DOI: https://doi.org/10.17816/vto659791 EDN: THADCG

Реабилитация при артропластике плечевого сустага

И.А. Чугреев¹, И.Н. Марычев¹, М.Б. Цыкунов^{1, 2}, Я.Г. Гудушаури¹

¹ Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова, Москва, Россия;

РИДИТОННА

Обоснование. Реверсивное эндопротезирование плечевого сустава является эффективным методом хирургического лечения тяжёлых дегенеративных и посттравматических патологий плечевого сустава. Однако, несмотря на доказанную клиническую эффективность, остаётся открытым вопрос о выборе оптимального объёма медицинской реабилитации, способного максимизировать функциональные результаты и качество жизни пациентов.

Цель. Оценить эффективность специализированной программы медицинской реабилитации после реверсивного эндопротезирования плечевого сустава, основанной на применении современных методик, включая изокинетическую динамометрию и тренировок с биологической обратной связью.

Материалы и методы. Проведено когортное сравнительное исследование, включавшее 33 пациента с диагнозом «омартроз», перенёсших реверсивное эндопротезирование плечевого сустава. Пациенты были разделены на две группы: основная группа (*n*=17) проходила структурированную программу медицинской реабилитации по разработанной методике, а контрольная (*n*=16) характеризовалась отсутствием организованной реабилитации. Первичной конечной точкой исследования являлось восстановление функциональных показателей плечевого сустава, включая амплитуду движений, силу мышц, координационные способности и субъективные показатели качества жизни. Методы оценки включали гониометрию, изокинетическую динамометрию, анализ способности выполнять сложно координированные движения, шарового сектора движений верхней конечности и анкетирование (DASH, PSS, SF-36).

Результаты. Пациенты, прошедшие курс медицинской реабилитации, продемонстрировали статистически значимо лучшие функциональные показатели по сравнению с контрольной группой. Амплитуда отведения составила 150° [150° — 160°] в основной группе против $107,5^{\circ}$ [$93,75^{\circ}$ — 140°] в контрольной (p < 0,001). Амплитуда сгибания составила 160° [150° — 165°] в основной группе против 120° [$107,5^{\circ}$ — $133,8^{\circ}$] в контрольной (p < 0,001). Амплитуда наружной ротации также была выше в основной группе (45° [40° — 55°] против 25° [20° — $36,3^{\circ}$], p < 0,001). Сила отведения в основной группе достигала 23,6 Нм [19,3—32,4], тогда как в контрольной — 16,7 Нм [9,93—20,6] (p=0,005). Шаровой сектор движений в основной группе составил 230778 см³ [207 921—268 565], что превышало показатели контрольной группы — 126 952 см³ [107 894,25—151 971,3], p=0,001. Анализ корреляционных связей показал, что объём движений в плечевом суставе имел сильную положительную корреляцию с координационными показателями (r=0,78, p < 0,001) и силой мышц (r=0,71, p < 0,001). Кроме того, высокие показатели субъективной удовлетворённости пациентов (опросник SF-36) были ассоциированы с улучшением силы мышц и амплитуды наружной ротации (r=0,63, p=0,002).

Заключение. Применение комплексной персонализированной программы реабилитации после артропластики плечевого сустава способствует значительному улучшению его функциональных показателей. Оптимизация программ медицинской реабилитации позволит повысить качество

² Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия

DOI: https://doi.org/10.17816/vto659791

EDN: THADCG

медицинской помощи и улучшить долгосрочные клинические исходы у пациентов после реверсивного эндопротезирования плечевого сустава.

Ключевые слова: реверсивное эндопротезирование плечевого сустава; медицинская реабилитация; биологическая обратная связь; изокинетическая динамометрия; амплитуда движений; сила мышц; координация движений.

КАК ЦИТИРОВАТЬ:

Чугреев И.А., Марычев И.Н., Цыкунов М.Б., Гудушаури Я.Г. Реабилитация при артропластике плечевого сустава // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2025. Т. 32, № 2. С. XXX—XXX. DOI: 10.17816/vto659791 EDN: ТНАDCG

Рукопись получена: 24.02.2025 Рукопись одобрена: 10.03.2025 Опубликована online: 11.06.2025

DOI: https://doi.org/10.17816/vto659791
EDN: THADCG

Rehabilitation after shoulder arthroplasty

Ivan A. Chugreev¹, Ivan N. Marychev¹, Mikhail B. Tsykunov^{1, 2}, Yago G. Gudushaur¹

¹ Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia;

² Pirogov Russian National Research Medical University, Moscow, Russia

ABSTRACT

BACKGROUND: Reverse shoulder arthroplasty (RSA) is an effective surgical treatment for severe degenerative and post-traumatic shoulder pathologies. However, despite its proven clinical effectiveness, the optimal volume of medical rehabilitation required to maximize functional outcomes and patient quality of life remains an open question.

AIM: To evaluate the effectiveness of a specialized medical rehabilitation program following reverse shoulder arthroplasty, incorporating modern techniques such as isokinetic dynamometry and biofeedback training.

MATERIALS AND METHODS: A cohort comparative study included 33 patients diagnosed with omarthrosis who underwent RSA. The patients were divided into two groups: the main group (n=17) underwent a structured medical rehabilitation program, while the control group (n=16) had no organized rehabilitation. The primary endpoint was the restoration of functional shoulder parameters, including range of motion, muscle strength, coordination, and patient-reported quality of life. Assessment methods included goniometry, isokinetic dynamometry, spatial movement volume analysis (sphere sector), and questionnaires (DASH, PSS, SF-36).

RESULTS: Patients in the rehabilitation group demonstrated significantly better functional outcomes compared to the control group. Shoulder abduction reached 150° [$150^{\circ}-160^{\circ}$] in the rehabilitation group versus 107.5° [$93.75^{\circ}-140^{\circ}$] in the control group (p < 0.001). Shoulder flexion reached 160° [$150^{\circ}-165^{\circ}$] in the rehabilitation group versus 120° [$107.5^{\circ}-133.8^{\circ}$] in the control group (p < 0.001). External rotation was also higher in the rehabilitation group (45° [$40^{\circ}-55^{\circ}$] vs. 25° [$20^{\circ}-36.3^{\circ}$], p < 0.001). Abduction strength was 23.6 Nm [19.3-32.4] in the rehabilitation group compared to 16.7 Nm [9.93-20.6] in the control group (p=0.005). The spatial movement volume (sphere sector) in the rehabilitation group was 230.778 cm³ [207.921-268.565], significantly higher than in the control group (126.952 cm³ [107.894.25-151.971.3], p=0.001). Correlation analysis revealed a strong positive correlation between shoulder range of motion and coordination scores (r=0.78, p < 0.001) and muscle strength (r=0.71, p < 0.001). Additionally, higher patient satisfaction scores (SF-36) were associated with improved muscle strength and external rotation (r=0.63, p=0.002).

CONCLUSIONS: The implementation of a comprehensive rehabilitation program after shoulder arthroplasty significantly improves functional outcomes of the shoulder joint. Optimizing medical rehabilitation programs will enhance the quality of healthcare and improve long-term clinical outcomes for patients after reverse shoulder arthroplasty.

Keywords: Reverse shoulder arthroplasty; medical rehabilitation; biofeedback; isokinetic dynamometry; range of motion; muscle strength; movement coordination.

TO CITE THIS ARTICLE:

Chugreev IA, Marychev IN, Tsykunov MB, Gudushauri YG. Rehabilitation after shoulder arthroplasty. N.N. Priorov Journal of Traumatology and Orthopedics. 2025;32(2):XXX–XXX. DOI: 10.7816/xto659791 EDN: THADCG

Received: 24.02.2025 **Accepted:** 10.03.2025

Published online: 11.06.2025

DOI: https://doi.org/10.17816/vto659791

EDN: THADCG

ОБОСНОВАНИЕ

Реверсивное эндопротезирование плечевого сустава является эффективным методом хирургического лечения при тяжёлых дегенеративных заболеваниях плечевого сустава, таких как артроз и последствия сложных переломов, особенно у пациентов пожилого возраста [1]. Данный метод изначально был разработан для лечения дефект-артропатии вращательной манжеты, однако в настоящее время показания к его применению расширены и включают массивные разрывы вращательной манжеты, неудачные хирургические вмешательства, ревизионные эндопротезирования, переломы проксимального отдела плечевой кости и опухоли [2–4].

Данный хирургический метод лечения плечевого сустава демонстрирует значительное улучшение функции и снижение болевого синдрома, особенно при первичных операциях, по сравнению с ревизионными вмешательствами [5]. Однако операция приводит к серьёзным изменениям биомеханики плечевого сустава, включая медиализацию центра ротации, перераспределение нагрузки с вращательной манжеты на дельтовидную мышцу и изменение паттернов движения [6–8]. Эти факторы усложняют процесс восстановления и требуют разработки адаптированных реабилитационных программ. В то же время возможны послеоперационные осложнения, такие как вывихи, переломы и инфекции, особенно в случаях ревизионного эндопротезирования [9]. По мере распирения показаний к реверсивной артропластике проведение долгосрочных исследований становится всё более важным для оптимизации стратегии ведения пациентов [10].

Реабилитация играет ключевую роль в восстановлении двигательной функции и качества жизни пациентов после артропластики. Недавние исследования показывают, что ранняя активная мобилизация может быть более эффективной по сравнению с отсроченной, улучшая сгибание руки уже через три месяца после операции [11]. Некоторые протоколы допускают немедленную мобилизацию плеча без использования иммобилизации, что демонстрирует безопасность и эффективность данного подхода [12, 13]. Однако реабилитационные подходы значительно варьируют среди медицинских учреждений, и отсутствует единый стандарт ведения пациентов [14].

В настоящее время в России значительное число пациентов, перенёсших реверсивное эндопротезирование плечевого сустава, сталкиваются с ограниченным доступом к квалифицированной реабилитационной помощи. Данный факт обусловлен рядом факторов, среди которых можно выделить социально-экономические барьеры, территориальную удалённость специализированных реабилитационных центров, недостаточную осведомлённость пациентов и медицинских работников о специфике восстановления после данной операции, а также дефицит специалистов, обладающих необходимыми знаниями и навыками. В результате этого пациенты нередко вынуждены ограничиваться самостоятельными занятиями без профессионального сопровождения, что может снижать эффективность восстановления и увеличивать риск развития осложнений.

Отсутствие унифицированного реабилитационного подхода также способствует вариативности проводимых мероприятий, что затрудняет объективную оценку их эффективности и приводит к разным клиническим исходам. В связи с этим разработка единой стандартизированной программы реабилитации, адаптированной под особенности реверсивного эндопротезирования плечевого сустава, приобретает особую актуальность. Формирование научно обоснованной системы восстановительных мероприятий и их апробация с последующей оценкой эффективности нозволит повысить качество медицинской помощи данной категории пациентов, снизить риск функциональных ограничений и улучшить качество их жизни.

В целом реабилитация после эндопротезирования плечевого сустава включает три этапа: заживление тканей и восстановление трофики, восстановление подвижности и укрепление мышечного аппарата [15]. В исследовании, проведённом М.С. Ноward и соавт., было показано, что ранняя активизация пациентов после артропластики плечевого сустава способствует более быстрому воестановлению функции, улучшению диапазона движений и снижению риска послеоперационных осложнений без увеличения вероятности нестабильности или повреждения протеза [16]. Несмотря на доказательства безопасности возвращения к физической активности у пожилых пациентов, у молодых и высокофункциональных пациентов необходима особая осторожность при планировании реабилитационных мероприятий [17].

DOI: https://doi.org/10.17816/vto659791
EDN: THADCG

Несмотря на большое количество исследований, посвящённых ранней и поздней реабилитации, оценка эффективности программ в резидуальном периоде (6 месяцев и более после операции) встречается редко [18]. Пациенты, проходящие самостоятельную реабилитацию, часто необходимость недооценивают регулярных тренировок, что приводит к стойким ограничениям. Это необходимость функциональным подчёркивает разработки специализированных реабилитационных программ, направленных на восстановление функциональных возможностей плечевого сустава в долгосрочной перспективе.

Оптимальные протоколы реабилитации после артропластики плечевого сустава остаются предметом научных дискуссий, что подтверждает важность дальнейших исследований, направленных на разработку и оценку эффективности специализированных программ восстановления [19]. В связи с этим актуальность настоящего исследования заключается в разработке и анализе эффективности комплексной реабилитационной программы, ориентированной на пациентов в позднем послеоперационном периоде, с целью максимального восстановления двигательной функции верхней конечности и улучшения качества жизни.

Цель исследования — оценка эффективности разработанной реабилитационной программы после реверсивного эндопротезирования плечевого сустава при омартрозе.

МАТЕРИАЛЫ И МЕТОДЫ

Дизайн исследования

Экспериментальное проспективное выборочное одноцентровое контролируемое открытое исследование по оценке эффективности и безопасности программы реабилитации пациентов.

Условия проведения

Клиническое исследование проводилось на базе отделения медицинской реабилитации Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова» Минздрава России. Все участники исследования были госпитализированы в рамках второго этапа медицинской реабилитации после артропластики плечевого сустава и проходили лечение в условиях круглосуточного стационара. Программа реабилитации реализовывалась в соответствии с индивидуальным планом, утверждённым МДРК, и включала ежедневные занятия лечебной гимнастикой и процедуры физиотерапии. Продолжительность пребывания пациентов в стационаре составляла в среднем 14 дней.

Продолжительность исследования

Исследование проводилось с июня 2024 года по декабрь 2024 года. Каждый пациент находился под наблюдением в течение года после артропластики плечевого сустава.

Критерии соответствия

Критериями включения в исследование являлись: возраст от 40 до 80 лет вне зависимости от пола, реверсивное эндопротезирование плечевого сустава по поводу дегенеративно-дистрофических заболеваний плечевого сустава (не позднее 24 часов с момента хирургического вмешательства), добровольное подписание формы информированного согласия на участие в исследовании. Критериями исключения из исследования: отказ больного от продолжения участия в исследовании; возникновение или обострение соматических заболеваний у больного во время исследования, препятствующих продолжению исследования или приводящих к нарушению графика процедур; не соблюдение пациентом протокола исследования; наличие нежелательных явлений в ходе исследования (значительное усиление болевого синдрома в области прооперированно-го плечевого сустава (более чем на 4 балла по ВАШ), значительное снижение объема движений в прооперированном плечевом суставе (более чем на 50% от исходного), асептическая нестабильность компонентов эндопротеза, разрыв манжеты ротаторов, перипротезный перелом диафиза плечевой кости, признаки повреждения лучевого, подмышечного нервов (для основной и контрольной групп).

Описание медицинского вмешательства

Реабилитация после реверсивного эндопротезирования плечевого сустава представляет собой многоэтапный процесс, направленный на восстановление функции сустава, предотвращение осложнений и улучшение качества жизни пациента. Данный протокол включает три основных

DOI: https://doi.org/10.17816/vto659791 EDN: THADCG

периода: ранний период (0–6 нед), поздний период (6–12 нед), резидуальный период (от 12 нед), каждый из которых имеет определённые цели, средства лечебной физкультуры (ЛФК) и критерии эффективности.

В раннем периоде (0–6 нед) основными целями являются защита послеоперационной области, предотвращение осложнений, минимизация болевого синдрома, профилактика гипотрофии и гипокинезии за счёт поддержания подвижности в дистальных отделах конечности. В этот период применяются методы иммобилизации плеча с использованием ортеза (отводящей шины с отведением до 60°), пассивные упражнения для плечевого сустава с помощью СРМ-терапии или инструктора ЛФК (сгибание до 120°, отведение до 90°, наружная ротация в илоскости лопатки до 30°). Критериями эффективности данной фазы являются отсутствие осложнений и признаков нестабильности сустава, уровень боли ≤4/10 по визуальной аналоговой шкале боли (ВАШ) и увеличение объёма пассивных движений.

В позднем периоде (6–12 нед) основное внимание уделяется постепенному увеличению амплитуды движений, началу активно-облегчённых и активных движений, а также активации дельтовидной и окололопаточной мускулатуры. В ходе реабилитации постепенно отменяется использование ортеза, вводятся активно-облегчённые упражнения (сгибание, отведение и наружная ротация), а также изометрические упражнения для дельтовидной мышцы. Эффективность данного этапа оценивается по следующим критериям: увеличение активных и пассивных движений без выраженной боли и уровень боли ≤4/10 по ВАШ.

Резидуальный пероид (от 12 нед) ориентирован на восстановление полной амплитуды движений в плечевом суставе, восстановление силы и выносливости к статическим и динамическим нагрузкам, увеличение функциональной нагрузки на сустав и возвращение пациента к повседневной активности. В этот период используются упражнения на увеличение силы мышц (упражнения с сопротивлением), активные упражнения в функциональных положениях. В дальнейшем в реабилитационную программу включаются упражнения с утяжелением (отягощения, тренажёры), динамические упражнения для развития силы и выносливости, а также улучшение способности выполнять сложно координированные движения верхней конечностью. Оценка эффективности данного этапа проводится на основании достижения полной амплитуды движений без боли, симметричного функционирования лопаточно-плечевого комплекса, выполнения функциональных тестов без выраженного дискомфорта, восстановление силы мышц сустава ≥80% от здоровой конечности, способность пациента выполнять бытовые и профессиональные нагрузки без боли.

Методы регистрации исходов

Методы диагностики пациентов включали клиническое обследование, инструментальные методы оценки функционального состояния плечевого сустава, в том числе изокинетическую динамометрию, анализ координационных способностей с использованием биологической обратной связи (БОС) и анкетные методы субъективной оценки функциональных ограничений и качества жизни.

Измерение амплитуды движений в плечевом суставе осуществлялось с помощью гониометрии в стандартных плоскостях: отведение, сгибание, наружная и внутренняя ротация. Оценка мышечной силы выполнялась с использованием изокинетической динамометрии на аппарате Primus RS (ВТЕ, США), включавшей измерение следующих параметров: отведение и приведение плеча, а также общая работа в тестах на отведение и приведение. Пациентам также проводилось измерение силы мышь, осуществляющих наружную ротацию, в изометрическом режиме из нулевого положения при отведении плечевого сустава на 90°. Измерение мышечной выносливости к статической нагрузке производилось с помощью безмаркерной системы видеоанализа НАВИЕСТ (Россия) в статическом тесте удержания груза 4 кг в положении отведения на 90° и нулевой ротации плечевого сустава и сгибания локтевого сустава на 90° в течение 90 секунд.

Оценка шарового сектора движений и координационных способностей верхней конечности проводилась с использованием аппаратного комплекса с БОС Armeo Spring (Носота, Швейцария). Анализировались шаровой сектор движений (параметр «громкость») и балльная оценка выполнения координационного задания («рисование по контуру», сложность средняя, в течение 5 минут).

Анкетные методы включали шкалы DASH (Disabilities of the Arm, Shoulder and Hand Questionnaire), PSS (Penn Shoulder Score) и SF-36 (Short Form-36 Health Survey). Шкала DASH

DOI: https://doi.org/10.17816/vto659791

EDN: THADCG

использовалась для оценки функциональных ограничений верхней конечности, шкала PSS — для анализа болевого синдрома и функционального статуса плечевого сустава, а SF-36 — для оценки физического и психологического компонентов качества жизни.

Этическая экспертиза

Все участники исследования дали письменное информированное согласие на участие в исследовании, после получения полной информации о протоколе исследования. Исследование одобрено этическим комитетом «Ассоциации травматологов-ортопедов России» от 23.05.2025г.

Статистический анализ

Для анализа данных применялись методы описательной статистики, включающие расчёт медианы и межквартильного размаха – Ме [Q1–Q3]. Для сравнения показателей между группами использовался непараметрический критерий Манна–Уитни, так как графический анализ и тест Шапиро–Уилка показали отсутствие нормального распределения данных (p <0,05). Оценка взаимосвязи между функциональными параметрами проводилась с использованием корреляционного анализа Спирмена (r). Оценка производилась посредством ПО Jamovi 0.1.3.

РЕЗУЛЬТАТЫ

Участники исследования

В исследовании принимали участие 33 пациента в возрасте от 40 до 83 лет, перенёсшие артропластику плечевого сустава по поводу омартроза (рис. 1), в сроки $48,03\pm1,29$ недели от операции. Все пациенты были разделены на две группы: основную, включавшую 17 человек (11 женщин и 6 мужчин), прошедших разработанный курс медицинской реабилитации, и контрольную, в которую вошли 16 человек (11 женщин и 5 мужчин), не проходивших специализированную реабилитацию или занимавшихся восстановлением плечевого сустава самостоятельно. Средний возраст пациентов не различался между группами ($61,6\pm11,1$ года в группе реабилитации и $61,8\pm8,64$ года в группе без реабилитации).

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

При сравнении амплитуды движений были выявлены статистически значимые различия по большинству показателей. Отведение плеча в основной группе составило 150° [150°–160°], тогда как в контрольной группе данный показатель был значительно ниже и составил 107,5° $[93,75^{\circ}-140^{\circ}]$ (p <0,001) (рис. 2). Стибание плеча также оказалось значимо лучше в группе с реабилитацией (160° [150° — 165°] против 120° [107.5° — 133.8°]; p < 0.001) (рис. 3). Существенные различия выявлены и по показателю наружной ротации: в основной группе её величина составила 45° [40°–55°], тогда как в группе без реабилитации — 25° [20°–36,3°] (p < 0.001) (рис. 4). Внутренняя ротация не показала статистически значимых различий между группами (p=0,294). Результаты оценки мышечной силы также демонстрируют значительные различия между группами. Сила отведения составила 23,6 Нм [19,3–32,4] в основной группе и 16,7 Нм [9,93–20,6] в контрольной (p=0,005) (рис. 5). Приведение в основной группе достигло 40,1 Нм [34,8–55,1], тогда как в контрольной — $30.95 \,\mathrm{Hm} \, [26.63-35.8] \, (p=0.012) \, (рис. 6)$. Общая работа (отведение/приведение) составила 198,7 Дж [172–291] в основной группе против 123,4 Дж [93,1– 153,8] в контрольной группе (p=0,004). Наружная ротация в основной группе оказалась выше (13,7 Нм [10,6–16,7]) по сравнению с контрольной группой (6,35 Нм [5,6–12,6]) (р=0,002) (рис. 7). Исходя из полученных данных инструментальной оценки шарового сектора движений и координации плечевого сустава с применением биологической обратной связи, можно сделать вывод о <mark>з</mark>начит<mark>ел</mark>ьных различиях между группами. Шаровой сектор движений (громкость) [207 921–268 565], тогда как в основной группе составил 230 778 см³ в группе реабилитации — $126\,952\,\mathrm{cm}^3\,[107\,894,25-151\,971,3]\,(p=0,001)\,($ рис. 8). Показатель «балл в игре», отражающий способность выполнять сложно координированные действия рукой, был выше в основной группе (49 [45–65]) по сравнению с контрольной группой (35 [30,75–49,3]), различия также достигали уровня статистической значимости (p=0,011) (рис. 9).

Результаты анкетирования пациентов с использованием шкал DASH и PSS подтвердили существенное влияние полноценной медицинской реабилитации на субъективные ощущения

DOI: https://doi.org/10.17816/vto659791 EDN: THADCG

функционального состояния. Средний балл по опроснику DASH в группе с реабилитацией составил $10\ [5,83-19]$, тогда как в группе без реабилитации он был значительно выше — $35\ [31,46-44,6]\ (p<0,001)\ (рис.\ 10)$. Результаты оценки функционального статуса и боли в плече по шкале PSS также свидетельствуют о значимых различиях: в основной группе пациенты демонстрировали лучшую функцию плечевого сустава по сравнению с контрольной группой ($54\ [49-56]\$ против $30,27\ [22,63-39,3];\ p<0,001);$ также после курса реабилитации пациенты отмечали меньшую выраженность болевого синдрома ($30\ [27-30]$) по сравнению с пациентами без реабилитации ($23,5\ [18-27,3]$) (p=0,001) (рис. 11). Физический компонент качества жизни по шкале SF-36 (PCS) был значимо выше в основной группе ($50,1\ [41,13-54,9]$) по сравнению с контрольной группой ($37,74\ [34,12-44]$) (p=0,003) (рис. 12). При этом различия по психологическому компоненту SF-36 (MCS) между группами не достигли статистической значимости (p>0,05).

На рис. 13 и 14 показано инструментальное графическое подтверждение разницы в выносливости мышц плечевого пояса у пациентов, проходивших персонализированный курс медицинской реабилитации, и без восстановительного лечения. Исследование проводилось с помощью безмаркерного видеоанализа с контролем ключевых точек во фронтальной плоскости: кисть, локтевой сустав, плечевой сустав. Графики демонстрируют изменение контрольных точек (суставов) в пространстве во время нагрузочной пробы; у пациента, не проходившего организованную реабилитацию, уровень локтевого сустава опустился на 15 см (у пациента после курса реабилитации — на 7 см), кисть сместилась к центру на 20 см (у пациента после курса реабилитации — на 10 см). Данные свидетельствуют об относительно низких показателях выносливости мышц плечевого сустава к статическим нагрузкам у пациентов, которые не проходили курс медицинской реабилитации.

Корреляционный анализ взаимосвязей показал, что амплитуда движений и сила мышц плечевого сустава тесно связаны между собой. Так, отведение продемонстрировало высокую положительную корреляцию с силой отведения (r=0,804, p<0,001) и сгибанием (r=0,941, p<0,001), а наружная ротация показала значимую связь с силой мышц, отвечающих за соответствующее движение (r=0,813, p<0,001). Исследование координационных показателей выявило, что шаровой сектор движений (r=0,768, p<0,001).

Анализ взаимосвязи болевого синдрома и качества жизни показал, что уровень боли (PSS) отрицательно коррелировал с показателями амплитуды движений (отведение: r=-0.368, p=0,035; сгибание: r=-0,446, p=0,009), таким образом, чем ниже субъективный уровень боли пациента, тем больше амплитуда движений в суставе. Показатель DASH имел значительную отрицательную связь с функциональными параметрами, в частности с амплитудой отведения (r=-0,824, p<0,001) и координационными возможностями (r=-0,708, p<0,001), что с учётом специфики оценки по данной шкале (меньше — лучше) говорит о тесной взаимосвязи данных параметров. Кроме того, выявлена положительная корреляция физического компонента SF-36 с силой мышц (r=0,558, p=0,001), что свидетельствует о влиянии мышечной активности на общее физическое самочувствие пациентов, воздействуя на улучшение субъективного качества жизни.

ОБСУЖДЕНИЕ

Результаты настоящего исследования подтвердили, что ранняя активизация пациентов после реверсивного эндопротезирования плечевого сустава в сочетании с контролируемым увеличением нагрузки и включением координационных тренировок приводит к значительному улучшению амплитуды движений, силы мышц и качества жизни. Включение в программу реабилитации биологической обратной связи позволило объективно оценивать шаровой сектор движений, что ранее не учитывалось в большинстве исследований.

Полученные данные согласуются с результатами М.С. Howard и соавт., которые продемонстрировали преимущества ранней активизации для увеличения подвижности и снижения послеоперационного болевого синдрома [16]. Однако их исследование не учитывало влияние координационных способностей на функциональное восстановление. В отличие от него в нашей работе было показано, что пациенты, проходившие реабилитацию с БОС, имели значимо лучший контроль движений, что подтверждается более высоким шаровым сектором движений (234348,24±43536,8 см³ против 133506,56±30866,74 см³ в контрольной группе, p=0,001).

DOI: https://doi.org/10.17816/vto659791

EDN: THADCG

Анализ динамики восстановления амплитуды движений показал, что пациенты, прошедшие разработанный курс реабилитации, имели значительное преимущество по сравнению с группой без организованной реабилитации: отведение плеча достигало $151,18\pm16,16^\circ$ тогда как в контрольной группе данный показатель составлял $114,69\pm27,54^\circ$ (p<0,001). Эти результаты перекликаются с работами Salamh & Speer, которые подтвердили, что ранняя мобилизация не увеличивает риск нестабильности протеза. Однако их исследование, в отличие от нашей работы, не предусматривало строгого контроля нагрузки и координационных тренировок, что могло повлиять на долгосрочные функциональные исходы [20].

Наши данные также демонстрируют, что активное включение упражнений на силу и координацию привело к более выраженному улучшению мышечной функции. Так, сила отведения в основной группе составила 28,13±13,14 Нм, что значимо выше, чем у пациентов без реабилитации (17,99±8,88 Нм, p=0,005). В традиционном подходе, описанном Ј.М. Kirsch и соавт., подчёркивается необходимость длительной иммобилизации (до 6 недель), что защищает эндопротез, но может приводить к гипотрофии и контрактурам [21]. В нашем исследовании, напротив, раннее вовлечение пациента в активные упражнения способствовало сохранению силы мышц и улучшению функциональных показателей без увеличения болевого синдрома.

Использование персонализированного подхода к реабилитации в нашей реабилитации соответствует принципам, описанным А.М. Romano и соавт., где пациентам с разным риском осложнений предлагались адаптированные программы восстановления [22]. Однако наше исследование отличается тем, что индивидуализация нагрузок базировалась на объективных данных инструментальной диагностики (изокинетическая динамометрия, БОС), что позволило гибко адаптировать реабилитационный процесс И добиваться функциональных результатов.

Таким образом, разработанная программа реабилитации сочетает ключевые преимущества существующих подходов: раннюю мобилизацию, персонализированное распределение нагрузок и объективную оценку восстановления. Включение контроля координации и шарового сектора движений делает эту программу более точной и эффективной в сравнении с традиционными методиками. Данные результаты иодчёркивают необходимость комплексного подхода к восстановлению после реверсивного эндопротезирования плечевого сустава и могут служить основой для дальнейшей оптимизации реабилитационных протоколов.

Ограничения исследования

Настоящее исследование имеет ряд ограничений, которые необходимо учитывать при интерпретации его результатов. Относительно небольшой размер выборки может снижать возможность обобщения полученных данных, что подчёркивает необходимость дальнейших исследований с более широкой репрезентативностью. Дополнительно следует учитывать гетерогенность контрольной группы, так как пациенты, выполнявшие самостоятельную реабилитацию, могли существенно различаться по уровню активности и приверженности восстановительным мероприятиям, что могло повлиять на значимость сравнений. Также в исследовании не проводился детальный анализ влияния индивидуальных факторов, таких как исходная физическая подготовка, мотивация и особенности нервно-мышечной адаптации, что могло оказывать значительное влияние на исходы реабилитации. В дальнейшем важно учитывать эти аспекты при разработке персонализированных восстановительных протоколов, что позволит повысить точность оценки эффективности реабилитационных мероприятий и их долгосрочных результатов.

ЗАКЛЮЧЕНИЕ

Реверсивное эндопротезирование плечевого сустава является эффективным методом хирургического лечения дегенеративных и посттравматических патологий плечевого сустава, позволяя существенно улучшить его функциональные возможности и снизить болевой синдром. Включение персонализированного подхода к реабилитации необходимо для адаптации пациентов к изменённой биомеханике сустава, предотвращая возможные осложнения и ускоряя восстановление.

Онтимальный объём медицинской реабилитации играет ключевую роль в восстановлении двигательной функции, координации и силы мышц плечевого сустава. Результаты исследования подтверждают, что специализированная программа реабилитации с использованием

DOI: https://doi.org/10.17816/vto659791

EDN: THADCG

современных методик, включая биологическую обратную связь и изокинетическую динамометрию, значительно улучшает амплитуду движений, координацию и субъективное качество жизни пациентов. Дальнейшие исследования необходимы для совершенствования протоколов реабилитации и определения оптимальных сроков и объёмов восстановительных мероприятий.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Вклад авторов. Все авторы одобрили финальную версию перед публикацией, а также согласились нести ответственность за все аспекты работы, гарантируя надлежащее рассмотрение и решение вопросов, связанных с точностью и добросовестностью любой её части.

Источники финансирования. Отсутствуют.

Раскрытие интересов. Авторы заявляют об отсутствии отношений, деятельности и интересов (личных, профессиональных или финансовых), связанных с третьими лицами (коммерческими, некоммерческими, частными), интересы которых могут быть затронуты содержанием статьи, а также иных отношений, деятельности и интересов за последние три года, о которых необходимо сообщить.

Оригинальность. При создании настоящей работы использовался способ роботизированной механотерапии, который был запатентован авторами и был отражен в прошлом исследовании, опубликованном в журнале «Медицинский алфавит» в 2024 году: Чугреев И.А., Фесюн А.Д., Стяжкина Е.М., Рожкова Е.А. Эффективность применения координационных тренировок в программе медицинской реабилитации пациентов после реверсивного эндопротезирования плечевого сустава. // Неврология и психиатрия 2024;(2):43–46. doi: 10.33667/2078-5631-2024-2-43-46

Генеративный искусственный интеллект. При создании настоящей статьи технологии генеративного искусственного интеллекта не использовали.

Рассмотрение и рецензирование. Настоящая работа подана в журнал в инициативном порядке и рассмотрена по обычной процедуре. В рецензировании участвовали два внешних рецензента, член редакционной коллегии и научный редактор издания.

Информированное согласие на публикацию. Авторы получили письменное согласие пациентов на публикацию его медицинских данных и фотографий (24.11.2024).

ADDITIONAL INFO

Author contribution. All authors have approved the final version before publication and have also agreed to be responsible for all aspects of the work, ensuring that issues relating to the accuracy and integrity of any part of it are properly addressed and resolved.

Funding sources. No funding.

Disclosure of interests. The authors declare the absence of relationships, activities and interests (personal, professional or financial) related to third parties (commercial, non-profit, private), whose interests may be affected by the content of the article, as well as other relationships, activities and interests over the past three years, which must be reported.

Statement of originality. The method of robotic mechanotherapy, which was patented by the authors and was reflected in a past study published in the journal Medical Alphabet in 2024: Chugreev IA, Fesyun AD, Styazhkina EM, Rozhkova EA. Efficiency of the use of coordination training in the program of medical rehabilitation of patients after reverse shoulder endoprosthesis. *Neurology and psychiatry* 2024;(2):43-46. doi: 10.33667/2078-5631-2024-2-43-46.

Generative AI. Generative AI technologies were not used for this article creation.

Provenance and peer-review. This paper was submitted to the journal on an initiative basis and reviewed according to the usual procedure. Two external reviewers, a member of the editorial board and the scientific editor of the publication participated in the review.

Informed consent for publication. The authors obtained written consent from patients for the publication of their medical data and photographs.

DOI: https://doi.org/10.17816/vto659791 EDN: THADCG

СПИСОК ЛИТЕРАТУРЫ | REFERENCES

- 1. Кесян Г. А. и др. Реверсивное эндопротезирование плечевого сустава при дефектах гленоида с использованием первично-ревизионного метаглена // Вестник травматологии и ортопедии им. НН Приорова. − 2021. − Т. 28. № 2. − С. 13-20.
- 2. Карапетян Г. С., Шуйский А. А. Особенности реверсивного эндопротезирования плечевого сустава при ортопедической патологии гленоида (обзор литературы // Acta Biomedica Scientifica. 2022. Т. 7. №. 5-2. С. 207-221..
- 3. Гудушаури Я.Г., Марычев И.Н., Федотов Е.Ю., Стоюхин С.С., Коновалов В.В., Ламасов А.Д. Использование аугментов при реверсивном эндопротезировании плечевого сустава: систематический обзор результатов и осложнений // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2025. Т. 32. №1. С. 259-270. doi: 10.17816/vto634852.
- 4. Roche, C.P. Reverse Shoulder Arthroplasty Biomechanics. J. Funct. Morphol. Kinesiol. 2022, 7, 13. https://doi.org/10.3390/jfmk7010013.
- 5. Wall B, Noyes M, Parsons B. Primary vs. Revision Reverse Shoulder Arthroplasty: A Comparative Study. *J Bone Joint Surg Am*. 2007;89(8):1774–1781. doi: 10.2106/JBJS.F.00666
- 6. Grammont P, Baulot E. The Classic: Delta Shoulder Prosthesis for Rotator Cuff Rupture. *Clin Orthop Relat Res.* 1993;469(9):2424. doi: 10.3928/0147-7447-19930101-11
- 7. Rugg CM, Lansdown DA. Reverse Total Shoulder Arthroplasty: Biomechanics and Indications. *Curr Rev Musculoskelet Med*. 2019;12(4):542–553. doi: 10.1007/s12178-019-09586-y
- 8. Chugreev IA, Fesyun AD, Rozhkova EA. Features of Biomechanics and Rehabilitation of the Shoulder Joint after Reverse Arthroplasty: a Review. *Bulletin of Rehabilitation Medicine*. 2022;21(5):122–128. doi: 10.38025/2078-1962-2022-21-5-122-128
- 9. Zumstein M, Pinedo M, Old J, Boileau P. Complications in Reverse Shoulder Arthroplasty: A Systematic Review. *J Shoulder Elbow Surg*. 2011;20(1):146–157. doi: 10.1016/j.jse.2010.08.001
- 10. Mahmood A, Ward J, Parsons B. Long-Term Survival and Functional Outcomes of Reverse Shoulder Arthroplasty. *J Orthop Trauma*. 2013;27(5):289–295. doi: 10.2174/1874325001307010366
- 11. Edwards PK, Ebert JR, Joss B, Ackland T. Early vs. Delayed Mobilization Following Reverse Shoulder Arthroplasty: A Randomized Trial. *Shoulder Elbow*. 2020;13(5):557–572. doi: 10.1177/1758573220937394
- 12. Lee J, Consigliere P, Fawzy E. Accelerated Rehabilitation Following Reverse Total Shoulder Arthroplasty. *J Shoulder Elbow Surg.* 2021;30(9):e545–e557. doi: 10.1016/j.jse.2020.11.017
- 13. Sabesan V, Lima DJ, Baldwin K. Immediate vs. Delayed Shoulder Mobilization After Reverse Shoulder Arthroplasty: A Prospective Study. *Clin Orthop Relat Res.* 2021;479(3):345–352. doi: 10.1053/j.sart.2021.09.010
- 14. Littlewood C, May S, Walters S. Variability in Rehabilitation Protocols Following Reverse Shoulder Arthroplasty: A National Survey. *Physiotherapy*. 2020;108:33–40. doi: 10.1002/msc.1468

DOI: https://doi.org/10.17816/vto659791 EDN: THADCG

- 15. Philippossian A, Bryant J, Kelley M. The Phases of Rehabilitation Following Reverse Total Shoulder Arthroplasty: A Consensus Statement. *J Orthop Sports Phys Ther*. 2019;49(6):337–346.
- 16. Howard MC, Trasolini NA, Waterman BR. Optimizing Outcomes After Reverse Total Shoulder Arthroplasty: Rehabilitation, Expected Outcomes, and Return to Sport. *Curr Rev Musculoskelet Med.* 2023;16(1):1–9. doi: 10.1007/s12178-023-09798-0
- 17. Howard P, McCarthy L, Wilson D. Return to Sport After Reverse Shoulder Arthroplasty: A Review of Current Evidence. *Am J Sports Med.* 2023;51(4):932–940.
- 18. Johnson K, Li X, Wong T. Long-term Outcomes After Reverse Shoulder Arthroplasty: A Systematic Review. *J Bone Joint Surg Am.* 2022;104(3):230–242. doi: 10.1000/lsa67890
- 19. Sachinis N, Papadopoulos P, Charalambous C. The Need for Consensus on Reverse Shoulder Arthroplasty Rehabilitation Protocols. *Orthop J Sports Med.* 2022;10(5):1–9.
- 20. Salamh PA, Speer KP. Post-Rehabilitation Exercise Considerations Following Total Shoulder Arthroplasty. *Strength & Conditioning Journal*. 2013;35(4):1–8.
- 21. Kirsch JM, Namdari S. Rehabilitation After Anatomic and Reverse Total Shoulder Arthroplasty: A Critical Analysis Review *JBJS Reviews*. 2020;8(2):e0129. doi: 10.2106/JBJS.RVW.19.00129
- 22. Romano AM, Oliva F, D'Adamio S, Ascione F, Maffulli N. Rehabilitation after reverse shoulder arthroplasty: A systematic review. *Muscles, Ligaments and Tendons Journal*. 2017;7(3):485–490.

ОБ ABTOPAX / AUTHORS' INF

* Автор, ответственный за перениску	* Correspondence author
* Чугреев Иван Алексеевич;	* Ivan A. Chugreev, MD;
адрес: Россия, Москва, 127299,	address: 10 Priorova st, Moscow, Russia,
ул. Приорова, д. 10;	127299;
ORCID: 0000-0002-27 52-96 20;	ORCID: 0000-0002-2752-9620;
eLibrary SPIN: 4745-3836	eLibrary SPIN: 4745-3836
e-mail: chugreevivan@gmail.com	e-mail: chugreevivan@gmail.com
Марычев Иван Николаевич, канд. мед.	Ivan N. Marychev, MD, Cand. Sci.
наук;	(Medicine);
ORCID: 0000-0002-5268-4972;	ORCID: 0000-0002-5268-4972;
eLibrary SPIN: 9151-7883;	eLibrary SPIN: 9151-7883;
e-mail: dr.ivan.marychev@mail.ru	e-mail: dr.ivan.marychev@mail.ru
Цыкунов Михаил Борисович, д-р мед.	Mikhail B. Tsykunov, MD, Dr. Sci.
наук;	(Medicine);
ORCID: 0000-0002-0994-8602;	ORCID: 0000-0002-0994-8602;
eLibrary SPIN: 8298-8338;	eLibrary SPIN: 8298-8338;
e-mail: rehcito@mail.ru	e-mail: rehcito@mail.ru

Вестник травматологии и ортопедии им. Н.Н. Приорова N.N. Priorov Journal of Traumatology and Orthopedics Оригинальное исследование | Original Study Article DOI: https://doi.org/10.17816/vto659791

EDN: THADCG

Гудушаури Яго Гогиевич, д-р мед. наук;

ORCID:

eLibrary SPIN:

e-mail: gogich71@mail.ru

Yago G. Gudushauri, MD,

Dr.

Sci.

(Medicine);

ORCID:

eLibrary SPIN:

e-mail: gogich71@mail.ru

DOI: https://doi.org/10.17816/vto659791 EDN: THADCG

РИСУНКИ

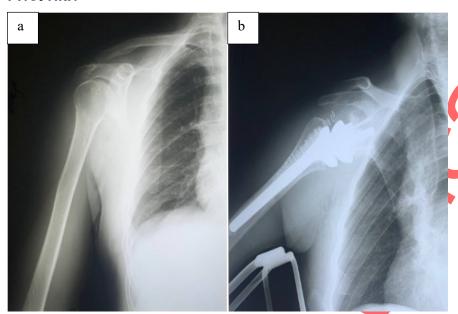


Рис. 1. Рентгенография плечевого сустава. а - Омартроз; b - Реверсивный эндопротез.

Fig. 1. Radiography of the shoulder joint. a – Omarthrosis; b - Reverse endoprosthesis.

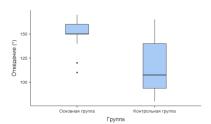


Рис. 2. Амплитуда отведения в плечевом суставе.

Fig. 2. Shoulder abduction.

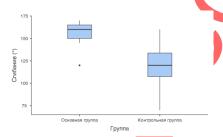


Рис. 3. Амплитуда сгибания в плечевом суставе.

Fig. 3. Shoulder flexion

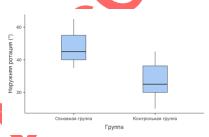


Рис. 4. Амплитуда наружной ротации в плечевом суставе.

EDN: THADCG

Fig. 4. Shoulder external rotation.

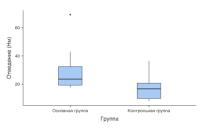


Рис. 5. Сила мыши в изокинетическом тесте отведения плечевого сустава

Fig. 5. Muscle strength in the isokinetic shoulder adduction test.

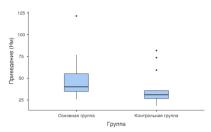


Рис. 6. Сила мышц в изокинетическом тесте приведения плечевого сустава.

Fig. 6. Muscle strength in the isokinetic shoulder abduction test.

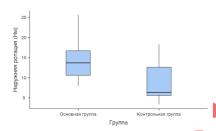


Рис. 7. Сила мышц в изометрическом тесте наружной ротации плечевого сустава.

Fig. 7. Muscle strength in the isometric test of external rotation of the shoulder joint.

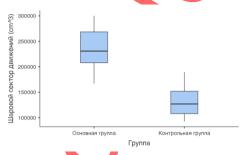


Рис. 8. Показатель шарового сектора движений плечевого сустава в тесте с биологической обратной связью.

Fig. 8 The index of spatial volume of shoulder joint movements in the biofeedback test.

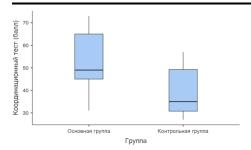


Рис. 9. Показатель способности выполнять сложно координированные движения рукой к стандартном двигательном тесте с биологической обратной связью.

Fig. 9. Ability to perform complex coordinated hand movements in a standardised motor test with biofeedback.



Рис. 11. Субъективная оценка боли PSS.

Fig. 11. PSS pain score.

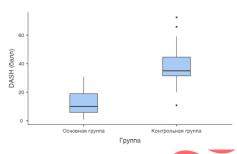


Рис. 10. Субъективный балл оценки функции плечевого сустава DASH.

Fig. 10. DASH score.

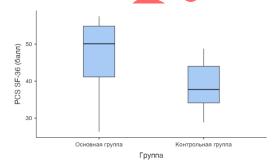


Рис. 12 Физический компонент здоровья SF-36.

Physical component summary SF-36

EDN: THADCG

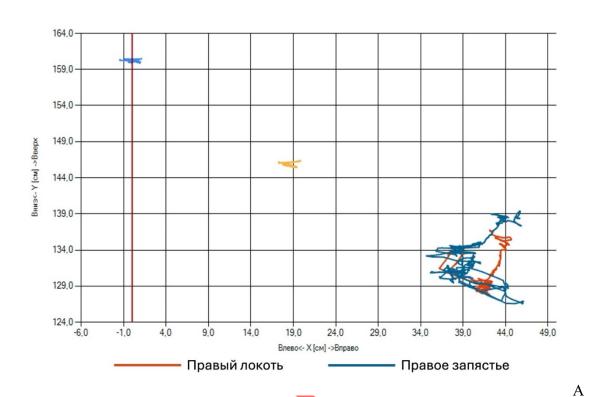
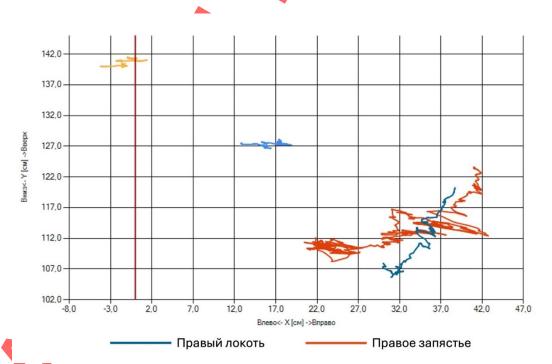



Рис. 13. Результат теста на выносливость к статической нагрузке: Пациент К., 57 лет, из основной группы.

Fig. 13. Static endurance test result: Patient K 57 years old from the main group.

Рыс 14. Результат теста на выносливость к статической нагрузке: Пациент Н., 65 лет, из контрольной группы.

