 ± 12

* Погрешности всех термодинамических величин рассчитаны методом накопления ошибок;

^{2*} — оценено по методу Латимера; ^{3*} — рассчитано по формуле $\Delta_f G^\circ = \Delta_f H^\circ - T \cdot \Delta_f S^\circ$; ^{4*} — по данным (Ogorodova et al. 2017); ^{5*} — оценено в настоящей работе по калориметрическим данным для природного образца вивианита (Ogorodova et al., 2017); ^{6*} — получено в настоящей работе методом калориметрии растворения; ^{7*} — рассчитано в настоящей работе с использованием калориметрических данных для природного образца сантабарбараита.

В табл. 3 также приведены термодинамические свойства других водных фосфатов железа из окисленных руд Камыш-Бурунского месторождения (Крым): вивианита реального и идеального составов, полученные нами ранее (Ogorodova et al., 2017), и метавивианита, оцененные в настоящей работе. Энтальпия образования метавивианита $Fe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2$ ·6H₂O была рассчитана по реакции (7), аналогичной использованной нами ранее при изучении вивианита, содержащего железо в степени окисления 2+ (Ogorodova et al., 2017), и уравнениям (8) и (9):

$$FeO + Fe_2O_3 + P_2O_5 + 14/3 Al(OH)_3 = Fe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2 \cdot 6H_2O + 14/6 Al_2O_3,$$
(7)

$$\Delta_{p-1UHU(7)} H^0(298.15 \text{ K}) = \Delta HFeO + \Delta HFe_2O_3 + \Delta HP_2O_5 + 14/3 \Delta HAl(OH)_3 - \Delta HFe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2 \cdot 6H_2O - 14/6 \Delta HAl_2O_3,$$
(8)

$$\Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ метавивианит} = \Delta_{p-1UHU(7)} H^{\circ}(298.15 \text{ K}) + \Delta_{f}H^{\circ}(298.15 \text{ K})FeO +$$

 $\Delta_{f}H^{\circ}(298.15 \text{ K})\text{Fe}_{2}\text{O}_{3} + \Delta_{f}H^{\circ}(298.15 \text{ K})\text{P}_{2}\text{O}_{5} + 14/3 \Delta_{f}H^{\circ}(298.15 \text{ K})\text{Al}(\text{OH})_{3} - -14/6 \Delta_{f}H^{\circ}(298.15 \text{ K})\text{Al}_{2}\text{O}_{3}.$ (9)

Величина ΔH Fe²⁺Fe³⁺₂(PO₄)₂(OH)₂·6H₂O получена пересчетом калориметрических данных по растворению природного вивианита (Ogorodova et al., 2017) на молекулярную массу метавивианита (M = 499.59 г/моль), термохимические данные для других компонентов реакции (7) приведены в табл. 2.

Расчет величин стандартной энтропии $S^{\circ}(298.15 \text{ K})$ (табл. 3) проводили по методу Латимера с учетом усредненных значений энтропий, приходящихся на катионы и анионы в твердых веществах, и энтропийного вклада кристаллизационной воды (Наумов и др., 1971). Значения энтропии образования $\Delta_f S^{\circ}(298.15 \text{ K})$ рассчитывали с использованием справочных данных (Robie, Hemingway, 1995) для составляющих минералы элементов. По полученным в настоящей работе термодинамическим данным были рассчитаны величины энергии Гиббса образования из элементов $\Delta_f G^{\circ}(298.15 \text{ K})$, также представленные в табл. 3.

ГРИЦЕНКО и др.

ЗАКЛЮЧЕНИЕ

Механизмы окисления вивианита и образования сантабарбараита рассмотрены в целом ряде работ. Существует несколько гипотез, объясняющих процесс формирования сантабарбараита. Н. В. Чуканов и соавторы (Chukanov et al., 2012) утверждают, что естественное низкотемпературное окисление вивианита приводит к серии превращений вивианит → частично окисленный вивианит → метавивианит → Fe³⁺ — аналог метавивианита \rightarrow сантабарбараит, обосновывая данное утверждение сходством кристаллических структур минералов (за исключением сантабарбараита), облегчающим превращения. В этой работе изучались однородные кристаллы метавивианита. Механизм его образования и взаимоотношения фаз не анализировались. Существование нескольких промежуточных соединений с различным соотношением Fe²⁺/Fe³⁺ описано в работе (Попов, 1938), образование промежуточной триклинной фазы — метавивианита Fe²⁺ Fe₂³⁺(PO₄)₂(OH)₂·6H₂O – в работах (Чуканов, 2005; Prot et al., 2021). Ряд исследователей полагает, что кристаллический вивианит окисляется до рентгеноаморфного состояния (сантабарбараита), не проходя через состояние метавивианита (Dormann, Poullen, 1980; Dormann et al., 1982; Vagel et al., 2005; Rothe et al., 2014; Пономарев и др., 2017; Bae et al., 2018; Chiba et al., 2020). В работе (Miot et al., 2009) была исследована трансформация вивианита под воздействием железоокисляющего бактериального штамма BoFeN1 в присутствии растворенного двухвалентного железа. Вивианит сначала превращается в зеленоватую фазу, состоящую преимущественно из аморфного смешанновалентного Fe-фосфата, затем осадок постепенно становится оранжевым, а конечный продукт окисления представляет собой аморфный фосфат трехвалентного железа (сантабарбараит). В работах (Sameshina et al., 1985; Mengmeng et al., 2021) показано, что в процессе окисления вивианит может заместиться как метавивианитом, так и сантабарбараитом в природных условиях.

В керченском железорудном бассейне вивианит образуется в восстановительных условиях. Об этом свидетельствует описанные в работе (Чуканов, 2005) бесцветные прозрачные кристаллы вивианита, которые наблюдались при вскрытии полостей и буквально на глазах окрашивались в темно-синий или темно-зеленый цвет. Соотношение $Fe^{3+}/Fe^{3+}+Fe^{2+}$ в частично окисленном вивианите, изученном в работе (Ogorodova et al., 2017), по данным мёссбауэровской спектроскопии составляет 0.12, реальная формула такого вивианита соответствует $Fe^{2+}_{2.32}Fe^{2+}_{0.33}Mg_{0.35}(PO_4)_2(OH)_{0.33}$ ^{-7.67}H₂O.

Поскольку прямые геологические наблюдения не позволили сделать однозначный вывод о механизме и стадийности преобразования вивианита в сантабарбараит, были проведены термодинамические расчеты для различных стадий реакций окисления вивианита.

На основании термодинамических данных табл. 3 были рассчитаны энергии Гиббса реакций окисления вивианита с образованием метавивианита (реакция (10)) и сантабарбараита (реакция (11)):

$$Fe_3^{2+}(PO_4)_2 \cdot 8H_2O + 1/2 O_2 = Fe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2 \cdot 6H_2O + H_2O,$$
(10)

$$\operatorname{Fe}_{3}^{2+}(\operatorname{PO}_{4})_{2} \cdot 8\operatorname{H}_{2}\operatorname{O} + 3/4\operatorname{O}_{2} = \operatorname{Fe}_{3}^{3+}(\operatorname{PO}_{4})_{2}(\operatorname{OH})_{3} \cdot 5\operatorname{H}_{2}\operatorname{O} + 3/2\operatorname{H}_{2}\operatorname{O}.$$
 (11)

Значительно более отрицательное значение $\Delta_{p-ции(11)} G^{\circ}(298.15 \text{ K}) = -174 \text{ кДж}$ по сравнению с $\Delta_{p-ции(10)} G^{\circ}(298.15 \text{ K}) = -114 \text{ кДж}$ свидетельствует о том, что более предпочтительна вторая реакция. Это согласуется с предположением о непосредственном замещении вивианита сантабарбараитом, основанном на макро- и микроскопических наблюдениях отсутствия метавивианита в природной ассоциации Меднорудянского месторождения (Пономарев и др., 2017).

В изученных керченских образцах, как видно на рис. 2, сантабарбараит развивается непосредственно по кристаллам вивианита. Образования сантабарбараита по метавивианиту нами обнаружено не было. Метавивианит был диагностирован только в найденном в карьере Е мелкозернистом ярко-синем порошковатом агрегате, где он образует тесные срастания с вивианитом. Визуально отличить вивианит от метавивианита не представляется возможным. Диагностика метавивианита была проведена методом рентгенофазового анализа (табл. 4), который позволил с уверенностью отличить метавивианит от вивианита. Отсутствие желтых и оранжевых оттенков в цвете агрегата свидетельствует об отсутствии в нем сантабарбараита. Также метавивианит был диагностирован по спектрам ИК-поглощения в ассоциации с вивианитом. Метавивианит идентифицируется по смещенному относительно вивианита положению полос поглощения, соответствующих валентным колебаниям (3164, 3480 плечо/3182, 3470 см⁻¹) и либрационным колебаниям (792/807 см⁻¹) воды и гидроксильных групп из октаэдрических лигандов ионов железа.

(10	Вивианит (ICDD № 01-080-9696)		Исследованный		Метавивианит (Chukanov et al. 2012)		
<i>d,</i> Å	I	hkl	<i>d,</i> Å	I	<i>d,</i> Å	I	hkl
			8.72	7	8.72	40	010
7.93	34	110	7.93	65			
			7.58	4	7.53	9	100
			6.98	16	6.95	100	1-10
6.74	100	020	6.72	96			
4.90	28	200	4.91	100	4.93	32	110
4.56	13	001	4.54	9			
4.35	5	-111	4.35	5	4.35	19	020, 0-11
4.08	11	130	4.07	11	4.21	12	-101
3.963	0	220	3.966	2	3.983	8	2—10
3.847	21	-201	3.857	22			
					3.804	34	-111, 1-11, 011
3.649	5	111	3.631	4	3.658	11	101
					3.453	2	0-21
3.340	2	-221	3.339	3			
					3.319	2	1-21, 120
3.211	33	-131	3.202	22			
3.175	3	310	3.178	10			
					3.060	23	1-30, 111
2.962	16	-311	2.975	50	2.974	24	1-21
2.776	4	240	2.767	5	2.776	24	-221, 2-21
2.733	22	221	2.721	21			
2.709	17	041	2.699	10			
					2.679	12	1-31, 201, 0-31
2.642	10	330	2.640	15			

Таблица 4. Данные порошковой рентгенографии вивианита и метавивианита **Table 4**. Х-ray powder diffraction data of vivianite and metavivianite

Таблица 4 (окончание)

(IC	Виві СDD № (ианит)1-080-9696)	Исследо обра	ванный зец	Метавивианит (Chukanov et al., 2012)		
<i>d,</i> Å	Ι	hkl	<i>d,</i> Å	Ι	<i>d,</i> Å	Ι	hkl
					2.589	3	3—20
2.534	13	-241	2.530	10			
			2.432	23	2.454	14	121, 2—31
					2.346	9	211,-301,-231
					2.315	8	1—40
2.280	4	002, 421	2.285	4			
2.196	10	151	2.226	11			
2.173	4	-222	2.187	8	2.184	8	3-21, 3-11, 1-41
					2.156	5	-112, 1-12
2.079	8	350	2.075	7	2.070	6	-331, 3-31
			2.006	2	2.004	4	221, 131
1.967	3	401	1.974	6			
			1.959	3	1.954	3	-122, 0-31
1.927	48	-332	1.928	7			
					1.919	6	112
1.896	45	202,-242	1.898	5	1.898	5	2-12, 411
1.889		421	1.885	4			
					1.857	4	-222,-1-32
					1.833	6	-401
					1.823	6	-302
					1.740	8	050, 1-42, 4-40
					1.714	5	-232, 410
1.673	0	-352	1.672	5			
1.652	1	242	1.651	3	1.650	6	032, 240, 3–22, 401
1.634	2	600	1.635	4	1.630	4	330,-151
1.600	4	-532,-551	1.601	4	1.591	2	-412
1.585	4	550	1.585	7			
					1.547	3	
					1.528	5	
					1.486	3	
					1.478	3	
					1.388	4	
1.366	1	442	1.360	5			

В Щелковском известняковом карьере (Московская область) были обнаружены пластинчатые кристаллы и порошковатые агрегаты метавивианита темно-синего цвета (устное сообщение И.В. Пекова). На наш взгляд, нельзя исключить вероятность

прямой кристаллизации метавивианита в более окислительных обстановках, а не в процессе окисления образовавшегося ранее вивианита. Синтез метавивианита из оксидов железа и фосфора в растворе был проведен и описан в работе (Chiba et al., 2020). Метавивианит был установлен нами в ассоциации с вивианитом в образцах из Керченского железорудного бассейна, однако механизм образования метавивианита и его генетическое взаимоотношение с вивианитом и сантабарбараитом остались до конца не выясненным; сантабарбараит, по нашим наблюдениям, образует частичные или полные псевдоморфозы по кристаллам вивианита.

Следует отметить, что в работах (Pratesi et al., 2003; Frost et al., 2016; Пономарев и др., 2017) указывалось на присутствие примесей K, Na, Ca, Mn, Zn, Mg в образцах сантабарбараита из различных месторождений, содержание которых в исходном вивианите часто было ниже предела обнаружения методами микрозондового анализа. Суммарное содержание Na₂O и K₂O в сантабарбараите Меднорудянского месторождения во многих анализах превышает 0.6 мас. % (Пономарев и др., 2017), сантабарбараит из Италии содержит существенную примесь марганца (2.23 мас. % Mn_2O_3), а из Австралии — кальция (2.93 мас. % CaO) (Pratesi et al., 2003). В изученном нами сантабарбараите из Керчи содержание оксидов натрия и калия составляет 1—1.5 мас. % (табл. 1). Возможно, окисление вивианита и метавивианита и замещение их сантабарбараитов в Керченском железорудном бассейне происходило при активном участии соленых морских вод. На Камыш-Бурунском месторождении участок, где наиболее широко распространен сантабарбараит, расположен ближе всего к Керченскому проливу, всего около 1200 м от берега. Вода во всех железорудных карьерах Камыш-Бурунского месторождения высоко соленая, по составу близкая к морской.

Работа выполнена по госбюджетным темам: «Минералогическое изучение месторождений Арктической зоны России с целью их комплексного освоения» номер ЦИ-ТИС 121061600049-4 и «Новые минералы и синтетические аналоги: кристаллогенезис и особенности кристаллохимии» номер ЦИТИС АААА-А16-116033010121-7.

Авторы выраражают благодарность И.В. Пекову за конструктивные замечания и ценные советы.

СПИСОК ЛИТЕРАТУРЫ

Гриценко Ю.Д., Вигасина М.Ф., Дедушенко С.К., Вяткин С.В., Ксенофонтов Д.А., Мельчакова Л.В., Огородова Л.П. Аs-содержащий фосфосидерит из Чили (район Копьяпо, Атакама) // Геохимия. **2022.** № 10. С. 1029—1036.

Гриценко Ю.Д., Огородова Л.П., Вигасина М.Ф., Дедушенко С.К., Вяткин С.В., Мельчакова Л.В., Ксенофонтов Д.А. Физико-химические характеристики железосодержащего лазулита из гранитных пегматитов Патомского нагорья, Иркутская область // Новые данные о минералах. **2023.** № 3. С. 63—73.

Киселева И.А. Термодинамические свойства и устойчивость пиропа // Геохимия. **1976.** № 6. С. 845—854.

Малаховский В.Ф. Геология и геохимия керченских железных руд и их важнейших компонентов. Киев: Изд-во АН УССР, **1956.** 193 с.

Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. Справочник термодинамических величин (для геологов). М.: Атомиздат, **1971.** 239 с.

Огородова Л.П., Киселева И.А., Мельчакова Л.В. Термодинамические свойства биотита // ЖФХ. **2005.** № 9. С. 1569—1572.

Огородова Л.П., Киселева И.А., Мельчакова Л.В., Вигасина М.Ф., Спиридонов Э.М. Калориметрическое определение энтальпии образования пирофиллита // ЖФХ. **2011.** № 9. С. 1609—1611. *Огородова Л.П., Мельчакова Л.В., Вигасина М.Ф., Гриценко Ю.Д., Ксенофонтов Д.А.* Калориметрическое изучение природного основного фосфата меди – псевдомалахита // Геохимия. **2018а.** № 5. С. 485—489.

Огородова Л.П., Мельчакова Л.В., Вигасина М.Ф., Ксенофонтов Д.А. Брызгалов И.А. Калориметрическое изучение природного анапаита // Геохимия. **20186**. № 4. С. 402—406.

Огородова Л.П., Гриценко Ю.Д., Вигасина М.Ф., Косова Д.А., Мельчакова Л.В., Фомина А.Д. Природные водные ортофосфаты магния — бобьерит и ковдорскит: ИК- и КР-спектроскопическое, термическое и термохимическое исследования // Геохимия. **2020.** № 2. С. 153—164.

Огородова Л.П., Гриценко Ю.Д., Вигасина М.Ф., Вяткин С.В., Мельчакова Л.В., Ксенофонтов Д.А. Энтальпия образования бразилианита (по калориметрическим данным) // Геохимия. **2022.** № 11. С. 1101—1108.

Платонов А.Н., Польшин Э.В., Таращан А.Н., Воробьев И.Б. Мёссбауэровская и оптическая спектроскопия железа в некоторых природных фосфатах / Минералогический сборник Львовского государственного университета им. Ив. Франко. Львов: Издательство ЛГУ, **1972.** № 26. С. 258—268.

Пономарев В.С., Ерохин Ю.В., Пеков И.В., Чуканов Н.В. Сантабарбараит из зоны окисления Меднорудянского месторождения — первая находка на Урале // Известия Уральского государственного университета. **2017.** № 4(48). С. 36—41.

Попов С.П. Минералогия Крыма. Москва-Ленинград: Издательство АН СССР, 1938. 352 с.

Чуканов Н.В. Минералы Керченского железорудного бассейна в Восточном Крыму // Минералогический альманах. **2005.** Т. 8. С. 1—112.

Юрк Ю.Ю., Шнюков Е.Ф., Лебедев Ю.С., Кирпиченко О.Н. Минералогия железорудной формации Керченского бассейна. Симферополь: Крымиздат, **1960.** 450 с.

Santabarbaraite from the Kamysh-Burunsky Iron Ore Deposit, Crimea

Yu. D. Gritsenko^{a, b,*}, L. P. Ogorodova^{a, **}, M. F. Vigasina^a, D. A. Ksenofontov^a, S. K. Dedushenko^c, L. V. Melchakova^a, I.P. Bolshiyanov^d

^aLomonosov Moscow State University, Faculty of Geology, Moscow, Russia ^bFersman Mineralogical Museum RAS, Moscow, Russia ^cNUST MISIS, Moscow, Russia ^dBorissiak Paleontological Institute RAS, Moscow, Russia ^{*}e-mail: ygritsenko@rambler.ru ^{**}e-mail: logor48@mail.ru

Santabarbaraite of composition $(Fe_{2.74}^{3+}Mg_{0.09}Na_{0.14}K_{0.03})_{\Sigma=3.00}(PO_4)_{2.00}(OH)_{2.57}$ 5.02H₂O forming complete and partial pseudomorphs on vivianite crystals was studied in samples from the Kamysh-Burun deposit (Kerch iron ore basin, Crimea). Its comprehensive physicochemical study was carried with use of powder X-ray diffraction, electron probe and thermal analyses, IR and Mössbauer spectroscopy. Using the Calvet microcalorimeter and the method of dissolution in a melt of 2PbO·B₂O₃ composition, the first data on enthalpy of the formation of studied santabarbaraite ($-4849 \pm 12 \text{ kJ/mol}$) and santabarbaraite of the ideal composition $Fe_3^{3+}(PO_4)_2(OH)_3$ ·5H₂O ($-4900 \pm 12 \text{ kJ/mol}$) were obtained; for them, entropies (489 and 494 J/(mol⁻ K) and Gibbs energies of formation were calculated ($-4223 \pm 12 \text{ and } -4257 \pm 12 \text{ kJ/mol}$), respectively. Calculation of the Gibbs energy of vivianite oxidation reactions confirmed the preference for the formation of santabarbaraite over vivianite bypassing intermediate stage of the metavivianite formation.

Keywords: santabarbaraite, metavivianite, Mössbauer spectroscopy, IR spectroscopy, thermal analysis, electron probe analysis, Calvet microcalorimetry, enthalpy, Gibbs energy, Kamysh-Burun deposit

REFERENCES

Bae S., Sihn Y., Kyung D., Yoon S., Eom T., Kaplan U., Kim H., Schäfer T., Han S., Lee W. Molecular identification of Cr(VI) removal mechanism on vivianite surface. *Environ. Sci. Technol.* **2018.** Vol. 52. P. 10647–10656.

Chiba K., Takahashi M., Ohshima E., Kawamata T., Sugiyama K. The synthesis of metavivianite and the oxidation sequence of vivianite. *J. Miner. Petrol. Sci.* **2020.** Vol. 115. P. 485–489.

Chukanov N.V. Minerals of the Kerch iron ore basin in Eastern Crimea. *Mineralogical almanac*. 2005. T. 8. 112 p.

Chukanov N.V., Chervonnyi A.D. Infrared Spectroscopy of Minerals and Related Compounds. Switzerland: Springer International Publishing, **2016.** 1109 p.

Chukanov N.V., Scholz R., Aksenov S.M., Rastsvetaeva R.K., Pekov I.V., Belakovskiy D.I., Krambrock K., Paniago R.M., Righi A., Martins R.F., Belotti F.M., Bermanec V. Metavivianite, $Fe^{2+}Fe^{3+}_{2}(PO_{4})_{2}(OH)_{2}$ '6H₂O: new data and formula revision. *Miner. Mag.* **2012.** Vol. 76. N 3. P. 725–741.

Dormann J.L., Poullen L.F. Étude par spectroscopie Mössbauer de vivianites oxydées naturelles. *Bull. de Minéral.* **1980.** Vol. 103. P. 633–690.

Dormann J.L., Gaspérin M., Poullen, L.F. Étude structurale de la séquence d'oxydation de la vivianite Fe₃(PO₄), 8H₂O. *Bull. de Minéral.* **1982.** Vol. 105. P. 147–160.

Fagel N., Alleman L.Y., Granina L., Hatert F., Thamo-Bozso E., Cloots R., André L. Vivianite formation and distribution in Lake Baikal sediments. Global and Planetary Changes. 2005. Vol. 46. P. 315–336.

Frost R.L., Scholz R., Ruan X., Lima R.M.F. A thermogravimetric, scanning electron microscope and vibrational spectroscopic study of the phosphate mineral santabarbaraite from Santa Barbara mine, Tuscany, Italy. *J. Therm. Anal. Calorim.* **2016.** Vol. 124. N 2. P. 639–644.

Gritsenko Yu.D., Vigasina M.F., Dedushenko S.K., Ksenofontov D.A, Melchakova L.V., Ogorodova L.P. As-bearing phosphosiderite from Copiapo district, Atacama, Chile. Geochem. Int. 2022. N 10. P. 1029–1036.

Gritsenko Yu.D., Ogorodova L.P., Vigasina M.F., Dedushenko S.K., Vyatkin S.V., Melchakova L.V., Ksenofontov D.A. Physicochemical characteristics of iron-bearing lazulite from granite pegmatites of the Patom Highlands, Irkutsk region. New data on minerals. **2023.** N 3. P. 63–73 (in Russian).

Kiseleva I.A. Thermodynamic properties and stability of pyrope. *Geochemistry.* **1976.** N 6. P. 845–854 (*in Russian*).

Kiseleva I.A., Navrotsky A., Belitsky I.A., Fursenko B.A. Thermochemical study of calcium zeolites – heulandite and stilbite. *Amer. Miner.* **2001.** Vol. 86. P. 448–455.

Kolitsch U., Bernhardt H.-J., Lengauer C.L., Blass G., Tillmanns E. Allanpringite, $Fe_3(PO_4)_2(OH)_3$ ·5H₂O, a new ferric iron phosphate from Germany, and its close relation to wavellite. *Eur. J. Miner.* **2006.** N 18. P. 793–803.

Malakhovsky V.F. Geology and geochemistry of Kerch iron ores and their most important components. Kyiv: Publishing House of the Academy of Sciences of the Ukrainian SSR, **1956**. 193 p. (*in Russian*).

Mengmeng *S., Zhiyun L., Yan X., Xuemei H.* Vivianite and its oxidation products in mammoth ivory and their implications to the burial process. *ACS Omega*. **2021.** Vol. 6. P. 22284–22291.

Miot J., Benzerara K., Morin G., Bernard S., Beyssac O., Larquet E., Kappler A., Guyot F. Transformation of vivianite by anaerobic nitrate–reducing iron–oxidizingbacteria *Geobiology*. **2009.** Vol. 7. P. 373–384.

Naumov G.B., Ryzhenko B.N., Khodakovsky I.L. Handbook of thermodynamic quantities (for geologists). Moscow: Atomizdat, **1971.** 239 p. (*in Russian*).

Navrotsky A., Coons.W.J. Thermochemistry of some pyroxenes and related compounds. *Geochim. Cosmochim. Acta.* **1976.** Vol. 40. P. 1281–1295.

Ogorodova L.P., Melchakova L.V., Kiseleva I.A., Belitsky I.A. Thermochemical study of natural pollucite. *Thermochim. Acta.* **2003.** Vol. 403. P. 251–256.

Ogorodova L.P., Kiseleva I.A., Melchakova L.V. Thermodynamic properties of biotite. *Physics-Uspekhi*. **2005.** N 9. P. 1569–1572 (*in Russian*).

Ogorodova L.P., Kiseleva I.A., Melchakova L.V., Vigasina M.F., Spiridonov E.M. Calorimetric determination of the enthalpy of formation of pyrophyllite. *Physics-Uspekhi*. **2011.** N 9. P. 1609–1611 (*in Russian*).

Ogorodova L., Vigasina M., Melchakova L., Rusakov V., Kosova D., Ksenofontov D., Bryzgalov I. Enthalpy of formation of natural hydrous iron phosphate: vivianite. J. Chem. Thermodyn. 2017. Vol. 110. P. 193–200.

Ogorodova L.P., Melchakova L.V., Vigasina M.F., Gritsenko Yu.D., Ksenofontov D.A. Calorimetric study of natural basic copper phosphate – pseudomalachite. Geochim. Int. **2018a.** N 5. P. 484–487.

Ogorodova L.P., Melchakova L.V., Vigasina M.F., Ksenofontov D.A. Bryzgalov I.A. Calorimetric study of natural anapaite. Geochem. Int. 20186. N 4. P. 397–401.

Ogorodova L.P., Gritsenko Yu.D., Vigasina M.F., Kosova D.A., Melchakova L.V., Fomina A.D. Natural hydrous magnesium orthophosphates — boberite and kovdorskite: FTIR and Raman, thermal and thermochemical studies. *Geochem. Int.* **2020.** N 2. P. 189–199.

Ogorodova L.P., Gritsenko Yu.D., Vigasina M.F., Vyatkin S.V., Melchakova L.V., Ksenofontov D.A. Enthalpy of formation of brazilianite: calorimetric data. *Geochem. Int.* **2022.** N 11. P. 1114–1121.

Platonov A.N., Polshin E.V., Tarashchan A.N., Vorobyov I.B. Mössbauer and optical spectroscopy of iron in some natural phosphates. In: *Mineralogical digest of articles. Iv. Franco Lvov State University.* Lvov: Iv. Franco Lvov State University, **1972.** N 26. P. 258–268 (*in Russian*).

Ponomarev V.S., Erokhin Yu.V., Pekov I.V., Chukanov N.V. Santabarbaraite from the oxidation zone of the Mednorudyanskoye deposit is the first find in the Urals. News of the Ural State University. **2017.** No 4(48). P. 36–41 (*in Russian*).

Popov S.P. Mineralogy of Crimea. Moscow–Leningrad: Publishing House of the USSR Academy of Sciences, **1938.** 352 p. (*in Russian*).

Pratesi G., Cipriani C., Giuli G., Birch W. Santabarbaraite: a new amorphous phosphate mineral. *Eur. J. Miner.* **2003.** Vol. 15. P. 185–192.

Prot T., Korving L., Dugulan A.I., Goubitz K., van Loosdrecht M.C.M. Vivianite scaling in wastewater treatment plants: Occurrence, formation mechanisms and migration solutions. *Water Res.* **2021.** Vol. 197. 117045.

Ritz C., Essene E.J., Peacor D.R. Metavivianite, $Fe_3(PO_4)_2$ $^{\circ}8H_2O$, a new mineral. *Amer. Miner.* **1974.** Vol. 59. P. 896–899.

Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ pascals) pressure and at higher temperatures. *U.S. Geol. Surv. Bull.* **1995.** N 2131.461 p.

Rothe M., Frederichs T., Eder M., Kleeberg A., Hupfer M. Evidence for vivianite formation and its contribution tolong–term phosphorus retention in a recent lake sediment: anovel analytical approach. *Biogeosci.* **2014.** Vol. 11. P. 5169–5180.

Sameshima T., Henderson G.S., Black P.M., Rodgers K.A. X-ray diffraction studies of vivianite, metavivianite, and barićite. Miner. Mag. 1985. Vol. 49. P. 81–85.

Ushakov S.V., Helean K.V., Navronsky A., Boatner L.A. Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 2001. Vol. 16. N 9. P. 2623–2633.

Yurk Yu., Shnyukov E.F., Lebedev Yu.S., Kirpichenko O.N. Mineralogy of the iron ore formation of the Kerch Basin. Simferopol: Krymizdat, **1960.** 450 p. (*in Russian*).