Acoustic anomalies in the boundary layers of the ocean

Cover Page

Cite item

Full Text

Abstract

Boundary layers – the near-surface and bottom layers – play an important role in the structure of the ocean. The involvement of bubbles in the sea water column in surface waves leads to the appearance of bubble clouds, which can reach significant depths in strong winds. Bubbles may also be contained in the bottom layers in the areas of the outlet of underwater gas flares. They are often compared with the presence of gas hydrate deposits, or with the release of gases through cracks in the earth’s crust near active volcanoes. The paper discusses methods and experimental results on the acoustics of boundary layers in the ocean containing a two-phase liquid with gas bubbles, as well as methods for their diagnosis. The possibilities of acoustic sounding for visualization of complex structure, dynamics and diagnostics of anomalies of physical properties of boundary layers are shown. Typical experimental results obtained in the Far Eastern seas are presented and discussed.

Full Text

Restricted Access

About the authors

Vladimir A. Bulanov

V.I. Il’ichev Pacific Oceanological Institute, FEB RAS

Author for correspondence.
Email: bulanov@poi.dvo.ru
ORCID iD: 0000-0002-5504-9042

Doctor of Sciences in Physics and Mathematics, Chief Researcher

Russian Federation, Vladivostok

References

  1. Brekhovskikh L.M., Lysanov Y.P. Fundamentals of Ocean Acoustics. Berlin, Germany: Springer; 2013. 250 p.
  2. Hovem J.M. Marine Acoustics: The Physics of Sound in Underwater Environments. Newport Beach, CA, USA: Peninsula Publishing; 2012. 656 p.
  3. Thorpe S.A. The effect of Langmuir circulation on the distribution of submerged bubbles caused by breaking wind waves. J. Fluid Mech. 1984;142:151–170.
  4. Deane G.B. Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Amer. 1997;102:2671–2689.
  5. Medwin H. Acoustical determination of bubble size spectra. J. Acoust. Soc. Am. 1977;62:1041–1044.
  6. Akulichev V., Bulanov V., Klenin S. Acoustic sensing of gas bubbles in the ocean medium. Soviet Physics. Acoustics. 1986;32(3):177–180.
  7. Garrett C., Li M., Farmer D. The Connection between Bubble Size Spectra and Energy Dissipation Rates in the Upper Ocean. J. Phys. Ocean. 2000;30:2163–2171.
  8. Thorpe S.A., Osborn T.R., Farmer D.M., Vagle S. Bubble Clouds and Langmuir Circulation. J. Phys. Oceanogr. 2003;33(9):2013–2031.
  9. Baschek B., Farmer D.M. Gas Bubbles as Oceanographic Tracers. J. of Atmosph. and Oceanic Technol. 2010;27:241–245.
  10. Vagle S., McNeil C., Steiner N. Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen. J. Geophys. Res. 2010;115. C12054. doi: 10.1029/2009JC005990.
  11. Deane G.B., Preisig J.C., Lavery A.C. The suspension of large bubbles near the seasurface by turbulence and their role in absorbing forward-scattered sound. IEEE Journ. of Oceanic Eng. 2013;38(4):632–641. doi: 10.1109/JOE.2013.2257573.
  12. Ainslie M., Leighton T. Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. J. Acoust. Soc. Am. 2011;130:3184–3208.
  13. Apresyan L.A. Ob odnom “paradokse” v teorii rasseyaniya. Zhurnal Tekhnicheskoi Fiziki. 2023;93(3):332–338. (In Russ.). doi: 10.21883/JTF.2023.03.54843.254-22.
  14. Akulichev V.A., Bulanov V.A. Akusticheskie issledovaniya melkomasshtabnykh neodnorodnostei v morskoi srede = [Acoustic study of small-scale heterogeneities in the marine environment]. Vladivostok: TOI DVO RAN; 2017. 414 s. (In Russ.). URL: https://www.poi.dvo.ru/node/470 (date of application: April 10, 2024).
  15. Macaulay G.J., Chu D., Ona E. Field measurements of acoustic absorption in seawater from 38 to 360 kHz. J. Acoust. Soc. Am. 2020;148:100–107. doi: 10.1121/10.0001498.
  16. Ainslie M.A. Effect of wind-generated bubbles on fixed range acoustic attenuation in shallow water at 1–4 kHz. J. Acoust. Soc. Am. 2005;118(6):3513–3523.
  17. Liu R., Li, Z. The Effects of Bubble Scattering on Sound Propagation in Shallow Water. J. Mar. Sci. Eng. 202;9. 1441.
  18. Bulanov V.A., Bugaeva L.K., Storozhenko A.V. On sound scattering and acoustic properties of the upper layer of the sea with bubble clouds. J. Mar. Sci. Eng. 2022;10. 872.
  19. Zonenshain L.P., Murdmaa I.O., Varanov V.V., Kuznetsov A.P., Kuzin V.S., Kuz’min M.I., Avdeiko G.P., Stunzhas P.A., Lukashin V.P., Barash M.S., Valyashko G.M., Demina L.L. Podvodnyi gazovyi istochnik k zapadu ot o-va Paramushir. Okeanologiya. 1987;27(5):795–800. (In Russ.).
  20. Leifer I., Judd A.G. Oceanic methane layers: the hydrocarbon seep bubble deposition hypothesis. Terra Nova. 2002;14:417–424.
  21. Obzhirov A.I. Istoriya otkrytiya gazogidratov v Okhotskom more. Podvodnye Issledovaniya i Robototekhnika. 2006;2:72–80. (In Russ.).
  22. Dmitrievskii A.N., Balanyuk I.E. Gazogidraty morei i okeanov. Moscow: IRTS Gazprom; 2009. 416 s. (In Russ.).
  23. Salomatin A.S., Yusupov V.I., Vereshchagina O.F., Chernykh D.V. Akusticheskaya otsenka kontsentratsii metana v vodnoi tolshche v oblastyakh ego puzyr‘kovoi razgruzki. Akust. Zhurn. 2014;60(6):636–644. (In Russ.).
  24. Weidner E., Weber T.C., Mayer L., Jakobsson M., Chernykh D., Semiletov I. A wideband acoustic method for direct assessment of bubble-mediated methane flux. Cont. Shelf Res. 2019;173:104–115.
  25. Bulanov V.A., Valitov M.G., Korskov I.V., Shakirov R.B. O glubokovodnykh akusticheskikh neodnorodnostyakh v pridonnykh sloyakh v Okhotskom i Yaponskom more // Podvodnye Issledovaniya i Robototekhnika. 2022;41(3):67–78. (In Russ.).
  26. Salomatin A.S., Yusupov V.I. Acoustic investigations of gas “Flares” in the Sea of Okhotsk. Oceanology, 2011;51(5):857–865.
  27. Porter M.B., Reiss E.L. A numerical method for bottom interacting ocean acoustic normal modes. J. Acoust. Soc. Am. 1985;77:1760–1767. URL: http://oalib.hlsresearch.com/Modes/index.html (date of application: April 10, 2024).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Functional diagram of the hardware complex for measuring sound scattering at different frequencies

Download (32KB)
3. Fig. 2. Functional diagram of the bottom system

Download (44KB)
4. Fig. 3. Sound scattering by surface bubble clouds and simultaneous sound scattering by zooplankton

Download (113KB)
5. Fig. 4. Bubble size distribution function g(R) at different depths during different periods of storm development

Download (64KB)
6. Fig. 5. Variability over time of the average volume concentration of gas x(t) enclosed in bubbles (a) and the spectrum of the gas concentration function (b) in the presence of bubble clouds formed by the collapse of wind waves

Download (54KB)
7. Fig. 6. Changes in the sound absorption coefficient over time at a frequency of 145 kHz at wind speeds from 9 to 13 m/s

Download (70KB)
8. Fig. 7. Structure of the acoustic field with a frequency f = 1 kHz in a channel with a surface layer of bubbles 7 m thick at different bubble concentrations: х = 0, х = 10-8, х = 10-7, х = 10-6. Emitter at a depth of 10 m

Download (192KB)
9. Fig. 8. Spatial decay of the acoustic field in the presence and absence of a surface layer of bubbles at frequencies of 800 Hz (curves 1, 2) and 100 Hz (curves 3, 4) at different bubble concentrations: a) x = 10-7, b) x = 10-6

Download (39KB)
10. Fig. 9. Acoustic image of bubble plumes in the Piltun Bay area (Sea of ​​Okhotsk) at a frequency of 100 kHz. The inset shows the strength of the sound-scattering bubble layer.

Download (124KB)
11. Fig. 10. Experimental and theoretical dependences of sound attenuation at a frequency of 2 kHz during propagation through bubble torches

Download (27KB)
12. Fig. 11. Deep-sea 25 kHz sound scattering anomalies recorded near Atlasov Island on 04.05.2021.

Download (112KB)
13. Fig. 12. Distribution of the volume concentration of gas in bubbles x in the inhomogeneity near the bottom

Download (90KB)
14. Fig. 13. Distribution of scattering of sound with a frequency of 12.4 kHz on bubble structures on the shelf of the Sea of ​​Japan on 15.07.2000 on the research vessel Professor Gagarinsky

Download (303KB)
15. Fig. 14. Dependence of the volume of outgoing gases in the bubbles that make up the GF on time along the route. The inset shows the distribution of the scattering coefficient of sound with a frequency of 12.4 kHz in Peter the Great Bay, Sea of ​​Japan (20–23.10.2022).

Download (51KB)

Copyright (c) 2025 Russian Academy of Sciences