Crystal Chemistry of Wermlandite-Group Minerals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Crystal chemical features of wermlandite group minerals are discussed that are assigned to motukoreaite and wermlandite structure types. By comparing the geometric parameters of subcells and the topology of metal-hydroxyl layers for minerals with different anions, it is shown that the metal-hydroxyl layer exhibits no adaptability to the charge and/or geometry of the interlayer anion. The crystal structures of the wermlandite group minerals, like those of other layered double hydroxides, consist of "rigid" metal-hydroxyl layers that transfer the charge (valence forces) to the negatively charged (anion-water or anion-cation-water) layers through a system of hydrogen bonds in which the oxygen of the metal-hydroxyl layer is a donor, and the acceptors are anions, water molecules, and, as in the case of the wermlandite group minerals, cationic complexes A(H2O)6 located between the metal-hydroxyl layers. Unlike most layered double hydroxides, the interlayer distance in the wermlandite group minerals and their synthetic analogues shows neither a linear dependence on the charge nor a linear relationship with the size of the interlayer cation A (although this has been postulated previously). This is because the interlayer distance in this case is determined mainly by (1) the layer charge, i. e. the height of the gap between the two types of layers, and (2) the height of the anion-cation-water layers, namely the height of the sulfate tetrahedra located at two levels of z coordinates and linked to other structural blocks by hydrogen bonds. The superposition of these parameters leads to a nonlinear character of d00n on the layer charge, nor on radii of A cation. A linear correlation is observed between the divalent cation radius (r) and the subcell parameter a' (range 3.05—3.35 Å), according to the equation a' = 0.9614r + 2.2328 (R2 = 0.99), which can be used to diagnose layered double hydroxides with M3+ = Al. The interlayer distances of the wermlandite group minerals and their synthetic analogues are in the range 10.9—11.4 Å. Karchevskyite, which does not correspond to the other members of the group in crystallographic characteristics, requires revision research.

Sobre autores

E. Zhitova

Institute of Volcanology and Seismology, Far Eastern Branch RAS

Autor responsável pela correspondência
Email: zhitova_es@mail.ru
Petropavlovsk-Kamchatsky, Russia

Bibliografia

  1. Бритеин С. Н., Чуканов Н. В., Бекенова Г. К., Яговкина М. А., Антонов А. В., Богданова А. Н., Краснова Н. И. Карчевскиит [Mg18Al9(OH)54][Sr2(CO3, PO4)9(H2O, H3O)11] — новый минерал из семейства слоистых двойных гидроксидов // ЗРМО. 2007. Т. 136. № 4. С. 52—64.
  2. Житова Е. С., Чуканов Н. В., Пеков И. В., Шефер К., Белаковский Д. И., Ван К. В., Золотарев А. А. Новый природный Zn2Al-Cl слоистый двойной гидроксид из Лаурионского рудного региона (Греция) // ЗРМО. 2025. Т. 153. № 2. С. 75—87.
  3. Bookin A. S., Drits V. A. Polytype diversity of the hydrotalcite-like minerals I. Possible polytypes and their diffraction features. Clays Clay Miner. 1993. Vol. 41 (5). P. 551—557.
  4. Britvin S. N., Murashko M. N., Krzhizhanovskaya M. G., Vapnik Y., Vereshchagin O. S., Vlasenko N. S. Poellmannite, IMA 2021–109, in: CNMNC Newsletter 66. Eur. J. Mineral. 2022. Vol. 34. P. 253—257. doi: 10.5194/ejm-34-253-2022
  5. Chaves L. H. The role of green rust in the environment: a review. Revista Brasileira de Engenharia Agrícola e Ambiental. 2005. Vol. 9. P. 284—288.
  6. Chon C.-M., Lee C.-K., Song Y., Kim S. A. Structural changes and oxidation of ferroan phlogopite with increasing temperature: in situ neutron powder diffraction and Fourier transform infrared spectroscopy. Phys. Chem. Miner. 2006. Vol. 33. P. 289—299.
  7. Christiansen B. C., Balic-Zunic T., Petit P. O., Frandsen C., Morup S., Geckels H., Katerinopoulou A., Stipp S. S. Composition and structure of an iron-bearing, layered double hydroxide (LDH)—Green rust sodium sulphate. Geoch. Cosm. Act. 2009. Vol. 73 (12). P. 3579—3592.
  8. Christiansen B. C., Dideriksen K., Katz A., Nedel S., Bovet N., Sorensen H. O., Frandsen C., Gundlach C., Andersson M. P., Stip S. L. Incorporation of monovalent cations in sulfate green rust. Inorg. Chem. 2014. Vol. 53 (17). P. 8887—8894.
  9. Cooper M. A., Hawthorne F. C. The crystal structure of shigaite, [AlMn2+2(OH)6]3(SO4)2Na(H2O)6(H2O)6, hydrotalcite-group mineral. Canad. Miner. 1996. Vol. 34 (1). P. 91—97.
  10. Dideriksen K., Voigt L., Mangayayam M. C., Eiby S. H., van Genuchten C. M., Frandsen C., Kirsten M. O., Jensen S. L., Stipp S., Tobler D. J. Order and Disorder in Layered Double Hydroxides: Lessons Learned from the Green Rust Sulfate — Nikischerite Series. ACS Earth Space Chem. 2022. Vol. 6 (2). P. 322—332.
  11. Dittler E., Koechlin R. Über Glaukokerinit, ein neues Mineral von Laurion. Centralblatt für Mineralogie, Geologie und Paläontologi. 1932. Vol. 1. P. 13—17.
  12. Génin J. M. R., Abdelmoula M., Ruby C., Upadhyay C. Speciation of iron; characterisation and structure of green rusts and FeII—III oxyhydroxycarbonate fougerite. Comptes Rendus Geoscience. 2006. Vol. 338 (6—7). P. 402—419.
  13. Güttler B., Niemann W., Redfern S. A. T. EXAFS and XANES spectroscopy study of the oxidation and deprotonation of biotite. Miner. Mag. 1989. Vol. 53. P. 591—602.
  14. Huminicki, D. M., Hawthorne F. C. The crystal structure of nikischerite, NaFe2+6Al3(SO4)2(OH)18(H2O)12, a mineral of the shigaite group. Canad. Miner. 2003. Vol. 41 (1). P. 79—82.
  15. Mills S. J., Christy A. G., Génin J. M. R., Kameda T., Colombo F. Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Miner. Mag. 2012. Vol. 76. P. 1289—1336.
  16. Moore P. B. Wermlandite, a new mineral from Långban, Sweden. Lithos. 1971. Vol. 4. P. 213—217.
  17. Murad E., Wagner U. The thermal behaviour of an Fe-rich illite. Clay Miner. 1996. Vol. 31. P. 45—52.
  18. Raade G., Elliott C. J., Din V. K. New data on glaucocerinite. Miner. Mag. 1985. Vol. 49 (353). P. 583—590.
  19. Radha A. Y., Kamath P. V., Shivakumara C. Conservation of order, disorder, and “crystallinity” during anion-exchange reactions among layered double hydroxides (LDHs) of Zn with Al. J. Phys. Chem. B. 2007. Vol. 111 (13). P. 3411—3418.
  20. Radha S., Kamath P. V. Polytype selection and structural disorder mediated by intercalated sulfate ions among the layered double hydroxides of Zn with Al and Cr. Cryst. Growth Des. 2009. Vol. 9 (7). P. 3197—3203.
  21. Radha S., Kamath P. V. Polytypism in sulfate-intercalated layered double hydroxides of Zn and M(III) (M = Al, Cr): Observation of cation ordering in the metal hydroxide layers. Inorg. Chem. 2013. Vol. 52 (9). P. 4834—4841.
  22. Richardson I. G. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides. Acta Cryst. 2013. Vol. B69 (2). P. 150—162.
  23. Rius J., Allmann R. The superstructure of the double layer mineral wermlandite [Mg7(Al0.57Fe0.333+)(OH)18]2+·[(Ca0.6, Mg0.4)(SO4)2(H2O)12]2−. Z. Krist. 1984. Vol. 168. P. 133—144.
  24. Rius J., Plana F. Contribution to the superstructure resolution of the double layer mineral motukoreaite. Neu. Jb. Mineral. Mh. 1986. P. 263—272.
  25. Rodgers K. A., Chisholm J. E., Davis R. J., Nelson C. S. Motukoreaite, a new hydrated carbonate, sulphate, and hydroxide of Mg and Al from Auckland, New Zealand. Miner. Mag. 1977. Vol. 41 (319). P. 389—390.
  26. Russell R. L., Guggenheim S. Crystal structures of near-endmember phlogopite at high temperatures and heat-treated Fe-rich phlogopite: the influence of the O, OH, F site. Canad. Miner. 1999. Vol. 37. P. 711—729.
  27. Sotiles A. R., Baika L. M., Grassi M. T., Wypych F. Cation exchange reactions in layered double hydroxides intercalated with sulfate and alkaline cations (A(H2O)6)[M2+6Al3(OH)18(SO4)2]·6H2O (M2+ = Mn, Mg, Zn; A+ = Li, Na, K). JACS. 2018. Vol. 141 (1). P. 531—540.
  28. Sotiles A. R., Gomez N. A. G., Wypych F. Thermogravimetric analysis of layered double hydroxides intercalated with sulfate and alkaline cations [M2+6Al3(OH)18] [A+(SO4)2] 12H2O (M2+ = Mn, Mg, Zn; A+ = Li, Na, K). J. Therm. Anal. Calorim. 2020. Vol. 140. P. 1715—1723.
  29. Sotiles A. R., de Souza Machado V. V., Wypych F. New attempts to synthesize trimetallic layered double hydroxides with the composition [Ma2+Mb2+Al3(OH)18] [(SO4)2Na]·xH2O (Ma2+, Mb2+ = Zn, Mn, Mg). Inorg. Chem. Commun. 2022. Vol. 146. P. 110—180.
  30. Sotiles A. R., Wypych F. New Attempts to Synthesize Layered Double Hydroxides Intercalated with SO42−/Cs+ Using Co-Precipitation and Exchange Reactions. J. Braz. Chem. Soc. 2022. Vol. 33. P. 74—84.
  31. Veith J. A., Jackson M. L. Iron oxidation and reduction effects on structural hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites. Clays Clay Miner. 1974. Vol. 22. P. 345—353.
  32. Ventruti G., Zema M., Scordari F., Pedrazzi G. Thermal behavior of a Ti-rich phlogopite from Mt. Vulture (Potenza, Italy): An in situ X-ray single-crystal diffraction study. Amer. Miner. 2008. Vol. 93. P. 632—643.
  33. Wachowiak J., Pieczka A. Motukoreaite from the Kłodawa Salt Dome, Central Poland. Miner. Mag. 2016. Vol. 80. P. 277—289.
  34. Witzke T., Pöllmann H., Vogel A. Struktur und synthese von [Zn8−xAlx(OH)16(SO4)x/2+y/2Nay(H2O)6]. Z. Krist. 1995. Vol. 9. P. 252—252.
  35. Witzke T., Raade G. Zincowoodwardite, [Zn1−xAlx(OH)2] [(SO4)x/2(H2O)n], a new mineral of the hydrotalcite group. Neues Jahrb. Miner. Monatsh. 2000. Vol. 2000. P. 455—465.
  36. Zamarreno I., Plana F., Vasquez A., Clague D. A. Motukoreaite: a common alteration product in submarine basalts. Amer. Miner. 1989. Vol. 74. P. 1054—1058.
  37. Zema M., Ventruti G., Lacalamita M., Scordari F. Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions. Amer. Miner. 2010. Vol. 95. P. 1458—1466.
  38. Zhitova E. S., Chukanov N. V., Jonsson E., Pekov I. V., Belakovskiy D. I., Vigasina M. V., Zubkova N. V., Van K. V., Brirvin S. N. Erssonite, CaMg7Fe23+(OH)18(SO4)2·12H2O, a new hydrotalcite-supergroup mineral from Långban, Sweden. Miner. Mag. 2021. Vol. 85. P. 817—826.
  39. Zhitova E. S., Krivovichev S. V., Pekov I. V., Yakovenchuk V. N., Pakhomovsky Y. A. Correlation between the d-value and the M2+: M3+ cation ratio in Mg-Al–CO3 layered double hydroxides. Appl. Clay Sci. 2016. Vol. 130. P. 2—11.
  40. Zhitova E. S., Greenwell H. C., Krzhizhanovskaya M. G., Apperley D. C., Pekov I. V., Yakovenchuk V. N. Thermal evolution of natural layered double hydroxides: insight from quintinite, hydrotalcite, stichtite, and iowaite as reference samples for CO3, and Cl-members of the hydrotalcite supergroup. Minerals. 2020. Vol. 10 (11). AN961.
  41. Zhitova E. S., Krivovichev S. V., Hawthorne F. C., Krzhizhanovskaya M. G., Zolotarev A. A., Abdu Y. A., Yakovenchuk V. N., Pakhomovsky Ya. A., Goncharov A. G. High-temperature behaviour of astrophyllite, K2NaFe2+7Ti2(Si4O12)2O2(OH)4F: a combined X-ray diffraction and Mössbauer spectroscopic study. Phys. Chem. Miner. 2017. Vol. 44. P. 595—613.
  42. Zhitova E. S., Zolotarev A. A., Hawthorne F. C., Krivovichev S. V., Yakovenchuk V. N., Goncharov A. G. High-temperature Fe oxidation coupled with redistribution of framework cations in lobanovite, K2Na(Fe2+3Mg2Na)Ti2(Si4O12)2O2(OH)4 — the first titanosilicate case. Acta Cryst. 2019. Vol. 75 (4). P. 578—590.
  43. Zhitova E. S., Zolotarev A. A., Sheveleva R. M., Shendrik R. Yu., Hawthorne F. C., Nuzhdaev A. A., Vlasenko N. S., Kaneva E. V., Yakovenchuk V. N. Heat-induced Mn2+ and Fe2+ oxidation in heterophyllosilicates: kupletskite and kupletskite-(Cs). Minerals. 2025, Vol. 15 (6). Paper 587. doi: 10.3390/min15060587.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025