The Effect of Dopamine on Neuroplasticity in Spinal Cord Injury

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Spinal cord injury (SCI) is a chronic neurological disorder caused by damage to the spinal cord tissues and often accompanied by severe multisystem complications, autonomic dysfunction, risk of depressive states, a sharp decline in quality of life, and patient disability. Dopamine plays a crucial role in regulating motor functions and immune responses, making it a promising target for therapy development after SCI. This review explores the sources of spinal cord dopamine, its role in neuroplasticity, and its influence on neurotrophic factors and neurogenesis. Dopamine modulates synaptic plasticity through D1 and D2 receptors, promoting axon growth and synaptogenesis. It can also stimulate the synthesis of neurotrophic factors, such as BDNF, GDNF, NGF, EGF, FGF-2, and CNTF, which support neuronal survival and reduce inflammation. Additionally, dopamine regulates differentiation, myelination, and immune responses by suppressing pro-inflammatory cytokines and enhancing anti-inflammatory processes. Despite its therapeutic potential, the dual role of dopamine in certain processes, such as angiogenesis suppression, requires further investigation. This review highlights the multifaceted role of dopamine in post-SCI recovery and its potential for developing new treatment strategies.

About the authors

A. A. Chesnokov

Sirius University of Science and Technology

Sochi, Russia

D. S. Kalinina

Sirius University of Science and Technology; St. Petersburg State University, Institute of Translational Biomedicine; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: kalinina.ds@talantiuspeh.ru
Sochi, Russia; St. Petersburg, Russia; St. Petersburg, Russia

A. E. Makhortykh

Sirius University of Science and Technology

Sochi, Russia

D. V. Khuzin

Sirius University of Science and Technology

Sochi, Russia

P. E. Musienko

St. Petersburg State University, Institute of Translational Biomedicine; Pavlov Institute of Physiology, Russian Academy of Sciences; Federal Center of Brain Research and Neurotechnologies

Email: pol-spb@mail.ru
St. Petersburg, Russia; St. Petersburg, Russia; Moscow, Russia

References

  1. Barbiellini Amidei C, Salmaso L, Bellio S, Saia M (2022) Epidemiology of traumatic spinal cord injury: a large population-based study. Spinal Cord 60: 812–819. https://doi.org/10.1038/s41393-022-00795-w
  2. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primer 3: 17018. https://doi.org/10.1038/nrdp.2017.18
  3. Jay TM (2003) Dopamine: A potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69: 375–390. https://doi.org/10.1016/s0301-0082(03)00085-6
  4. Sharples SA, Burma NE, Borowska-Fielding J, Kwok CHT, Eaton SEA, Baker GB, Jean-Xavier C, Zhang Y, Trang T, Whelan PJ (2020) A dynamic role for dopamine receptors in the control of mammalian spinal networks. Sci Rep 10: 16429. https://doi.org/10.1038/s41598-020-73230-w
  5. Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ (2023) Dopamine, Immunity, and Disease. Pharmacol Rev 75: 62–158. https://doi.org/10.1124/pharmrev.122.000618
  6. Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res Rev 6: 173–196. https://doi.org/10.1016/0165-0173(83)90038-3
  7. Ryczko D, Dubuc R (2017) Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human. Front Neurosci 11: 295. https://doi.org/10.3389/fnins.2017.00295
  8. Xin J, Fan T, Guo P, Wang J (2019) Identification of functional divergence sites in dopamine receptors of vertebrates. Comput Biol Chem 83: 107140. https://doi.org/10.1016/j.compbiolchem.2019.107140
  9. Speranza L, Di Porzio U, Viggiano D, De Donato A, Volpicelli F (2021) Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 10: 735. https://doi.org/10.3390/cells10040735
  10. Perreault ML, Hasbi A, O’Dowd BF, George SR (2014) Heteromeric Dopamine Receptor Signaling Complexes: Emerging Neurobiology and Disease Relevance. Neuropsychopharmacology 39: 156–168. https://doi.org/10.1038/npp.2013.148
  11. Holstege JC, Dijken HV, Buijs RM, Goedknegt H, Gosens T, Bongers CMH (1996) Distribution of dopamine immunoreactivity in the rat, cat, and monkey spinal cord. J Comp Neurol 376: 631–652. https://doi.org/10.1002/(SICI)1096-9861(19961223)376:4<631::AID-CNE10>3.0.CO;2-P
  12. Sharples SA, Koblinger K, Humphreys JM, Whelan PJ (2014) Dopamine: A parallel pathway for the modulation of spinal locomotor networks. Front Neural Circuits 8: 55. https://doi.org/10.3389/fncir.2014.00055
  13. Qu S, Ondo WG, Zhang X, Xie WJ, Pan TH, Le WD (2006) Projections of diencephalic dopamine neurons into the spinal cord in mice. Exp Brain Res 168: 152–156. https://doi.org/10.1007/s00221-005-0075-1
  14. Cechetto DF, Saper CB (1988) Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J Comp Neurol 272: 579–604. https://doi.org/10.1002/cne.902720410
  15. Barraud Q, Obeid I, Aubert I, Barrière G, Contamin H, McGuire S, Ravenscroft P, Porras G, Tison F, Bezard E, Ghorayeb I (2010) Neuroanatomical study of the A11 diencephalospinal pathway in the non-human primate. PloS One 5: e13306. https://doi.org/10.1371/journal.pone.0013306
  16. Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409: 38–56. https://doi.org/10.1002/(SICI)1096-9861(19990621)409:1<38::AID-CNE4>3.0.CO;2-1
  17. Lorang D, Amara S, Simerly R (1994) Cell-type-specific expression of catecholamine transporters in the rat brain. J Neurosci 14: 4903–4914. https://doi.org/10.1523/JNEUROSCI.14-08-04903.1994
  18. Koblinger K, Füzesi T, Ejdrygiewicz J, Krajacic A, Bains JS, Whelan PJ (2014) Characterization of A11 Neurons Projecting to the Spinal Cord of Mice. PLoS One 9: e109636. https://doi.org/10.1371/journal.pone.0109636
  19. Koblinger K, Jean-Xavier C, Sharma S, Füzesi T, Young L, Eaton SEA, Kwok CHT, Bains JS, Whelan PJ (2018) Optogenetic Activation of A11 Region Increases Motor Activity. Front Neural Circuits 12: 86. https://doi.org/10.3389/fncir.2018.00086
  20. Mouchet P, Manier M, Dietl M, Feuerstein C, Berod A, Arluison M, Denoroy L, Thibault J (1986) Immunohistochemical study of catecholaminergic cell bodies in the rat spinal cord. Brain Res Bull 16: 341–353. https://doi.org/10.1016/0361-9230(86)90055-9
  21. Zhang M (2016) Two-step production of monoamines in monoenzymatic cells in the spinal cord: А different control strategy of neurotransmitter supply? Neural Regen Res 11: 1904. https://doi.org/10.4103/1673-5374.197124
  22. Ren L-Q, Wienecke J, Hultborn H, Zhang M (2016) Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury. J Neurotrauma 33: 1150–1160. https://doi.org/10.1089/neu.2015.4037
  23. Freire VB, Cressoni De Souza L, Henrique De Lima Martinelli M, Sacchi LM, Andolfo De Souza T, Damin AE (2021) Neuroplasticity in Spinal Trauma: A Current Narrative Review of Treatments. World J Neurosci 11: 91–107. https://doi.org/10.4236/wjns.2021.112008
  24. Kramer JLK, Minhas NK, Jutzeler CR, Erskine ELKS, Liu LJW, Ramer MS (2017) Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J Neurosci Res 95: 1295–1306. https://doi.org/10.1002/jnr.23881
  25. Punjani N, Deska-Gauthier D, Hachem LD, Abramian M, Fehlings MG (2023) Neuroplasticity and regeneration after spinal cord injury. North Am Spine Soc J NASSJ 15: 100235. https://doi.org/10.1016/j.xnsj.2023.100235
  26. Dorrian RM, Berryman CF, Lauto A, Leonard AV (2023) Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Front Cell Neurosci 17: 1095259. https://doi.org/10.3389/fncel.2023.1095259
  27. Bandres MF, Gomes JL, McPherson JG (2024) Intraspinal microstimulation of the ventral horn has therapeutically relevant cross-modal effects on nociception. Brain Communicat 6(5): fcae280. https://doi.org/10.1093/braincomms/fcae280
  28. Van Den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G (2012) Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury. Science 336: 1182–1185. https://doi.org/10.1126/science.1217416
  29. Walker J, Detloff M (2021) Plasticity in Cervical Motor Circuits following Spinal Cord Injury and Rehabilitation. Biology 10: 976. https://doi.org/10.3390/biology10100976
  30. Harris KM (2020) Structural LTP: From synaptogenesis to regulated synapse enlargement and clustering. Curr Opin Neurobiol 63: 189–197. https://doi.org/10.1016/j.conb.2020.04.009
  31. Randic M, Jiang M, Cerne R (1993) Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J Neurosci 13: 5228–5241. https://doi.org/10.1523/JNEUROSCI.13-12-05228.1993
  32. Ladepeche L, Dupuis JP, Bouchet D, Doudnikoff E, Yang L, Campagne Y, Bézard E, Hosy E, Groc L (2013) Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci U S A 110: 18005–18010. https://doi.org/10.1073/pnas.1310145110
  33. Pei L, Lee FJS, Moszczynska A, Vukusic B, Liu F (2004) Regulation of Dopamine D1 Receptor Function by Physical Interaction with the NMDA Receptors. J Neurosci 24: 1149–1158. https://doi.org/10.1523/JNEUROSCI.3922-03.2004
  34. Lee FJS, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, Wang YT, Niznik HB, Yu X, Liu F (2002) Dual Regulation of NMDA Receptor Functions by Direct Protein-Protein Interactions with the Dopamine D1 Receptor. Cell 111: 219–230. https://doi.org/10.1016/S0092-8674(02)00962-5
  35. Aira Z, Barrenetxea T, Buesa I, García Del Caño G, Azkue JJ (2016) Dopamine D1-like Receptors Regulate Constitutive, μ-Opioid Receptor-Mediated Repression of Use-Dependent Synaptic Plasticity in Dorsal Horn Neurons: More Harm than Good? J Neurosci Off J Soc Neurosci 36: 5661–5673. https://doi.org/10.1523/JNEUROSCI.2469-15.2016
  36. Sun X, Zhao Y, Wolf ME (2005) Dopamine Receptor Stimulation Modulates AMPA Receptor Synaptic Insertion in Prefrontal Cortex Neurons. J Neurosci 25: 7342–7351. https://doi.org/10.1523/JNEUROSCI.4603-04.2005
  37. Rao VR, Finkbeiner S (2007) NMDA and AMPA receptors: Old channels, new tricks. Trends Neurosci 30: 284–291. https://doi.org/10.1016/j.tins.2007.03.012
  38. Dai W-L, Bao Y-N, Fan J-F, Ma B, Li S-S, Zhao W-L, Yu B-Y, Liu J-H (2021) Blockade of spinal dopamine D1/D2 receptor suppresses activation of NMDA receptor through Gαq and Src kinase to attenuate chronic bone cancer pain. J Adv Res 28: 139–148. https://doi.org/10.1016/j.jare.2020.08.005
  39. Han P, Nakanishi ST, Tran MA, Whelan PJ (2007) Dopaminergic Modulation of Spinal Neuronal Excitability. J Neurosci 27: 13192–13204. https://doi.org/10.1523/JNEUROSCI.1279-07.2007
  40. Liu F, Wan Q, Pristupa ZB, Yu X-M, Wang YT, Niznik HB (2000) Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature 403: 274–280. https://doi.org/10.1038/35002014
  41. Megat S, Shiers S, Moy JK, Barragan-Iglesias P, Pradhan G, Seal RP, Dussor G, Price TJ (2018) A Critical Role for Dopamine D5 Receptors in Pain Chronicity in Male Mice. J Neurosci 38: 379–397. https://doi.org/10.1523/JNEUROSCI.2110-17.2017
  42. Herrero MT, Pagonabarraga J, Linazasoro G (2011) Neuroprotective Role of Dopamine Agonists: Evidence From Animal Models and Clinical Studies. The Neurologist 17: S54–S66. https://doi.org/10.1097/NRL.0b013e31823968fc
  43. Jiang W, He F, Ding G, Wu J (2023) Dopamine inhibits pyroptosis and attenuates secondary damage after spinal cord injury in female mice. Neurosci Lett 792: 136935. https://doi.org/10.1016/j.neulet.2022.136935
  44. Tanaka K, Okada Y, Kanno T, Otomo A, Yanagisawa Y, Shouguchi-Miyata J, Suga E, Kohiki E, Onoe K, Osuga H, Aoki M, Hadano S, Itoyama Y, Ikeda J-E (2008) A dopamine receptor antagonist L-745,870 suppresses microglia activation in spinal cord and mitigates the progression in ALS model mice. Exp Neurol 211: 378–386. https://doi.org/10.1016/j.expneurol.2008.02.004
  45. Okada Y, Sakai H, Kohiki E, Suga E, Yanagisawa Y, Tanaka K, Hadano S, Osuga H, Ikeda J-E (2005) A Dopamine D4 Receptor Antagonist Attenuates Ischemia-Induced Neuronal Cell Damage via Upregulation of Neuronal Apoptosis Inhibitory Protein. J Cereb Blood Flow Metab 25: 794–806. https://doi.org/10.1038/sj.jcbfm.9600078
  46. Luo Y, Umegaki H, Wang X, Abe R, Roth GS (1998) Dopamine Induces Apoptosis through an Oxidation-involved SAPK/JNK Activation Pathway. J Biol Chem 273: 3756–3764. https://doi.org/10.1074/jbc.273.6.3756
  47. Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V (2024) Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson’s Disease. Neurol Int 16: 502–517. https://doi.org/10.3390/neurolint16030037
  48. Liu D, Bao F (2015) Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: Attenuation by a metalloporphyrin. Neuroscience 285: 81–96. https://doi.org/10.1016/j.neuroscience.2014.10.063
  49. Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH, Tzeng CP, Harmin DA, Greenberg ME (2014) Npas4 Regulates Excitatory-Inhibitory Balance within Neural Circuits through Cell-Type-Specific Gene Programs. Cell 157: 1216–1229. https://doi.org/10.1016/j.cell.2014.03.058
  50. Li H, Spitzer NC (2020) Exercise enhances motor skill learning by neurotransmitter switching in the adult midbrain. Nat Commun 11: 2195. https://doi.org/10.1038/s41467-020-16053-7
  51. Bertels H, Vicente-Ortiz G, El Kanbi K, Takeoka A (2022) Neurotransmitter phenotype switching by spinal excitatory interneurons regulates locomotor recovery after spinal cord injury. Nat Neurosci 25: 617–629. https://doi.org/10.1038/s41593-022-01067-9
  52. Sakurai M, Hayashi T, Abe K, Sadahiro M, Tabayashi K (1998) Delayed and selective motor neuron death after transient spinal cord ischemia: A role of apoptosis? J Thorac Cardiovasc Surg 115: 1310–1315. https://doi.org/10.1016/S0022-5223(98)70213-2
  53. Joy MT, Carmichael ST (2021) Encouraging an excitable brain state: Mechanisms of brain repair in stroke. Nat Rev Neurosci 22: 38–53. https://doi.org/10.1038/s41583-020-00396-7
  54. Jeleva R, Muhr CD, Liebisch AP, Bareyre FM (2025) Differential plasticity of excitatory and inhibitory reticulospinal fibers after spinal cord injury: Implication for recovery. Neural Regen Res. https://doi.org/10.4103/NRR.NRR-D-24-01060
  55. Koblinger K, Jean-Xavier C, Sharma S, Füzesi T, Young L, Eaton SEA, Kwok CHT, Bains JS, Whelan PJ (2018) Optogenetic Activation of A11 Region Increases Motor Activity. Front Neural Circuits 12: 86. https://doi.org/10.3389/fncir.2018.00086
  56. Aira Z, Barrenetxea T, Buesa I, García Del Caño G, Azkue JJ (2016) Dopamine D1-like Receptors Regulate Constitutive, μ-Opioid Receptor-Mediated Repression of Use-Dependent Synaptic Plasticity in Dorsal Horn Neurons: More Harm than Good? J Neurosci 36: 5661–5673. https://doi.org/10.1523/JNEUROSCI.2469-15.2016
  57. Murray M, Goldberger ME (1974) Restitution of function and collateral sprouting in the cat spinal cord: The partially hemisected animal. J Comp Neurol 158: 19–36. https://doi.org/10.1002/cne.901580103
  58. Weidner N, Ner A, Salimi N, Tuszynski MH (2001) Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci U S A 98: 3513–3518. https://doi.org/10.1073/pnas.051626798
  59. Fouad K, Pedersen V, Schwab ME, Brösamle C (2001) Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol 11: 1766–1770. https://doi.org/10.1016/S0960-9822(01)00535-8
  60. Ramer LM, Borisoff JF, Ramer MS (2004) Rho-Kinase Inhibition Enhances Axonal Plasticity and Attenuates Cold Hyperalgesia after Dorsal Rhizotomy. J Neurosci 24: 10796–10805. https://doi.org/10.1523/JNEUROSCI.3337-04.2004
  61. Lee D-H, Cao D, Moon Y, Chen C, Liu N-K, Xu X-M, Wu W (2025) Enhancement of motor functional recovery in thoracic spinal cord injury: Voluntary wheel running versus forced treadmill exercise. Neural Regen Res 20: 836–844. https://doi.org/10.4103/NRR.NRR-D-23-01585
  62. Parish CL, Finkelstein DI, Drago J, Borrelli E, Horne MK (2001) The Role of Dopamine Receptors in Regulating the Size of Axonal Arbors. J Neurosci 21: 5147–5157. https://doi.org/10.1523/JNEUROSCI.21-14-05147.2001
  63. Zhao S, DeFinis JH, Hou S (2021) Alterations of Dopamine-Related Transcripts in A11 Diencephalospinal Pathways after Spinal Cord Injury. Neural Plast 2021: 1–12. https://doi.org/10.1155/2021/8838932
  64. Hou S, Carson DM, Wu D, Klaw MC, Houlé JD, Tom VJ (2016) Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury. Exp Neurol 285: 136–146. https://doi.org/10.1016/j.expneurol.2015.12.001
  65. Qiao Y, Brodnik ZD, Zhao S, Trueblood CT, Li Z, Tom VJ, España RA, Hou S (2021) Spinal Dopaminergic Mechanisms Regulating the Micturition Reflex in Male Rats with Complete Spinal Cord Injury. J Neurotrauma 38: 803–817. https://doi.org/10.1089/neu.2020.7284
  66. Schwarz PB, Peever JH (2011) Dopamine triggers skeletal muscle tone by activating D1-like receptors on somatic motoneurons. J Neurophysiol 106: 1299–1309. https://doi.org/10.1152/jn.00230.2011
  67. Galtrey CM, Kwok JCF, Carulli D, Rhodes KE, Fawcett JW (2008) Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci 27: 1373–1390. https://doi.org/10.1111/j.1460-9568.2008.06108.x
  68. Vitellaro-Zuccarello L, Bosisio P, Mazzetti S, Monti C, De Biasi S (2007) Differential expression of several molecules of the extracellular matrix in functionally and developmentally distinct regions of rat spinal cord. Cell Tissue Res 327: 433–447. https://doi.org/10.1007/s00441-006-0289-y
  69. Smith CC, Mauricio R, Nobre L, Marsh B, Wüst RCI, Rossiter HB, Ichiyama RM (2015) Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res Bull 111: 20–26. https://doi.org/10.1016/j.brainresbull.2014.12.005
  70. Sánchez-Ventura J, Lane MA, Udina E (2022) The Role and Modulation of Spinal Perineuronal Nets in the Healthy and Injured Spinal Cord. Front Cell Neurosci 16: 893857. https://doi.org/10.3389/fncel.2022.893857
  71. Tewari BP, Chaunsali L, Campbell SL, Patel DC, Goode AE, Sontheimer H (2018) Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat Commun 9: 4724. https://doi.org/10.1038/s41467-018-07113-0
  72. Mitlöhner J, Kaushik R, Niekisch H, Blondiaux A, Gee CE, Happel MFK, Gundelfinger E, Dityatev A, Frischknecht R, Seidenbecher C (2020) Dopamine Receptor Activation Modulates the Integrity of the Perisynaptic Extracellular Matrix at Excitatory Synapses. Cells 9: 260. https://doi.org/10.3390/cells9020260
  73. Giamanco KA, Morawski M, Matthews RT (2010) Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170: 1314–1327. https://doi.org/10.1016/j.neuroscience.2010.08.032
  74. Aumann TD (2016) Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra. J Chem Neuroanat 73: 21–32. https://doi.org/10.1016/j.jchemneu.2015.12.009
  75. Bao Y-N, Dai W-L, Fan J-F, Ma B, Li S-S, Zhao W-L, Yu B-Y, Liu J-H (2021) The dopamine D1–D2DR complex in the rat spinal cord promotes neuropathic pain by increasing neuronal excitability after chronic constriction injury. Exp Mol Med 53: 235–249. https://doi.org/10.1038/s12276-021-00563-5
  76. Djebari S, Iborra-Lázaro G, Temprano-Carazo S, Sánchez-Rodríguez I, Nava-Mesa MO, Múnera A, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD (2021) G-Protein-Gated Inwardly Rectifying Potassium (Kir3/GIRK) Channels Govern Synaptic Plasticity That Supports Hippocampal-Dependent Cognitive Functions in Male Mice. J Neurosci 41: 7086–7102. https://doi.org/10.1523/JNEUROSCI.2849-20.2021
  77. Jeremic D, Sanchez-Rodriguez I, Jimenez-Diaz L, Navarro-Lopez JD (2021) Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 223: 107808. https://doi.org/10.1016/j.pharmthera.2021.107808
  78. Castelletti L, Memo M, Missale C, Spano PF, Valerio A (1989) Potassium channels involved in the transduction mechanism of dopamine D2 receptors in rat lactotrophs. J Physiol 410: 251–265. https://doi.org/10.1113/jphysiol.1989.sp017531
  79. Greif G, Lin Y, Liu J, Freedman J (1995) Dopamine-modulated potassium channels on rat striatal neurons: Specific activation and cellular expression. J Neurosci 15: 4533–4544. https://doi.org/10.1523/JNEUROSCI.15-06-04533.1995
  80. Gurevich EV, Gainetdinov RR, Gurevich VV (2016) G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 111: 1–16. https://doi.org/10.1016/j.phrs.2016.05.010
  81. Witkowski G, Szulczyk B, Rola R, Szulczyk P (2008) D1 dopaminergic control of G protein–dependent inward rectifier K+ (GIRK)–like channel current in pyramidal neurons of the medial prefrontal cortex. Neuroscience 155: 53–63. https://doi.org/10.1016/j.neuroscience.2008.05.021
  82. Nishi A, Kuroiwa M, Shuto T (2011) Mechanisms for the Modulation of Dopamine D1 Receptor Signaling in Striatal Neurons. Front Neuroanat 5: 43. https://doi.org/10.3389/fnana.2011.00043
  83. Hwang K, Jung K, Kim I-S, Kim M, Han J, Lim J, Shin JE, Jang J-H, Park KI (2019) Glial Cell Line-derived Neurotrophic Factor-overexpressing Human Neural Stem/Progenitor Cells Enhance Therapeutic Efficiency in Rat with Traumatic Spinal Cord Injury. Exp Neurobiol 28: 679–696. https://doi.org/10.5607/en.2019.28.6.679
  84. Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM (2020) GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res 382: 47–56. https://doi.org/10.1007/s00441-020-03287-6
  85. Xiao C-L, Yin W-C, Zhong Y-C, Luo J-Q, Liu L-L, Liu W-Y, Zhao K (2022) The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 156: 113881. https://doi.org/10.1016/j.biopha.2022.113881
  86. Wen X, Jiao L, Tan H (2022) MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration. Int J Mol Sci 23: 1464. https://doi.org/10.3390/ijms23031464
  87. Ohta K, Kuno S, Inoue S, Ikeda E, Fujinami A, Ohta M (2010) The effect of dopamine agonists: The expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J Neurol Sci 291: 12–16. https://doi.org/10.1016/j.jns.2010.01.013
  88. Ahmadiantehrani S, Ron D (2013) Dopamine D2 receptor activation leads to an up-regulation of glial cell line–derived neurotrophic factor via Gβγ-Erk1/2-dependent induction of Zif268. J Neurochem 125: 193–204. https://doi.org/10.1111/jnc.12178
  89. Oliveira SLB, Pillat MM, Cheffer A, Lameu C, Schwindt TT, Ulrich H (2013) Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 83: 76–89. https://doi.org/10.1002/cyto.a.22161
  90. Al-Amin H, Sarkis R, Atweh S, Jabbur S, Saadé N (2011) Chronic dizocilpine or apomorphine and development of neuropathy in two animal models II: Effects on brain cytokines and neurotrophins. Exp Neurol 228: 30–40. https://doi.org/10.1016/j.expneurol.2010.11.005
  91. Deznabi N, Hosseini S, Rajabi M (2023) Neurotrophic factors-based therapeutic strategies in the spinal cord injury: An overview of recent preclinical studies in rodent models. Egypt J Neurol Psychiatry Neurosurg 59: 63. https://doi.org/10.1186/s41983-023-00661-3
  92. Yu P-Y, Eisner GM, Yamaguchi I, Mouradian MM, Felder RA, Jose PA (1996) Dopamine D1A Receptor Regulation of Phospholipase C Isoform. J Biol Chem 271: 19503–19508. https://doi.org/10.1074/jbc.271.32.19503
  93. Zhao X, Wang L, Wang Y, Song F, Li Y, Fu R, Zheng W, Wu W, Zhou L (2012) Activation of phospholipase-Cγ and protein kinase C signal pathways helps the survival of spinal motoneurons injured by root avulsion. J Neurochem 121: 362–372. https://doi.org/10.1111/j.1471-4159.2012.07696.x
  94. Brami-Cherrier K, Valjent E, Garcia M, Pagès C, Hipskind RA, Caboche J (2002) Dopamine Induces a PI3-Kinase-Independent Activation of Akt in Striatal Neurons: A New Route to cAMP Response Element-Binding Protein Phosphorylation. J Neurosci 22: 8911–8921. https://doi.org/10.1523/JNEUROSCI.22-20-08911.2002
  95. O’Keeffe GC, Barker RA (2011) Dopamine stimulates epidermal growth factor release from adult neural precursor cells derived from the subventricular zone by a disintegrin and metalloprotease. Neuroreport 22: 956–958. https://doi.org/10.1097/WNR.0b013e32834d2f65
  96. Zhou Y, Wang Z, Li J, Li X, Xiao J (2018) Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 22: 25–37. https://doi.org/10.1111/jcmm.13353
  97. Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L (2015) Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. ASN Neuro 7: 1759091415602463. https://doi.org/10.1177/1759091415602463
  98. Mortaz E, Reza Masjedi M, Allameh A, M. Adcock I (2012) Inflammasome Signaling in Pathogenesis of Lung Diseases. Curr Pharm Des 18: 2320–2328. https://doi.org/10.2174/138161212800166077
  99. Berhow MT, Hiroi N, Kobierski LA, Hyman SE, Nestler EJ (1996) Influence of cocaine on the JAK-STAT pathway in the mesolimbic dopamine system. J Neurosci Off J Soc Neurosci 16: 8019–8026. https://doi.org/10.1523/JNEUROSCI.16-24-08019.1996
  100. Guo X, Jiang C, Chen Z, Wang X, Hong F, Hao D (2023) Regulation of the JAK/STAT signaling pathway in spinal cord injury: An updated review. Front Immunol 14: 1276445. https://doi.org/10.3389/fimmu.2023.1276445
  101. De Almeida F, Marques S, Dos Santos AR, Prins C, Dos Santos Cardoso F, Dos Santos Heringer L, Mendonça H, Martinez AB (2023) Molecular approaches for spinal cord injury treatment. Neural Regen Res 18: 23. https://doi.org/10.4103/1673-5374.344830
  102. Goldshmit Y, Frisca F, Pinto AR, Pébay A, Tang JKY, Siegel AL, Kaslin J, Currie PD (2014) Fgf2 improves functional recovery–decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav 4: 187–200. https://doi.org/10.1002/brb3.172
  103. Reuss B, Unsicker K (2000) Survival and Differentiation of Dopaminergic Mesencephalic Neurons Are Promoted by Dopamine-Mediated Induction of FGF-2 in Striatal Astroglial Cells. Mol Cell Neurosci 16: 781–792. https://doi.org/10.1006/mcne.2000.0906
  104. Li A, Guo H, Luo X, Sheng J, Yang S, Yin Y, Zhou J, Zhou J, Li A, Guo H, Luo X, Sheng J, Yang S, Yin Y, Zhou J, Zhou J (2006) Apomorphine-induced activation of dopamine receptors modulates FGF-2 expression in astrocytic cultures and promotes survival of dopaminergic neurons. FASEB J 20: 1263–1265. https://doi.org/10.1096/fj.05-5510fje
  105. Mossahebi-Mohammadi M, Quan M, Zhang J-S, Li X (2020) FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Front Cell Dev Biol 8: 79. https://doi.org/10.3389/fcell.2020.00079
  106. Han F, Konkalmatt P, Mokashi C, Kumar M, Zhang Y, Ko A, Farino ZJ, Asico LD, Xu G, Gildea J, Zheng X, Felder RA, Lee REC, Jose PA, Freyberg Z, Armando I (2019) Dopamine D2 receptor modulates Wnt expression and control of cell proliferation. Sci Rep 9: 16861. https://doi.org/10.1038/s41598-019-52528-4
  107. Li J, Chen S, Zhao Z, Luo Y, Hou Y, Li H, He L, Zhou L, Wu W (2017) Effect of VEGF on Inflammatory Regulation, Neural Survival, and Functional Improvement in Rats following a Complete Spinal Cord Transection. Front Cell Neurosci 11: 381. https://doi.org/10.3389/fncel.2017.00381
  108. Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Susan Bliss V, Manseau EJ, Dasgupta PS, Dvorak HF, Mukhopadhyay D (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7: 569–574. https://doi.org/10.1038/87895
  109. Wang Y, Wu W, Wu X, Sun Y, Zhang YP, Deng L-X, Walker MJ, Qu W, Chen C, Liu N-K, Han Q, Dai H, Shields LB, Shields CB, Sengelaub DR, Jones KJ, Smith GM, Xu X-M (2018) Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery. eLife 7: e39016. https://doi.org/10.7554/eLife.39016
  110. Seroogy KB, Lundgren KH, Tran TMD, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342: 321–334. https://doi.org/10.1002/cne.903420302
  111. Hyman C, Juhasz M, Jackson C, Wright P, Ip N, Lindsay R (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 14: 335–347. https://doi.org/10.1523/JNEUROSCI.14-01-00335.1994
  112. Xie Y, Song W, Zhao W, Gao Y, Shang J, Hao P, Yang Z, Duan H, Li X (2018) Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. Sci China Life Sci 61: 559–568. https://doi.org/10.1007/s11427-017-9217-2
  113. Vallar L, Meldolesi J (1989) Mechanisms of signal transduction at the dopamine D2 receptor. Trends Pharmacol Sci 10: 74–77. https://doi.org/10.1016/0165-6147(89)90082-5
  114. Rudge JS, Morrissey D, Lindsay RM, Pasnikowski EM (1994) Regulation of Ciliary Neurotrophic Factor in Cultured Rat Hippocampal Astrocytes. Eur J Neurosci 6: 218–229. https://doi.org/10.1111/j.1460-9568.1994.tb00264.x
  115. Yang P, Arnold SA, Habas A, Hetman M, Hagg T (2008) Ciliary Neurotrophic Factor Mediates Dopamine D2 Receptor-Induced CNS Neurogenesis in Adult Mice. J Neurosci 28: 2231–2241. https://doi.org/10.1523/JNEUROSCI.3574-07.2008
  116. Hugnot J-P (2012) The Spinal Cord Neural Stem Cell Niche. In: Sun T (ed) Neural Stem Cells and Therapy. InTech.
  117. Rusanescu G (2016) Adult spinal cord neurogenesis: A regulator of nociception. Neurogenesis Austin Tex 3: e1256853. https://doi.org/10.1080/23262133.2016.1256853
  118. Moreno-Manzano V, Rodríguez-Jiménez FJ, García-Roselló M, Laínez S, Erceg S, Calvo MT, Ronaghi M, Lloret M, Planells-Cases R, Sánchez-Puelles JM, Stojkovic M (2009) Activated Spinal Cord Ependymal Stem Cells Rescue Neurological Function. Stem Cells 27: 733–743. https://doi.org/10.1002/stem.24
  119. Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, Frisén J (2010) Origin of New Glial Cells in Intact and Injured Adult Spinal Cord. Cell Stem Cell 7: 470–482. https://doi.org/10.1016/j.stem.2010.07.014
  120. Caldwell M, Ayo-Jibunoh V, Mendoza JC, Brimblecombe KR, Reynolds LM, Zhu Jiang XY, Alarcon C, Fiore E, N. Tomaio J, Phillips GR, Mingote S, Flores C, Casaccia P, Liu J, Cragg SJ, McCloskey DP, Yetnikoff L (2023) Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum. Brain Struct Funct 228: 1993–2006. https://doi.org/10.1007/s00429-023-02695-y
  121. Rosin C, Colombo S, Calver AA, Bates TE, Skaper SD (2005) Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia 52: 336–343. https://doi.org/10.1002/glia.20250
  122. Choi M-H, Na JE, Yoon YR, Lee HJ, Yoon S, Rhyu IJ, Baik J-H (2017) Role of Dopamine D2 Receptor in Stress-Induced Myelin Loss. Sci Rep 7: 11654. https://doi.org/10.1038/s41598-017-10173-9
  123. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao X, Bu H, Hu T, Taketo MM, Van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin–TCF interaction. Nat Neurosci 12: 829–838. https://doi.org/10.1038/nn.2333
  124. Fancy SPJ, Baranzini SE, Zhao C, Yuk D-I, Irvine K-A, Kaing S, Sanai N, Franklin RJM, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23: 1571–1585. https://doi.org/10.1101/gad.1806309
  125. Tawk M, Makoukji J, Belle M, Fonte C, Trousson A, Hawkins T, Li H, Ghandour S, Schumacher M, Massaad C (2011) Wnt/β-Catenin Signaling Is an Essential and Direct Driver of Myelin Gene Expression and Myelinogenesis. J Neurosci 31: 3729–3742. https://doi.org/10.1523/JNEUROSCI.4270-10.2011
  126. Miyoshi G (2019) Elucidating the developmental trajectories of GABAergic cortical interneuron subtypes. Neurosci Res 138: 26–32. https://doi.org/10.1016/j.neures.2018.09.012
  127. Ohira K (2019) Dopamine stimulates differentiation and migration of cortical interneurons. Biochem Biophys Res Commun 512: 577–583. https://doi.org/10.1016/j.bbrc.2019.03.105
  128. Yang P, Arnold SA, Habas A, Hetman M, Hagg T (2008) Ciliary Neurotrophic Factor Mediates Dopamine D2 Receptor-Induced CNS Neurogenesis in Adult Mice. J Neurosci 28: 2231–2241. https://doi.org/10.1523/JNEUROSCI.3574-07.2008
  129. Lao CL, Lu C, Chen J (2013) Dopamine D3 receptor activation promotes neural stem/progenitor cell proliferation through AKT and ERK1/2 pathways and expands type-B and -C cells in adult subventricular zone. Glia 61: 475–489. https://doi.org/10.1002/glia.22449
  130. O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A 106: 8754–8759. https://doi.org/10.1073/pnas.0803955106
  131. Asada M, Mizutani S, Takagi M, Suzuki H (2016) Antipsychotics promote neural differentiation of human iPS cell-derived neural stem cells. Biochem Biophys Res Commun 480: 615–621. https://doi.org/10.1016/j.bbrc.2016.10.102
  132. Farkas KG, Vincze K, Tordai C, Özgen Eİ, Gürler D, Deli V, Lilienberg J, Erdei Z, Sarkadi B, Réthelyi JM, Apáti Á (2025) Functional Analysis of Antipsychotics in Human iPSC-Based Neural Progenitor 2D and 3D Schizophrenia Models. Int J Mol Sci 26: 4444. https://doi.org/10.3390/ijms26094444
  133. Liu G, Liu Z, Lin Z, Chen P, Yan Y, Lin Q, Hu Y, Jiang N, Yu B (2023) Effects of Dopamine on stem cells and its potential roles in the treatment of inflammatory disorders: A narrative review. Stem Cell Res Ther 14: 230. https://doi.org/10.1186/s13287-023-03454-w
  134. Lao CL, Lu C, Chen J (2013) Dopamine D3 receptor activation promotes neural stem/progenitor cell proliferation through AKT and ERK1/2 pathways and expands type-B and -C cells in adult subventricular zone. Glia 61: 475–489. https://doi.org/10.1002/glia.22449
  135. Reimer MM, Norris A, Ohnmacht J, Patani R, Zhong Z, Dias TB, Kuscha V, Scott AL, Chen Y-C, Rozov S, Frazer SL, Wyatt C, Higashijima S, Patton EE, Panula P, Chandran S, Becker T, Becker CG (2013) Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration. Dev Cell 25: 478–491. https://doi.org/10.1016/j.devcel.2013.04.012
  136. Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS (2021) Inflammation after spinal cord injury: A review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammat 18: 284. https://doi.org/10.1186/s12974-021-02337-2
  137. McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: A flow cytometric study. J Neuroimmunol 132: 34–40. https://doi.org/10.1016/S0165-5728(02)00280-1
  138. Marino F, Pinoli M, Rasini E, Martini S, Luini A, Pulze L, Dalla Gasperina D, Grossi P, Legnaro M, Ferrari M, Congiu T, Pacheco R, Osorio-Barrios F, De Eguileor M, Cosentino M (2022) Dopaminergic inhibition of human neutrophils is exerted through D1-like receptors and affected by bacterial infection. Immunology 167: 508–527. https://doi.org/10.1111/imm.13550
  139. Wenisch C, Parschalk B, Weiss A, Zedwitz-Liebenstein K, Hahsler B, Wenisch H, Georgopoulos A, Graninger W (1996) High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production. Clin Diagn Lab Immunol 3: 423–428. https://doi.org/10.1128/cdli.3.4.423-428.1996
  140. Kawano M, Takagi R, Saika K, Matsui M, Matsushita S (2018) Dopamine regulates cytokine secretion during innate and adaptive immune responses. Int Immunol 30: 591–606. https://doi.org/10.1093/intimm/dxy057
  141. Sookhai S, Wang JH, McCourt M, O’Connell D, Redmond HP (1999) Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism. Surgery 126: 314–322.
  142. Gaskill PJ, Carvallo L, Eugenin EA, Berman JW (2012) Characterization and function of the human macrophage dopaminergic system: Implications for CNS disease and drug abuse. J Neuroinflammat 9: 203. https://doi.org/10.1186/1742-2094-9-203
  143. Pei D, Zeng Z, Geng Z, Cai K, Lu D, Guo C, Guo H, Huang J, Gao B, Yu S (2024) Modulation of macrophage polarization by secondary cross-linked hyaluronan-dopamine hydrogels. Int J Biol Macromol 270: 132417. https://doi.org/10.1016/j.ijbiomac.2024.132417
  144. Matt SM, Nolan R, Manikandan S, Agarwal Y, Channer B, Oteju O, Daniali M, Canagarajah JA, LuPone T, Mompho K, Runner K, Nickoloff-Bybel E, Li B, Niu M, Schlachetzki JCM, Fox HS, Gaskill PJ (2024) Dopamine-driven increase in IL-1β in myeloid cells is mediated by differential dopamine receptor expression and exacerbated by HIV. J Neuroinflammat 22(1): 91. https://doi.org/10.1186/s12974-025-03403-9
  145. Penedo MA, Rivera-Baltanás T, Pérez-Rodríguez D, Allen J, Borrajo A, Alonso-Crespo D, Fernández-Pereira C, Nieto-Araujo M, Ramos-García S, Barreiro-Villar C, Caruncho HJ, Olivares JM, Agís-Balboa RC (2021) The role of dopamine receptors in lymphocytes and their changes in schizophrenia. Brain Behav Immun – Health 12: 100199. https://doi.org/10.1016/j.bbih.2021.100199
  146. Arreola R, Alvarez-Herrera S, Pérez-Sánchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garcés-Alvarez ME, De La Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, Quintero-Fabián S, Pavón L (2016) Immunomodulatory Effects Mediated by Dopamine. J Immunol Res 2016: 1–31. https://doi.org/10.1155/2016/3160486
  147. Luo H, Liu N, Lin C (2024) Dopamine enhances recovery after traumatic brain injury through ubiquitylation and autophagic degradation of RIPK1. Cell Commun Signal 22(1): 134. https://doi.org/10.1186/s12964-024-01515-y
  148. Huang Y, Chen C-C, Wang T-T, Qiu Y-H, Peng Y-P (2016) Dopamine receptors modulate T lymphocytes via inhibition of cAMP-CREB signaling pathway. Neuro Endocrinol Lett 37: 491–500.
  149. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109: 632–642. https://doi.org/10.1182/blood-2006-01-028423
  150. Wang X-Q, Liu Y, Cai H-H, Peng Y-P, Qiu Y-H (2016) Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis. Exp Biol Med 241: 2094–2103. https://doi.org/10.1177/1535370216660635
  151. Huck JH, Freyer D, Böttcher C, Mladinov M, Muselmann-Genschow C, Thielke M, Gladow N, Bloomquist D, Mergenthaler P, Priller J (2015) De Novo Expression of Dopamine D2 Receptors on Microglia after Stroke. J Cereb Blood Flow Metab 35: 1804–1811. https://doi.org/10.1038/jcbfm.2015.128
  152. Xia Q-P, Cheng Z-Y, He L (2019) The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol 76: 105908. https://doi.org/10.1016/j.intimp.2019.105908
  153. Singh S, Mishra A, Srivastava N, Shukla R, Shukla S (2018) Acetyl-l-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats. Mol Neurobiol 55: 583–602. https://doi.org/10.1007/s12035-016-0293-5
  154. Bellver-Landete V, Bretheau F, Mailhot B, Vallières N, Lessard M, Janelle M-E, Vernoux N, Tremblay M-È, Fuehrmann T, Shoichet MS, Lacroix S (2019) Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun 10: 518. https://doi.org/10.1038/s41467-019-08446-0
  155. Kalkman HO, Feuerbach D (2016) Antidepressant therapies inhibit inflammation and microglial M1-polarization. Pharmacol Ther 163: 82–93. https://doi.org/10.1016/j.pharmthera.2016.04.001
  156. Zhang M (2024) Role of dopamine in regulating microglia inflammatory responses through TLR4-NFb pathway. Theor Nat Sci 32: 39–51. https://doi.org/10.54254/2753-8818/32/20240782
  157. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung W-S, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481–487. https://doi.org/10.1038/nature21029
  158. Montoya A, Elgueta D, Campos J, Chovar O, Falcón P, Matus S, Alfaro I, Bono MR, Pacheco R (2019) Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J Neuroinflammat 16: 258. https://doi.org/10.1186/s12974-019-1652-8
  159. McKeon R, Schreiber R, Rudge J, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11: 3398–3411. https://doi.org/10.1523/JNEUROSCI.11-11-03398.1991
  160. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532: 195–200. https://doi.org/10.1038/nature17623
  161. Gurram PC, Manandhar S, Satarker S, Mudgal J, Arora D, Nampoothiri M (2023) Dopaminergic Signaling as a Plausible Modulator of Astrocytic Toll-LikeReceptor 4: A Crosstalk between Neuroinflammation and Cognition. CNS Neurol Disord – Drug Targets 22: 539–557. https://doi.org/10.2174/1871527321666220413090541
  162. Davis BK, Wen H, Ting JP-Y (2011) The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annu Rev Immunol 29: 707–735. https://doi.org/10.1146/annurev-immunol-031210-101405
  163. Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, Xiao M, Wang C, Lu M, Hu G (2018) Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of β-arrestin2 and NLRP3. Cell Death Differ 25: 2037–2049. https://doi.org/10.1038/s41418-018-0127-2
  164. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine Controls Systemic Inflammation through Inhibition of NLRP3 Inflammasome. Cell 160: 62–73. https://doi.org/10.1016/j.cell.2014.11.047
  165. Morimoto K, Ouchi M, Kitano T, Eguchi R, Otsuguro K (2022) Dopamine regulates astrocytic IL-6 expression and process formation via dopamine receptors and adrenoceptors. Eur J Pharmacol 928: 175110. https://doi.org/10.1016/j.ejphar.2022.175110

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences