Spherical forms of matter in mineral complexes of Primorye

Cover Page

Cite item

Full Text

Abstract

The results of studying various mineral systems of spherical and globular morphology using analytical scanning electron microscopy are presented. Their microstructure and chemical composition have been studied. Several genetic types of spheroids have been established: cosmogenic iron-oxide microspherules from the fall sites of the Sikhote-Alin meteorite; similar in composition, but nickel-free iron-oxide spherules from the Late Permian mafic rocks of Popov Island and from the Late Oligocene acidic explosive deposits of Southern Primorye; spheroid formations from continental Fe-Mn microcrusts – spherical aluminosilicate and ferro-manganese condensate globulites on the surface of gas channels and cavities in basalts, silica microspheroids in segregation centers of acidic volcanic glass; nanosphere formations in the structure of noble opal from the Raduzhnoe deposit (Primorye). The composition of the spheroids, presumably of meteorite origin, is predominantly magnetite with Ni impurities. Only a few of them have a wüstite composition (FeO). Spheroids from pyroclastic rocks are also characterized by a similar composition, but they lack nickel. Spheroids identified in rhyolite glasses have a quartz composition and consist of a core and a shell. Spheroids found in ore crusts are characterized by hydroaluminosilicate and Fe-Mn compositions. The latter often contain high concentrations of Co, Ba, Ce, and sometimes Pb, which are typical elements of oceanic ore genesis. Monocerianite (CeO2) and phosphate-rare earth spherical formations are also common. The ideal beads in noble opal are composed of pure silica and water molecules. With all the variety of conditions and environments for the formation of spherical forms of matter, the controlling mechanisms are surface tension forces (in conditions of liquid heterogeneous media), the gravitational factor and condensation phenomena in closed chambers. The cooperativity of the process determines the unified state of the substance and its morphology.

Full Text

Restricted Access

About the authors

Petr P. Safronov

Far East Geological Institute, FEB RAS

Author for correspondence.
Email: psafronov@mail.ru
ORCID iD: 0009-0001-2034-0833

Candidate of Sciences in Physics and Mathematics, Senior Researcher

Russian Federation, Vladivostok

Sergey O. Maksimov

Far East Geological Institute, FEB RAS

Email: hangar7@mail.ru
ORCID iD: 0000-0001-7705-8524

Candidate of Sciences in Geology and Mineralogy, Senior Researcher

Russian Federation, Vladivostok

Igor Yu. Chekryzhov

Far East Geological Institute, FEB RAS

Email: chekr2004@mail.ru
ORCID iD: 0000-0002-0319-8759

Researcher

Russian Federation, Vladivostok

References

  1. Grebennikov A. V. Ehndogennye sferuly mel-paleogenovykh ignimbritovykh kompleksov Yakutinskoi vulkano-tektonicheskoi struktury (Primor’e). Zapiski RMO. 2011;(3):56–68. (In Russ.).
  2. Grebennikov A. V., Shcheka S. A., Karabtsov A. A. Silikatno metallicheskie sferuly i problema mekhanizma ignimbritovykh izverzhenii (na primere Yakutinskoi vulkano-tektonicheskoi struktury). Vulkanologiya i Seismologiya. 2012;(4):3–22. (In Russ.).
  3. Berdnikov N. V., Nevstruev V. G., Kepezhinskas P. K. i dr. Silikatnye, zhelezo-okisnye i zoloto-med’-serebryanye mikrosferuly v rudakh i piroklastike Kosten’ginskogo zhelezorudnogo mestorozhdeniya (Dal’nii Vostok Rossii). Tikhookeanskaya Geologiya. 2021;40(3):67–84. (In Russ.).
  4. Konovalova N. S., Berdnikov N. V., Nevstruev V. G. Mikrosferuly v rudakh i piroklastike Kosten’ginskogo zhelezorudnogo mestorozhdeniya (Malyi Khingan, Dal’nii Vostok Rossii) // Geologicheskie protsessy v obstanovkakh subduktsii, kollizii i skol’zheniya litosfernykh plit. VI Vserossiiskaya nauchnaya konferentsiya s mezhdunarodnym uchastiem (Vladivostok, 19–22 sentyabrya 2023g., Materialy konferentsii). Vladivostok: Izd-vo DVFU; 2023. S. 264–267. (In Russ.). ISBN 978-5-7444-5547-7.
  5. Nystrom J. O., Henriquez F., Naranjo J. A. et al. Magnetite spherules in pyroclastic iron ore at El Laco, Chile. American Mineralogist. 2016;101:587–595.
  6. Sandimirova E. I., Glavatskikh S. F., Rychagov S. N. Magnitnye sferuly iz vulkanogennykh porod Kuril’skikh ostrovov i Yuzhnoi Kamchatki. Vestnik KRAUNTs. 2003;(1):135–140. (In Russ.).
  7. Sandimirova E. I. Sfericheskie mineral’nye obrazovaniya vulkanicheskikh porod Kuril’skikh ostrovov i Kamchatki: Avtoreferat dissertacii … k.g.-m.n. Vladivostok; 2008. 25 s. (In Russ.).
  8. Glavatskikh S. F., Generalov M. E. Kogenit iz mineral’nykh assotsiatsii, svyazannyi s vysokotemperaturnymi gazovymi struyami BTTI (Kamchatka). Doklady AN. 1996;346(6):796–799. (In Russ.).
  9. Cornen G., Bandet Y., Giresse P. et al. The nature and chronostratigraphy of Quarternary pyroclastic accumulations from Lake Barombi Mbo (West-Cameroon). J. of Volsanology and Geothermal Research. 1992;(51):357–374.
  10. Bazhenov A. I., Poluehktova T. I., Novoselov K. L. Ferrotitanistye oksidnye globuli iz granitoidov Ehlekmonarskogo massiva. Geologiya i Geofizika. 1991;(12):50–57. (In Russ.).
  11. Filimonova L. G., Arapova G. A., Boyarskaya R. V. i dr. O tipomorfnykh osobennostyakh magnitnykh sferul orogennykh vulkanitov Yuzhnogo Sikhoteh-Alinya. Tikhookeanskaya Geologiya. 1989;(4):78–84. (In Russ.).
  12. Rudashevskii N. S., Mochalov A. G., Dmitrenko G. G. i dr. Samorodnye metally i karbidy v al’pinotipnykh ul’tramafitakh Koryakskogo nagor’ya. Mineralogicheskii Zhurnal. 1987;9(4):71–82. (In Russ.).
  13. Tsymbal S. N., Tatarintsev V. I., Garanin V. K. i dr. Zakalennye chastitsy iz ehruptivnoi brekchii zony sochleneniya Priazovskogo massiva s Donbassom. Zapiski VMO. 1985;114(2):224–228. (In Russ.).
  14. Prigozhin I., Stengers I. Poryadok iz khaosa. Novyi dialog cheloveka s prirodoi. M.: Progress; 1986. 432 s. (In Russ.).
  15. Safronov P. P., Sakhno V. G. Rezul’taty ehlektronno-mikroskopicheskogo izucheniya mikrostruktury i sostava Fe-oksidnykh sferoidov meteoritnogo proiskhozhdeniya. XXIV Rossiiskaya konferentsiya po ehlektronnoi mikroskopii (RKEHM-12). Tezisy dokladov (Chernogolovka, 29 maya – 1 iyunya, 2012). S. 375–376. (In Russ.). ISBN 978-5-89589-060-8.
  16. Safronov P. P., Gavrilov A. A., Maksimov S. O. Mikrostruktury poverkhnosti Fe-oksidnykh sferoidov iz bazitovykh kompleksov ostrova Popova (Primor’e). Materialy XVI Rossiiskogo Simpoziuma po rastrovoi ehlektronnoi mikroskopii i analiticheskim metodam issledovaniya tverdykh tel (Chernogolovka, 29 maya – 2 iyunya 2009). M.; 2009. S. 206. (In Russ.).
  17. Maksimov S. O., Safronov P. P., Chekryzhov I.Yu., Kuz’mina T.V. Flyuidnaya priroda uglerodizatsii i ob”emnoi argillizatsii na Gusevskom mestorozhdenii farforovykh kamnei (Yuzhnoe Primor’e). Doklady AN. 2012;444(4):434–439.(In Russ.).
  18. Maksimov S. O., Safronov P. P. Obrazovanie kobal’tonosnykh zhelezomargantsevykh korok pri flyuidnoi destruktsii silikatnogo veshchestva. Doklady AN. 2016;466(4):467–472. (In Russ.).
  19. Maksimov S. O., Safronov P. P. Geokhimicheskie osobennosti i genezis kontinental’nykh kobal’tonosnykh zhelezomargantsevykh obrazovanii. Geologiya i Geofizika. 2018;59(7):931–950. (In Russ.).
  20. Savel’eva O.L., Savel’ev D.P., Chubarov V. M. Framboidy pirita v uglerodistykh porodakh Smaginskoi assotsiatsii p-ova Kamchatskii mys. Vestnik KRAUNTs. Nauki o Zemle. 2013;22(2);144–151. (In Russ).
  21. Ivlev A. A. Obrazovanie tolshch, bogatykh organicheskim veshchestvom, v svete novoi modeli global’nogo tsikla ugleroda. Geologiya Nefti i Gaza. 2019;(5):83–90. (In Russ.). doi: 10.31087/0016-7894-2019-5-83-90.
  22. Vysotskii S. V., Karabtsov A. A., Kuryavyi V. G., Safronov P. P. Blagorodnye opaly mestorozhdeniya Raduzhnoe (severnoe Primor’e, Rossiya): problema stroeniya i genezisa. Perspektivnye napravleniya razvitiya nanotekhnologii v DVO RAN. Vladivostok; 2007. S. 140–154. (In Russ.).
  23. Vysotskii S. V., Barkar A. V., Kuryavyi V. G., Chusovitin E. A., Karabtsov A. A., Safronov P. P. Gidrotermal’nye blagorodnye opaly: problemy stroeniya i genezisa. Zapiski RMO. 2009;(6):62–70. (In Russ.).
  24. Letnikov F. A. Sinergetika geologicheskikh sistem. Novosibirsk: Nauka; 1992. 230 s. (In Russ.).
  25. Haken H. The Science of Structure: Sinergetics. New York: Van Nostrand Reinhold; 1984. 255 p. ISBN 10 0442237030. OCLC9644102
  26. Khaken G. Sinergetika. M.: Progress; 1986. (In Russ.).
  27. Khaken G. Informatsiya i samoorganizatsiya. M.; 1991. (In Russ.).
  28. Nikolis G., Prigozhin I. Samoorganizatsiya v neravnovesnykh sistemakh: ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii. M.: Mir; 1979. 512 s. (In Russ.).
  29. Reynolds O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc., London. 1883;174.
  30. Brehdshou P. Vvedenie v turbulentnost‘ i ee izmerenie. M.: Mir; 1974. (In Russ.).
  31. Obukhov A. M. Turbulentnost’ i dinamika atmosfery. Leningrad: Gidrometeoizdat; 1988. 414 s. (In Russ.). ISBN 5-286-00059-2.
  32. Adzhemyan L.Ts., Nalimov M.Yu. Printsip maksimal’noi khaotichnosti v statisticheskoi teorii razvitoi turbulentnosti. 1. Odnorodnaya izotropnaya turbulentnost’. Teoreticheskaya i Matematicheskaya Fizika. 1992;91(2):294–308. (In Russ.).
  33. Frik P. G. Turbulentnost’: podkhody i modeli. Izd. 2-e, ispr. i dop. Moskva; Izhevsk: Regulyarnaya i khaoticheskaya dinamika; 2010. 332 s. (In Russ.).
  34. Sachenko A. V. Ablyatsiya. In: Fizika tverdogo tela: Ehntsiklopedicheskii slovar’. Kiev: Naukova Dumka; 1996. T. 1. 656 s. (In Russ.). ISBN 5-12-003771-2.
  35. Novgorodova M. I., Gamyanin G. N., Zhdanov Yu.Ya, Agakhanov A. A., Dikaya T. V. Mikrosferuly alyumosilikatnykh stekol v zolotykh rudakh. Geokhimiya. 2003;(1):83–93. (In Russ.).
  36. Genshaft Yu.S., Tsel’movich V.A., Gapeev A. K. Kristallizatsiya Fe-Ti oksidnykh mineralov v sisteme “bazal’t–il’menit” pri vysokikh davleniyakh i temperaturakh. Fizika Zemli. 1999;(2):25–34. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micrographs of Fe-oxide spherules of meteoritic origin and their microstructure: a, b – thin-walled spherule; c–h – thick-walled spherules. Sp1–Sp4 – EDX analysis points. Photos a, c, d, g were obtained in secondary electrons; b, d, f, h – in elastically scattered electrons

Download (1MB)
3. Fig. 2. Micrographs of spherules (a, c, d) and their surface microstructure (b, d, f, g, h). Sp1–Sp5 – EDX analysis points. Photos a, c, d were obtained in secondary electrons; photos b, d, f, g, h – in elastically scattered electrons

Download (402KB)
4. Fig. 3. Micrographs of Fe-oxide spherule (a) and its microstructure (b), consisting of polyhedra (P) and dendrites (D). Sp1 – EDX analysis point. Photographed in secondary electrons

Download (331KB)
5. Fig. 4. Micrographs of aluminosilicate spheres: a – sphere on the surface of a large Fe-oxide spheroid; b – the same at higher magnification; c – aluminosilicate sphere; d – ellipsoidal iron-aluminosilicate formation; Sp1 and Sp2 – EDX analysis points. Spectrum 1 is shown in the figure. Photographed in secondary electrons

Download (327KB)
6. Fig. 5. Spheroid formations (Sph) in glassy volcanic rock (a) and a separate prepared individual (b) with EDX analysis points Sp1 and Sp2. Photographed in secondary electrons

Download (333KB)
7. Fig. 6. Globular structure of Co-Ni-Fe-Mn-O crust on argillized basalt. On some spheroids (Sph*) the outer shell is deformed and the core is exposed. Photographed in elastically scattered electrons

Download (223KB)
8. Fig. 7. Micrograph of a section of cobalt-bearing ferromanganese crust on basalt formed by closely packed spheroids consisting of a core and an outer mossy shell. Co–Ni–Fe–Mn-hydroxide substance was deposited on the matrix. Sp1 and Sp2 are EDX analysis points. Photographed in elastically scattered electrons

Download (314KB)
9. Fig. 8. Spheroidal microformations of Ni–Co–Ba–Fe–Mn-hydroxide crust with porphyry structure. Sp1, Sp2 and Sp3 are EDX analysis points. Photographed in secondary electrons

Download (410KB)
10. Fig. 9. Micrographs of the cavity of a gas channel in basalt lined with micro- and nanoglobular new formations of hydroalumosilicate and metal-hydroxide composition: a – general view of the cavity with sections Uch1, Uch2, Uch3 selected for study; b(Uch1) – section 1 at higher magnification, in it the section shown at higher magnification in image c is highlighted; g(Uch2) – section 2 at higher magnification, in it the section shown at higher magnification in image d is highlighted; Section 3 – micro-, nanoglobular Ce–Co–Ba–Fe–Mn-hydroxide condensate. Sp1–5–0 Sp5 – points of EDX analysis. Photographed in elastically scattered electrons

Download (1MB)
11. Fig. 10. Globular formations of amorphous silica condensate on the surface of alkali basalt (Borisov volcano). A globule of the halide salt phase Na0.73K0.27(Cl0.98P0.02) is recorded. Photographed in elastically scattered electrons

Download (255KB)
12. Fig. 11. Cerianite (CeO2) spherical precipitates in the argillized matrix of green shale (Pavlovsk coal deposit area) (a); b – a ball of La-Ce-Fe-hydroxide composition in a hydroalumosilicate matrix, its EDX spectrum is at the bottom. Images (a) and (b) in elastically scattered electrons

Download (293KB)
13. Fig. 12. Smectite spheroidal aggregates from cavities in carbon dioxide argillized basalt (a); b – spherical precipitates of smectite-siderite composition (Gusevskoye kaolin deposit). Image (a) was obtained in optical rays, image (b) – in secondary electrons

Download (412KB)
14. Fig. 13. Spherical shapes in various mineral complexes: a – morphology of goethite-aluminum-feroxygite phosphorus-vanadium crust from filling cavities (Pavlovskoye coal deposit); image obtained with a light microscope; b – spheroids (Сф) of incipient Се–Fe–Mn-hydroxide microconcretions in Cenozoic tuffaceous sedimentary deposits; c – framboids (Фр) of carbonate-montmorillonite composition in carbon dioxide argillized basalt (Gusevskoye kaolin deposit). Photographed with a light microscope

Download (344KB)
15. Fig. 14. Pyrite framboids (Фр) among mass segregations of pyrite microcrystals (a); b – isolated pyrite framboid with EDX analysis point Sp1. Photographed in elastically scattered electrons

Download (296KB)
16. Fig. 15. Microstructure of noble opal. Photographed in secondary electrons. Sample provided by Doctor of Geological and Mineral Sciences S.V. Vysotsky

Download (726KB)

Copyright (c) 2024 Russian Academy of Sciences