Non-Neuronal GABA in Neocortical Neurografts of the Rats
- 作者: Zhuravleva Z.N.1, Zhuravlev G.I.2
-
隶属关系:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science
- Institute of Cell Biophysics, Russian Academy of Science
- 期: 卷 109, 编号 12 (2023)
- 页面: 1799-1809
- 栏目: EXPERIMENTAL ARTICLES
- URL: https://journals.eco-vector.com/0869-8139/article/view/651692
- DOI: https://doi.org/10.31857/S0869813923120166
- EDN: https://elibrary.ru/CGWKWZ
- ID: 651692
如何引用文章
详细
Gamma aminobutyric acid (GABA) plays an important role in regulating the development and functioning of the brain. The aim of this work was to study the involvement of GABA contained in non-neuronal cells in the differentiation and maturation of rat neocortical grafts. Pieces of fetal somatosensory neocortex were transplanted into the acute cavity of the homotopic region of the cortex of adult male rats. 4 months after the operation, the histological and electron microscopic examinations of the grafts were performed. The grafts were well vascularized and consisted of neuronal and glial cells. The localization of GABA in non-neuronal cells was studied by an ultrastructural immunocytochemistry using antibodies conjugated with colloidal gold. The highest expression of immunolabels in the form of electron-dense globules ranging in size from 20 to 60–80 nm was found in protoplasmic astrocytes and their processes. The pericapillary astrocytic endfeets also contained GABA-positive granules. In addition, GABA-positive granules have been observed in some myelin-forming cells and in the endothelial wall of blood vessels. The results obtained showed that GABAergic signaling via non-neuronal cells is involved in the morphofunctional differentiation of the transplanted neocortical tissue.
作者简介
Z. Zhuravleva
Institute of Theoretical and Experimental Biophysics, Russian Academy of Science
编辑信件的主要联系方式.
Email: zina_zhur@mail.ru
Russia, Moscow Region, Pushchino
G. Zhuravlev
Institute of Cell Biophysics, Russian Academy of Science
Email: zina_zhur@mail.ru
Russia, Moscow Region, Pushchino
参考
- Cendelin J, Mitoma H (2018) Neurotransplantation therapy. Handb Clin Neurol 155: 379–391. https://doi.org/10.1016/B978-0-444-64189-2.00025-1
- Mitoma H, Manto M, Gandini J (2019) Recent advances in the treatment of cerebellar disorders. Brain Sci 10(1): 11. https://doi.org/10.3390/brainsci10010011
- Gong Z, Xia K, Xu A, Yu C, Wang C, Zhu J, Huang X, Chen Q, Li F, Liang C (2020) Stem cell transplantation: A promising therapy for spinal cord injury. Curr Stem Cell Res Ther 15(4): 321–331. https://doi.org/10.2174/1574888X14666190823144424
- Namestnikova DD, Cherkashova EA, Sukhinich KK, Gubskiy IL, Leonov GE, Gubsky LV, Majouga AG, Yarygin KN (2020) Combined cell therapy in the treatment of neurological disorders. Biomedicines 8: 613. https://doi.org/10.3390/biomedicines8120613
- Björklund A, Parmar M (2021) Dopamine cell therapy: From cell replacement to circuitry repair. J Parkinsons Dis 11(2): 159–165. https://doi.org/10.3233/JPD-212609
- Li J-Y, Li W (2021) Postmortem studies of fetal grafts in Parkinson’s disease: What lessons have we learned? Front Cell Dev Biol 9: 666675. https://doi.org/10.3389/fcell.2021.666675
- Zhuravleva ZN (2005) The hippocampus and neurotransplantation. Neurosci Behav Physiol 35(4): 343–354. https://doi.org/10.1007/s11055-005-0031-3
- Zhuravleva ZN, Khutsian SS (2014) Structural signs of dynamic state of synaptic contacts between neurotransplant and brain. Bull Exp Biol Med 156(4): 448–451. https://doi.org/10.1007/s10517-014-2371-x
- Sukhinich KK, Podgornyi OV, Aleksandrova MA (2011) Immunohistochemical analysis of development of suspension and tissue neurotransplants. Biol Bull: 563. https://doi.org/10.1134/S1062359011060136
- Bragin A, Takács J, Vinogradova O, Zhuravleva Z, Hámori J (1991) Number of GABA-immunopositive and GABA-immunonegative neurons in various types of neocortical transplantats. Exp Brain Res 85(1): 114–128. https://doi.org/10.1007/BF00229992
- Buckmaster PS, Abrams E, Wen X (2017) Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J Comp Neurol 525(11): 2592–2610.https://doi.org/10.1002/cne24226
- Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18(5): 467–486. https://doi.org/10.1177/1073858412438697
- Kilb W, Kirischuk S, Luhmann HJ (2013) Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits 7: 139. https://doi.org/10.3389/fncir.2013.00139
- Bolneo E, Chau PYS, Noakes PG, Bellingham MC (2022) Investigating the role of GABA in neural development and disease using mice lacking GAD67 or VGAT genes. Int J Mol Sci 23(14): 7965. https://doi.org/10.3390/ijms23147965
- Bai X, Kirchhoff F, Scheller A (2021) Oligodendroglial GABAergic signaling: More than inhibition. Neurosci Bull 37(7): 1039–1050. https://doi.org/10.1007/s12264-021-00693-w
- Müller J, Timmermann A, Henning L, Müller H, Steinhauser C, Bedner P (2020) Astrocytic GABA accumulation in experimental temporal lobe epilepsy. Front Neurol 11 (Article 61). https://doi.org/10.3389/fneur.2020.614923
- Obata K, Hirono M, Kume N, Kawaguchi Y, Itohara S, Yanagawa Y (2008) GABA and synaptic inhibition of mouse cerebellum lacking glutamate decarboxylase 67. Biochem Biophys Res Commun 370(3): 429–433. https://doi.org/10.1016/ j.bbrc.2008.03.110
- Kajita Y, Mushiake H (2021) Heterogeneous GAD65 expression in subtypes of GABAergic neurons across layers of the cerebral cortex and hippocampus. Front Behav Neurosci 15 (Article 750869). https://doi.org/10.3389/fnbeh.2021.750869
- Ormel L, Lauritzen KH, Schreiber R, Kunzelmann K, Gundersen V (2020) GABA, but not bestrophin-1, is localized in astroglial processes in the mouse hippocampus and the cerebellum. Front Mol Neurosci 13: 135. https://doi.org/10.3389/fnmol.2020.0013
- Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABA(A) receptors: Modulating gain and maintaining the tone. Trends Neurosci 27(5): 262–269.https://doi.org/10.1016/j.tins.2004.03.005
- Sequerra EB, Gardino P, Hedin-Pereira C, de Mello FG (2007) Putrescine as an important source of GABA in the postnatal rat subventricular zone. Neuroscience 146(2): 489–493. https://doi.org/10.1016/j.neuroscience.2007.01.062
- Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H, Park HJ, Lee DY, Hong J, Kim HY, Oh S-J, Park SJ, Lee H, Yoon B-E, Kim YS, Jeong Y, Shim I, Bae YC, Cho J, Kowall NW, Ryu H, Hwang E, Kim D, Lee CJ (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 20(8): 886–896. https://doi.org/10.1038/nm.3639
- Bragin AG, Bohne A, Vinogradova OS (1988) Transplants of the embryonal rat somatosensory neocortex in the barrel field of the adult rat: responses of the grafted neurons to sensory stimulation. Neuroscience 25(3): 751–758. https://doi.org/10.1016/0306-4522(88)90034-6
- Zhuravleva ZN, Hutsyan SS, Zhuravlev GI (2016) Phenotypic differentiation of neurons in intraocular transplants. Russ J Develop Biol 47(3): 147–153. https://doi.org/10.7868/S0475145016030083
- Heo JY, Nam MH, Yoon HH, Kim J, Hwang YJ, Won W, Woo DH, Lee JA, Park HJ, Jo S, Lee MJ, Kim S, Shim J-E, Jang D-R, Kim KI (2020) Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson’s disease. Curr Biol 30: 276–291.e9. https://doi.org/10.1016/j.cub.2019.11.079
- Pandit S, Neupane C, Woo J, Sharma R, Nam MH, Lee GS, Yi MH, Shin N, Kim DW, Cho H, Jeon BH, Kim H-W, Lee CJ, Park JB (2020) Bestrophin1-mediated tonic GABA release from reactive astrocytes prevents the development of seizure-prone network in kainate-injected hippocampi. Glia 68: 1065–1080. https://doi.org/10.1002/glia.23762
- Luyt K, Slade TP, Dorward JJ, Durant CF, Wu Y, Shigemoto R, Mundell S, Váradi A, Molnár E (2007) Developing oligodendrocytes express functional GABA(B) receptors that stimulate cell proliferation and migration. J Neurochem 100: 822–840. https://doi.org/10.1111/j.1471-4159.2006.04255.x
- Serrano-Regal MP, Luengas-Escuza I, Bayón-Cordero L, Ibarra-Aizpurua N, Alberdi E, Pérez-Samartín A, Matute C, Sánchez-Gómez MV (2020) Oligodendrocyte differentiation and myelination is potentiated via GABA. Neuroscience 439: 163–180. https://doi.org/10.1016/j.neuroscience.2019.07.014
- Li S, Kumar TP, Joshee S, Kirschstein T, Subburaju S, Khalili JS, Kloepper J, Du C, Elkha A, Szabo G, Jain RK, Kohling R, Vasudevan A (2018) Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res 28(2): 221–248. https://doi.org/10.1038/cr.2017.135
- Choi YK, Vasudevan A (2019) Mechanistic insights into autocrine and paracrine roles of endothelial GABA signaling in the embryonic forebrain. Sci Rep 9(1): 16256. https://doi.org/10.1038/s41598-019-52729-x
- Segarra M, Aburto MR, Hefendehl J, Acker-Palmer A (2019) Neurovascular interactions in the nervous system. Annu Rev Cell Dev Biol 35: 615–635. https://doi.org/10.1146/annurev-cellbio-100818-125142
- Peguera B, Segarra M, Acker-Palmer A (2021) Neurovascular crosstalk coordinates the central nervous system development. Curr Opin Neurobiol 69: 202–213. https://doi.org/10.1016/j.conb.2021.04.005
- Kilb W, Kirischuk S (2022) GABA release from astrocytes in health and disease. Int J Mol Sci 23(24): 15859.https://doi.org/10.3390/ijms232415859
- Ueberbach T, Simacek CA, Tegeder I, Kirischuk S, Mittmann T (2023) Tonic activation of GABAB receptors via GAT-3 mediated GABA release reduces network activity in the developing somatosensory cortex in GAD-GFP mice. Front Synaptic Neurosci 15: 1198159.https://doi.org/10.3389/fnsyn.2023.1198159
