Fucanases of the 107’th structural family of the marine bacterium Wenyingzhuangia fucanilytica CZ1127T

Cover Page

Cite item

Full Text

Abstract

This work is devoted to a generalization and comparison of the structural organization, physicochemical properties and substrate specificity of four fucanases of glycoside hydrolase family 107 that are part of the fucoidanutilizing cluster of the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The established differences in the significant characteristics of these enzymes provide new knowledge about the characteristics of fucanases belonging to the GH107 family.

Full Text

Restricted Access

About the authors

Anastasiya O. Zueva

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Author for correspondence.
Email: a.o.zueva@yandex.ru
ORCID iD: 0000-0001-9570-7647

Junior Researcher

Russian Federation, Vladivostok

Artem S. Silchenko

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: artem.silchencko@yandex.ru
ORCID iD: 0000-0002-3502-5692

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

Svetlana P. Ermakova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: swetlana_e@mail.ru
ORCID iD: 0000-0002-5905-2046

Doctor of Sciences in Chemistry, Assistant Professor, Head of the Laboratory

Russian Federation, Vladivostok

References

  1. Antonio Trincone I. D. Marine glycosyl hydrolases as tool for industrial application. In: Industrial Applications of Glycoside Hydrolases. Springer; 2020. P. 151–166.
  2. Pradhan B., Patra S., Nayak R., Behera C., Dash S. R., Nayak S., Sahu B. B., Bhutia S. K., Jena M. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. Int. J. Biol. Macromol. 2020;164:4263-4278.
  3. Wang Y., Xing M., Cao Q., Ji A., Liang H., Song S. Biological activities of fucoidan and the factors mediating its therapeutic effects: a review of recent studies. Mar. Drugs. 2019;17(3):183.
  4. Nagamine T., Nakazato K., Tomioka S., Iha M., Nakajima K. Intestinal absorption of fucoidan extracted from the brown seaweed, Cladosiphon okamuranus. Mar. Drugs. 2014;13(1):48-64.
  5. Bai X., Zhang E., Hu B., Liang H., Song S., Ji A. Study on absorption mechanism and tissue distribution of fucoidan. Molecules. 2020;25(5):1087.
  6. Zhu Z., Zhang Q., Chen L., Ren S., Xu P., Tang Y., Luo D. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb Res. 2010;125(5):419-426.
  7. Jin W. et al. A comparative study of the anticoagulant activities of eleven fucoidans. Carbohydr. Polym. 2013;91(1):1-6.
  8. Jin W., Zhang Q., Wang J., Zhang W. Structure analysis and anti-tumor and anti-angiogenic activities of sulfated galactofucan extracted from Sargassum thunbergii. Mar. Drugs. 2019;17(1):52.
  9. Lu J., Shi K. K., Chen S., Wang J., Hassouna A., White L. N., Merien F., Xie M., Kong Q., Li J., Ying T., White W. L., Nie S. Fucoidan extracted from the New Zealand Undaria pinnatifida – physicochemical comparison against five other fucoidans: Unique low molecular weight fraction bioactivity in breast cancer cell lines. Mar. Drugs. 2018;16(12):461.
  10. Mak W., Hamid N., Liu T., Lu J., White W. L. Fucoidan from New Zealand Undaria pinnatifida: monthly variations and determination of antioxidant activities. Carbohydr. Polym. 2013;95(1):606-614.
  11. Zvyagintseva T. N., Shevchenko N. M., Chizhov A. O., Krupnova T. N., Sundukova E. V., Isakov V. V. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J. Exp. Mar. Biol. Ecol. 2003;294(1):1-13.
  12. Anastyuk S. D., Shevchenko N. M., Nazarenko E. L., Imbs T. I., Gorbach V. I., Dmitrenok P. S., Zvyagintseva T. N. Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry. Carbohydr. Res. 2010;345(15):2206-2212.
  13. Chen F., Chang Y., Dong S., Xue C. Wenyingzhuangia fucanilytica sp. nov., a sulfated fucan utilizing bacterium isolated from shallow coastal seawater. Int. J. Syst. Evol. Microbiol. 2016;66(9):3270-3275.
  14. Chang Y., Xue C., Tang Q., Li D., Wu X., Wang J. Isolation and characterization of a sea cucumber fucoidan-utilizing marine bacterium. Lett. Appl. Microbiol. 2010;50(3):301-307.
  15. Zueva A. O., Silchenko A. S., Rasin A. B., Kusaykin M. I., Usoltseva R. V., Kalinovsky A. I., Kurilenko V. V., Zvyagintseva T. N., Thinh P. D., Ermakova S. P. Expression and biochemical characterization of two recombinant fucoidanases from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. Int. J. Biol. Macromol. 2020;164:3025-3037.
  16. Zueva A. O., Silchenko A. S., Rasin A. B., Malyarenko O. S., Kusaykin M. I., Kalinovsky A. I., Ermakova S. P. Production of high- and low-molecular weight fucoidan fragments with defined sulfation patterns and heightened in vitro anticancer activity against TNBC cells using novel endo-fucanases of the GH107 family. Carbohydr. Polym. 2023;318:121128.
  17. Schultz-Johansen M., Cueff M., Hardouin K., Jam M., Larocque R., Glaring M. A., Hervé C., Czjzek M., Stougaard P. Discovery and screening of novel metagenome-derived GH107 enzymes targeting sulfated fucans from brown algae. FEBS J. 2018;285(22):4281-4295.
  18. Vickers C., Liu F., Abe K., Salama-Alber O., Jenkins M., Springate C. M., Burke J. E., Withers S. G., Boraston A. B. Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to α-l-fucosidases from GH29. J. Biol. Chem. 2018;293(47):18296-18308.
  19. Lasica A. M., Ksiazek M., Madej M., Potempa J. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell. Infect. Microbiol. 2017;7:215.
  20. Silchenko A. S., Rasin A. B., Kusaykin M. I., Kalinovsky A. I., Miansong Z., Changheng L., Malyarenko O. S., Zueva A. O., Zvyagintseva T. N., Ermakova S. P. Structure, enzymatic transformation, anticancer activity of fucoidan and sulphated fucooligosaccharides from Sargassum horneri. Carbohydr. Polym. 2017;175:654-660.
  21. Silchenko A. S., Ustyuzhanina N. E., Kusaykin M. I., Krylov V. B., Shashkov A. S., Dmitrenok A. S., Usoltseva R. V., Zueva A. O., Nifantiev N. E., Zvyagintseva T. N. Expression and biochemical characterization and substrate specificity of the fucoidanase from Formosa algae. Glycobiology. 2017;27(3):254-263.
  22. Colin S., Deniaud E., Jam M., Descamps V., Chevolot Y., Kervarec N., Barbeyron T., Yvin J. C., Michel G., Kloareg B. Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans. Glycobiology. 2006;16(11):1021-1032.
  23. Hoppert M. Metalloenzymes. In: Encyclopedia of Earth Sciences Series. Springer; 2011. P. 558–563. Print ISBN9781402092114.
  24. Benkovic S. J. Metal Ion-Activated Enzymes. In: Basolo F. Catalysis Progress in Research. Springer My Copy UK; 1973. P. 43-46.
  25. Liu G., Shen J., Chang Y., Mei X., Chen G., Zhang Y., Xue C. Characterization of an endo-1,3-fucanase from marine bacterium Wenyingzhuangia aestuarii: The first member of a novel glycoside hydrolase family GH174. Carbohydr. Polym. 2023;306. 120591.
  26. Qiu Y., Jiang H., Dong Y., Wang Y., Hamouda H. I., Balah M. A., Mao X. Expression and biochemical characterization of a novel fucoidanase from Flavobacterium algicola with the principal product of fucoidan-derived disaccharide. Foods. 2022;11(7):1025.
  27. Descamps V., Colin S., Lahaye M., Jam M., Richard C., Potin P., Barbeyron T., Yvin J. C., Kloareg B. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar. Biotechnol. 2006;8(1):27-39.
  28. Furukawa S. I., Fujikawa T., Koga D., Ide A. Purification and some properties of exo-type fucoidanases from Vibrio sp. N-5. Biosci. Biotech. Biochem. 1992;56(11):1829-1834.
  29. Trang V. T.D., Mikkelsen M. D., Vuillemin M., Meier S., Cao H. T.T., Muschiol J., Perna V., Nguyen T. T., Tran V. H.N., Holck J., Van T. T.T., Khanh H. H.N., Meyer A. S. The endo-α (1, 4) specific fucoidanase Fhf2 from Formosa haliotis releases highly sulfated fucoidan oligosaccharides. Front. Plant. Sci. 2022;13:823668.
  30. Sakai T., Kawai T., Kato I. Isolation and characterization of a fucoidan-degrading marine bacterial strain and its fucoidanase. Mar. Biotechnol. 2004;6(4):335-346.
  31. Sakai T., Kimura H., Kato I. Purification of sulfated fucoglucuronomannan lyase from bacterial strain of Fucobacter marina and study of appropriate conditions for its enzyme digestion. Mar. Biotechnol. 2003;5:380-387.
  32. Chevolot L., Foucault A., Chaubet F., Kervarec N., Sinquin C., Fisher A. M., Boisson-Vidal C. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr. Res. 1999;319(1-4):154-165.
  33. Menshova R. V., Shevchenko N. M., Imbs T. I., Zvyagintseva T. N., Malyarenko O. S., Zaporoshets T. S., Besednova N. N., Ermakova S. P. Fucoidans from brown alga Fucus evanescens: Structure and biological activity. Front. Mar. Sci. 2016;3:129.
  34. Silchenko A. S., Rasin A. B., Kusaykin M. I., Malyarenko O. S., Shevchenko N. M., Zueva A. O., Kalinovsky A. I., Zvyagintseva T. N., Ermakova S. P. Modification of native fucoidan from Fucus evanescens by recombinant fucoidanase from marine bacteria Formosa algae. Carbohydr. Polym. 2018;193:189-195.
  35. Usoltseva R. V., Shevchenko N. M., Malyarenko O. S., Anastyuk S. D., Kasprik A. E., Zvyagintsev N. V., Ermakova S. P. Fucoidans from brown algae Laminaria longipes and Saccharina cichorioides: Structural characteristics, anticancer and radiosensitizing activity in vitro. Carbohydr. Polym. 2019;221:157-165.
  36. Hemmingson J. A., Falshaw R., Furneaux R. H., Thompson K. Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J. Appl. Phycol. 2006;18(2):185–193.
  37. Chevolot L., Mulloy B., Ratiskol J., Foucault A., Colliec-Jouault S. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr. Res. 2001;330(4):529-535.
  38. Cao C., Zhang B., Li C., Huang Q., Fu X., Liu R. H. Structure and in vitro hypoglycemic activity of a homogenous polysaccharide purified from Sargassum pallidum. Food Funct. 2019;10:2828.
  39. Luo D., Wang Z., Nie K. Structural characterization of a novel polysaccharide from Sargassum thunbergii and its antioxidant and anti-inflammation effects. Plos One. 2019;14(10). e0223198.
  40. Murphy K. J., Merry C. L., Lyon M., Thompson J. E., Roberts I. S., Gallagher J. T. A new model for the domain structure of heparan sulfate based on the novel specificity of K5 lyase. J. Biol. Chem. 2004;279(26):27239-27245.
  41. Van Kuppevelt T. H., Oosterhof A., Versteeg E. M., Podhumljak E., Van de Westerlo E. M., Daamen W. F. Sequencing of glycosaminoglycans with potential to interrogate sequence-specific interactions. Sci. Rep. 2017;7(1):1-9.
  42. Davies G. J., Wilson K. S., Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 1997;321(2):557-559.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the fucoidandegradating gene cluster of the marine bacterium W. fucanilytica CZ1127T

Download (242KB)
3. 2. Domain organization of the FWf1‒FWf4 polypeptide chains and characterized fucanases of the GH107 family. The lengths of the amino acid sequences of fucanases are indicated to the right of the schematic representation of their domain organization. For FWf1 and FWf3, they are given both for situations with missing signal sequences (GenBank: ANW96097.1 (FWf1) and ANW96115.1 (FWf3)) and for those (*) in which the latter are present (GenBank: WP_083194609.1 and WP_083194615.1)

Download (644KB)
4. 3. Three‒dimensional structures of full-size fucanases FWf1-FWf4 and the previously characterized fucanase FcnA [18], predicted using the AlphaFold service. The domains present in the polypeptide chains of fucanases are indicated in different colors

Download (900KB)
5. 4. The region of multiple alignment of the catalytic domains of fucanases FWf1‒FWf4 and known proteins of the GH107 family. The residues of the catalytic amino acids Asp and His are marked with red borders. The signatures of the amino acids RxxxxxxDxxxxD and DxxxGH, conserved for all known representatives of the GH107 family, are indicated at the top of the sequences.

Download (868KB)
6. 5. Structural alignment of three-dimensional models of the catalytic domains GH107 of fucanases FWf1‒FWf4 and fucanase FcnA (code PDB: 6DLH). The amino acid residues of the active centers FWf1‒FWf4 and FcnA, which are conserved, are emphasized. The Asp and His residues, which perform a catalytic function, are highlighted in red

Download (757KB)
7. 6. Electrophorogram of fucoidan hydrolysis products from F. evanescens obtained using fucanases FWf1‒FWf4 over different incubation times. Cs – fucoidan from F. evanescens, which has not undergone hydrolysis

Download (259KB)
8. 7. Analysis of the activity of fucanases FWf1‒FWf4 in relation to fucoidans isolated from various species of brown algae: a diagram of the main structural motifs present in fucoidans isolated from F. evanescens (FeF), U. pinnatifida (UpF), S. cichorioides (ScF), F. vesiculosus (FvF) and S. horneri (ShF); b is a table showing the activity level of FWf1‒FWf4 in relation to FeF, UpF, ScF, FvF or ShF

Download (258KB)
9. 8. Electrophorogram (a) and schematic representation of the structures of isolated oligosaccharides, products of enzymatic hydrolysis of fucoidan FeF, obtained using fucanases FWf1 (b), FWf2 (c), FWf3 (d) and FWf4 (e)

Download (334KB)
10. 9. Schematic representation of fucoidan FeF depolymerization using FWf1‒FWf4. The red arrow points to sites in FeF that FWf1‒FWf4 fucanases recognize and cleave

Download (603KB)
11. 10. Analysis of the activity of fucanases FWf1‒FWf4 in relation to fucooligosaccharides. Electrophorogram of hydrolysis products obtained by treatment with fucanases of various fucooligosaccharides: a – FWf1 and FWf2, b – FWf3 and FWf4; c – table showing the activity level of FWf1‒FWf4 in relation to sulfated oligosaccharides: (−) ‒ fucanase activity was not detected; (+) ‒ low activity; (++) ‒ average activity; (+++) ‒ high activity. The data were obtained from electrophoregrams (a and b). The degrees of polymerization are calculated: (SP = 2*) ‒ based on the proposed depolymerization products of tetrasaccharide 4F2,3,4S(7S) fucanase FWf1; (SP = 6*) ‒ octasaccharide 8F2,3S(12S) fucanase FWf2. Cs – fucooligosaccharides that have not undergone enzymatic hydrolysis

Download (582KB)
12. 11. Putative fucoidan cleavage sites recognized by FWf1‒FWf4 endofucanases and fucoidan structural motifs resistant to cleavage by FWf1‒FWf4 fucanases (a). The topology of the putative carbohydrate‒binding subsites of FWf1-FWf4 fucanases (b). The numbers above the structural motifs indicate carbohydrate-binding subsites FWf1‒FWf4. The sub-sites are numbered according to the nomenclature [42]. The asterisk indicates the cleavage site assumed based on the structures of oligosaccharides obtained by hydrolysis of fucoidan FeF using FWf1, FWf3 or FWf4

Download (693KB)

Copyright (c) 2024 Russian Academy of Sciences