Effect of Crystallization of Accessory Apatite on Composition of Plagioclase in Leucogranites of the Northern Ladoga Region
- Autores: Baltybaev S.K.1,2, Petrakova M.E.3, Galankina O.L.1
-
Afiliações:
- Institute of Precambrian Geology and Geochronology RAS
- Saint-Petersburg State University — Institute of Earth Sciences
- Geological Institute RAS
- Edição: Volume CLIV, Nº 3 (2025)
- Páginas: 18-34
- Seção: ARTICLES
- URL: https://journals.eco-vector.com/0869-6055/article/view/697289
- DOI: https://doi.org/10.31857/S0869605525030024
- ID: 697289
Citar
Texto integral
Resumo
Leucogranites are characterized by low Ca content and, as a consequence, the presence of only essentially sodium plagioclase, usually not higher than andesine composition. Using a number of intrusions of two-feldspar leucogranites in the Northern Ladoga region as an example, it was shown that the different compositions of plagioclase in them can be explained not by the initially different contents of the main oxides in magmas, or by special P–T conditions of crystallization, but by variations in the amount of crystallized apatite, which determined the different degree of fractionation of Ca from the melt. These observations are confirmed by thermodynamic modeling, which showed the emerging "deficit" of Ca in the magma and a decrease in the content of the anorthite molecule in plagioclase during joint crystallization with apatite or after it. It is shown that the crystallization of apatite from low-calcium magmas, even in accessory quantities (1—3%), can lead to a change in the composition of plagioclase in the rock by 10—30 mol. % of An.
Palavras-chave
Sobre autores
Sh. Baltybaev
Institute of Precambrian Geology and Geochronology RAS; Saint-Petersburg State University — Institute of Earth Sciences
Email: shauket@mail.ru
Saint Petersburg, Russia
M. Petrakova
Geological Institute RAS
Email: shauket@mail.ru
Moscow, Russia
O. Galankina
Institute of Precambrian Geology and Geochronology RAS
Autor responsável pela correspondência
Email: shauket@mail.ru
Saint Petersburg, Russia
Bibliografia
- Балтыбаев Ш. К., Рязанова Н. Г., Глебовицкий В. А. Бородинский массив калиевых порфировидных гранитов: результаты U-Pb датирования и обоснование тектонической позиции (Фенноскандинавский щит) // Доклады РАН. 2016. Т. 470. № 1. С. 67—71.
- Балтыбаев Ш. К., Сальникова Е. Б., Глебовицкий В. А. и др. Кузнеченский массив калцевых порфировидных гранитов: результаты U–Pb датирования и обоснование тектонической позиции (Балтийский щит) // Доклады РАН. 2004. Т. 398. № 4. С. 519—523.
- Балтыбаев Ш. К., Юрченко А. В., Рязанова Н. Г., Виддич Э. С., Галаткина О. Л., Борисова Е. Б. Раннепротерозойские полимигматиты в зоне гранулитовой фации метаморфизма: термодинамические условия, возраст и длительность формирования (Северное Приладожье) // Геология и геофизика. 2024. Т. 65. № 7. С. 920—943.
- Доливо-Добровольский Д. В. MINAL — программа для эффективной работы с химическими анализами минералов // ЗРМО. 2025. Т. 154. № 1. С. 142—150.
- Ладожская протерозойская структура (геология, глубинное строение и минераления). Петрозаводск: Карельский научный центр РАН, 2020. 438 с.
- Baltybaev Sh. K., Levchenkov O. A., Berezhnaya N. G., Levskii L. K., Makeev A. F., Yakovleva S. Z. Age and duration of Svecofennian plutono-metamorphic activity in the Ladoga area, southeastern Baltic Shield. Petrology. 2004. Vol. 12. N 4. P. 330—347.
- Baltybaev Sh. K., Rizvanova N. G., Kuznetsov A. B., Petrakova M. E., Vivalich E. S. Late orogenic granitoids of the Tervu agmatitic zone in the southeastern part of the Svecofennian Belt (Northern Ladoga Area, Russia). Doklady Earth Sci. 2023. Vol. 511 N 2. P. 685—691.
- Chappell B. W., White A. J. R. Two contrasting granite types. Pacific Geol. 1974. Vol. 8. P. 173—174.
- Connolly J. A. Multivariable phase-diagrams — an algorithm based on generalized thermodynamics. Amer. J. Sci. 1990. Vol. 290. P. 666—718.
- Ehlers C., Lindroos A., Selonen O. The late Svecofennian granite-migmatite zone of southern Finland — a belt of transgressive deformation and granite emplacement. Precambrian Research. 1993. Vol. 64. P. 295—309.
- Frost B. R., Barnes C. G., Collins W. J., Arculus R. J., Ellis D. J., Frost C. D. A geochemical classification for granitic rocks. J. Petrol. 2001. Vol. 42. N 11. P. 2033—2048.
- Harrison T. M., Watson E. B. The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim. Cosmochim. Acta. 1984. Vol. 48. N 7. P. 1467—1477.
- Holland T. J. B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011. Vol. 29. P. 333—383.
- Huaiwei N., Keppler H. Carbon in silicate melts. Rev. Miner. Geochem. 2013. Vol. 75. P. 251—287.
- Jung S., Hoernes S., Masberg P., Hoffer E. The petrogenesis of some migmatites and granites (Central Damara orogen, Namibia): evidence for disequilibrium melting, wall-rock contamination and crystal fractionation. J. Petrol. 1999. Vol. 40. P. 1241—1269.
- Lowenstern J. B. Carbon dioxide in magmas and implications for hydrothermal systems. Miner. Deposita. 2001. Vol. 36. N 6. P. 490—502.
- Korsman K., Korja T., Pajunen M. et al. The GGT/SVEKA transect: Structure and evolution of the continental crust in the Paleoproterozoic Svecofennian Orogen in Finland. Int. Geol. Review. 1999. Vol. 41. P. 287—333.
- Kurhila M., Maurifari I., Vaasjoki M., Rämö O. T., Nironen M. U-Pb geochronology of the late Svecofennian leucogranites of Southern Finland. Precambrian Research. 2011. Vol. 190. P. 1—24.
- London D., Morgan G. B., Babb H. A., Loomis J. L. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa (H2O). Contrib. Miner. Petrol. 1993. Vol. 113. P. 450—465.
- Middlemost E. A. K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994. Vol. 37. P. 215—224.
- Mysen B. O., Holtz F., Pichavant M., Beny J. M., Montel J. M. The effect of temperature and bulk composition on the solution mechanism of phosphorus in peraluminous haplogranitic magma. Amer. Miner. 1999. Vol. 84. N 9. P. 1336—1345.
- Pichavant M., Montel J.-M., Richard L. R. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison model. Geochim. Cosmochim. Acta. 1992. Vol. 56. P. 3855—3861.
- Piccoli P. M., Candela P. A. Apatite in igneous systems. Rev. Miner. Geochem. 2002. Vol. 48. P. 255—293.
- Shand S. J. The eruptive rocks: 2nd ed. John Wiley, New York, 1943. 444 p.
- Stolper E. Fine G. Johnson T. Newman S. Solubility of carbon dioxide in albitic melt. Amer. Miner. 1987. Vol. 72. P. 1071—1085.
- White R., Powell R., Johnson T. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals. J. Metamorph. Geol. 2014. Vol. 32. N 8. P. 261—286.
- Wolf M. B., London D. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms. Geochim. Cosmochim. Acta. 1994. Vol. 58. P. 4127—4145.
- Zeng H., Wang L., Ye F., Yang B., Chen J., Chen G., Sun L. Mechanical-structural investigation of chemical strengthening aluminosilicate glass through introducing phosphorus pentoxide. Frontiers in Materials. 2016. Vol. 3.
Arquivos suplementares
