Crystal Chemistry of Minerals and Inorganic Compounds with Lavendulan Clusters. I. New Compound Na15–2xCu7+x(AsO4)8F3Cl2 (x ~ 0.12) and Its Relation to Axelite

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The new compound Na15–2xCu7+x(AsO4)8F3Cl2 (x ~ 0.12) was obtained by chemical transport reactions. The crystal structure at 100 K (tetragonal, P4bm, a = 14.58917(16), c = 8.30072(14) Å, V = 1766.76(5) Å3, Z = 2) was solved by direct methods and refined to R1 = 0.025. The crystal structure is based upon copper-arsenate layers formed by combining lavendulan clusters based on Cu1 and Cu2 atoms through Cu3O4FCl octahedra. The crystal structure exhibits sharp axial asymmetry. The Na15–2xCu7+x(AsO4)8F3Cl2 (x ~ 0.12) compound is closely related to axelite Na14Cu7AsO4)8F2Cl2. Nonstoichiometry of composition is caused by isomorphism according to the scheme 2Na+ → Cu2+ + ☐.

作者简介

I. Kornyakov

Nanomaterials Research Centre, Kola Science Centre, RAS; Institute of Earth Sciences, St Petersburg State University

Apatity, Russia; Saint Petersburg, Russia

S. Krivovichev

Nanomaterials Research Centre, Kola Science Centre, RAS; Institute of Earth Sciences, St Petersburg State University

Email: s.krivovichev@ksc.ru
Apatity, Russia; Saint Petersburg, Russia

A. Kasatkin

Fersman Mineralogical Museum, Russian Academy of Sciences

Moscow, Russia

参考

  1. Babkevich P., Testa L., Kimura K., Kimura T., TuckerG.S., Roessli B., RønnowH.M. Magnetic structure of BaTiOCu4(PO4)4 probed using spherical neutron polarimetry. Phys. Rev. 2017. Vol. B96. P. 214436.
  2. Bednorz J.G., MüllerK.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z.Phys. 1986. Vol. B64. P. 189—193.
  3. Bindi L., Nespolo M., Krivovichev S.V., Chapuis G. and Biagioni C. Producing highly complicated materials. Nature does it better. Rep. Progr. Phys. 2020. Vol. 83. P. 106501.
  4. Birch W., Pring A., Kolitsch U. Bleasdaleite, (Ca, Fe3+)2Cu5(Bi, Cu)(PO4)4(H2O, OH, Cl)13, a new mineral from Lake Boga, Victoria, Australia. Austr. J. Miner. 1999. Vol. 5. P. 69—75.
  5. Breithaupt A. Bestimmung neuer Mineralien. 3. Lavendulan. J. Prakt. Chem. 1837. Bd. 10. S. 505—506.
  6. Brese N. E., O’Keeffe M. Bond-valence parameters for solids. Acta Cryst. 1991. Vol. B47. P. 192—197.
  7. Chiappero P.-J., Sarp H. Zdenekite, NaPbCu5(AsO4)4Cl·5H2O, a new mineral from the Cap Garonne Mine, Var, France. Eur. J. Miner. 1995. Vol. 7. P. 553—557.
  8. Cooper M.A., Hawthorne F.C., Pinch W.W., Grice J.D. Andyrobertsite and Calcioandyrobertsite: Two New Minerals from the Tsumeb Mine, Tsumeb, Namibia. Miner. Rec. 1999. Vol. 30(3). P. 181—186.
  9. CrysAlisPro Software System, version 1.171.41.104a. 2021. Rigaku Oxford Diffraction: Oxford, UK.
  10. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J..K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J.Appl. Cryst. 2009. Vol. 42. P. 339—341.
  11. Gorelova L.A., Vergasova L.P., Krivovichev S.V., Yu.Avdontseva E.Yu., Moskaleva S.V., Karpov G.A., Filatov S.K. Bubnovaite, K2Na8Ca(SO4)6, a new mineral species with modular structure from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur. J.Miner. 2016. Vol. 28. P. 677—686.
  12. Hayashida T., Kimura K., Urushihara D., Asaka T., Kimura T. Observation of ferrochiral transition induced by an antiferroaxial ordering of antipolar structural units in Ba(TiO)Cu4(PO4)4. J.Amer. Chem. Soc. 2021. Vol. 143. P. 3638—3646.
  13. Hayashida T., Kimura K., Kimura, T. Switching crystallographic chirality in Ba(TiO)Cu4(PO4)4 by laser irradiation. J. Phys. Chem. Lett. 2022. Vol. 13. P. 3857—3862.
  14. Hurlbut C.S.Jr. Sampleite, a new mineral from Chuquicamata, Chile. Amer. Miner. 1942. Vol. 27. P. 586—589.
  15. Inosov D.S. Quantum magnetism in minerals. Adv. Phys. 2018. Vol. 67. P. 149—252.
  16. Islam S.S., Ranjith K.M., Baenitz M., Skourski Y., Tsirlin A.A., Nath R. Frustration of square cu- pola in Sr(TiO)4(PO4)4. Phys. Rev. 2018. Vol. B97. P. 174432.
  17. Kato Y., Kimura K., Miyake A., Tokunaga M., Matsuo A., Kindo K., Akaki M., Hagiwara M., Sera M., Kimura T., Motome Y. Magnetoelectric behavior from S = 1/2 asymmetric square cupolas. Phys. Rev. Lett. 2017. Vol. 118. P. 107601.
  18. Kimura K., Babkevich P., Sera M., Toyoda M., Yamauchi K., Tucker G.S., Martius J., Fennell T., Manuel P., Khalyavin D.D., Johnson R.D., Nakano T., Nozue Y., RønnowH.M., Kimura T. Magnetodielectric detection of magnetic quadrupole order in Ba(TiO)Cu4(PO4)4 with Cu4O12 square cupolas. Nat. Comm. 2016a. Vol. 7. P. 13039.
  19. Kimura K., Sera M., Kimura T. A2+ Cation control of chiral domain formation in A(TiO)Cu4(PO4)4 (A = Ba, Sr). Inorg. Chem. 2016b. Vol. 55. P. 1002—1004.
  20. Kimura K., Sera M., Nakano T., Nozue Y., Kimura T. Magnetodielectric properties of the square cupola antiferromagnet Ba(TiO)Cu4(PO4)4. Phys. B: Cond. Matt. 2018a. Vol. 536. P. 93—95.
  21. Kimura K., Toyoda M., Babkevich P., Yamauchi K., Sera M., NassifV., Rønnow H.M., Kimura T. A-cation control of magnetoelectric quadrupole order in A(TiO)Cu4(PO4)4 (A = Ba, Sr, and Pb). Phys. Rev. 2018b. Vol. B97. P. 134418.
  22. Kimura K., Kimura S., Kimura T. Magnetoelectric behaviors in magnetic-field-induced phases of Pb(TiO)Cu4(PO4)4. J.Phys. Soc. Japan. 2019. Vol. 88. P. 093707.
  23. Kimura K., Urushihara D., Asaka T., Toyoda M., Miyake A., Tokunaga M., Matsuo A., Kindo K., Yamauchi K., Kimura T. Synthesis, Structure, and anomalous magnetic ordering of the spin‑1/2 coupled square tetramer system K(NbO)Cu4(PO4)4. Inorg. Chem. 2020. Vol. 59. P. 10986—10995.
  24. Kimura K., Kato Y., Kimura S., Motome Y., Kimura T. Crystal-chirality-dependent control of magnetic domains in a time-reversal-broken antiferromagnet. Quantum Mater. 2021. Vol. 6. P. 54.
  25. Kimura K., Katsuyoshi T., Miyake A., Tokunaga M., Kimura S., Kimura T. Chirality-dependent magnetoelectric responses in a magnetic-field-induced ferroelectric phase of Pb(TiO)Cu4(PO4)4. Adv. Electr. Mater. 2022. Vol. 8. P. 2200167.
  26. Kiriukhina G., Yakubovich O., Shvanskaya L., Volkov A., Dimitrova O., Simonov S., Volkova O., Vasiliev A. A novel mineral-like copper phosphate chloride with a disordered guest structure: Crystal chemistry and magnetic properties. Materials. 2022. Vol. 15. P. 1411.
  27. Kornyakov I.V., Shilovskikh V.V., Bocharov V.N., Kalashnikova S.A., Krivovichev S.V. Polyoxometalates from gases: Mineral-inspired synthesis and characterization of novel compounds containing [M⊂Cu12O8(AsO4)8]q– polyoxocuprate clusters [M = Ti(IV), Bi(III)]. Inorg. Chem. Comm. 2023. Vol. 157. P. 111435.
  28. Krivovichev S.V. Minerals with antiperovskite structure: a review. Z.Kristallogr. 2008. Vol. 223. P. 109—113.
  29. Krivovichev S.V. Structural complexity of minerals: information storage and processing in the mineral world. Miner. Mag. 2013. Vol. 77. N 3. P. 275—326.
  30. Krivovichev S.V. Structural diversity and complexity of antiperovskites. Coord. Chem. Rev. 2024. Vol. 498. P. 215484.
  31. Krivovichev S.V., Krivovichev V.G., Hazen R.M., Aksenov S.M., Avdontceva M.S., BanaruA.M., GorelovaL.A., IsmagilovaR.M., KornyakovI.V., KuporevI.V., Morrison S.M., Panikorovskii T.L., Starova G.L. Structural and chemical complexity of minerals: an update. Mineral. Mag. 2022. Vol. 86. P. 183—204.
  32. Meyer S., Müller-Buschbaum Hk. Cu4O12-baugruppen aus planaren CuO4-polygonen im barium-vanadi- loxocuprat(II)-phosphat Ba(VO)Cu4(PO4)4. Z.Anorg. Allg. Chem. 1997. Bd. 623. S. 1693—1698.
  33. Nomura T., Kato Y., Motome Y., Miyake A., Tokunaga M., Kohama Y., Zherlitsyn S., Wosnitza J., Kimura S., Katsuyoshi T., Kimura T., Kimura K. High-field phase diagram of the chiral-lattice antiferromagnet Sr(TiO)Cu4(PO4)4. Phys. Rev. 2023. Vol. B108. P. 054434.
  34. Norman M.R. Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 2016. Vol. 88. P. 041002.
  35. Ondruš P., Veselovský F., Skála R., Sejkora J., Pažout R., Frýda J., Gabašová A., Vajdak J. Lemanskiite, NaCaCu5(AsO4)4Cl·5H2O, a new mineral species from the Abundancia mine, Chile. Canad. Miner. 2006. Vol. 44. P. 523—531.
  36. Pekov I.V., Zubkova N.V., Agakhanov A.A., Yapaskurt V.O., Belakovskiy D.I., Britvin S.N., Sidorov E.G., Kutyrev A.V., Pushcharovsky D.Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIX. Axelite, Na14Cu7(AsO4)8F2Cl2. Miner. Mag. 2022. Vol. 87. P. 109—117.
  37. Rästa R., Heinmaa I., Kimura K., Kimura T., Stern R. Magnetic structure of the square cupola compound Ba(TiO)Cu4(PO4)4. Phys. Rev. 2020. Vol. B101. P. 054417.
  38. Sarp H. La mahnertite, (Na, Ca)Cu3(AsO4)2Cl·5H2O, un nouveau minéral de la mine de Cap Garonne, Var, France. Arch. Sci. Genève. 1996. Vol. 49 (2). P. 119—124.
  39. Sheldrick G.M. SHELXT — Integrated space-group and crystal structure determination. Acta Cryst. 2015a. Vol. A71. P. 3—8.
  40. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015b. Vol. C71. P. 3—8.
  41. Süsse P., Schnorrer-Köhler G. Richelsdorfit, Ca2Cu5Sb[Cl(OH)6(AsO4)4]·6H2O, ein neues Mineral. N. Jb. Miner. Mh. 1983. S. 145—150.
  42. Süsse P., Tillmann B. The crystal structure of the new mineral richelsdorfite, Ca2Cu5Sb(Cl/(OH)6/(AsO4)4)·6H2O. Z. Krist. 1987. Vol. 179. P. 323—334.
  43. Testa L., Babkevich P., Kato Y., Kimura K., Favre V., Rodriguez-Rivera J. A., Ollivier J., Raymond S., Kimura T., Motome Y., Normand B., Rønnow H.M. Spin dynamics in the square-lattice cupola system Ba(TiO)Cu4(PO4)4. Phys. Rev. 2022. Vol. B105. P. 214406.
  44. Yakovenchuk V.N., Pakhomovsky Ya.A., Konoplyova N.G., Panikorovskii T.L., Mikhailova Yu.A., Bocharov V.N., Krivovichev S.V., Ivanyuk G.Yu. Epifanovite, NaCaCu5(PO4)4[AsO2(OH)2]·7H2O: a New mineral from the Kester deposit, Sakha (Yakutia) Republic, Russia. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. N 3. P. 30—39 (in Russian, English translation: Geol. Ore Dep. 2018. Vol. 60. P. 587—593).
  45. Yue X., Ouyang Z., Cui M., Yin L., Xiao G., Wang Z., Liu J., Wang J., Xia Z., Huang X., HeZ. Syn- theses, structure, and 2/5 magnetization plateau of a 2D layered fluorophosphate Na3Cu5(PO4)4F·4H2O. Inorg. Chem. 2018. Vol. 57. P. 3151—3157.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025