ПРИМЕНЕНИЕ КОМПЬЮТЕРНОЙ ТЕРМОГРАФИИ В ДИАГНОСТИКЕ ЗАБОЛЕВАНИЙ ПОЯСНИЧНО-КРЕСТЦОВОГО ОТДЕЛА ПОЗВОНОЧНИКА У СПОРТСМЕНОВ И АРТИСТОВ БАЛЕТА

С.П. Миронов, А.И. Круппкин, Г.М. Бурмакова

Центральный институт травматологии и ортопедии им. Н.Н. Приорова, Москва

Проведено термографическое обследование 108 пациентов — спортсменов и артистов балета с заболеваниями пояснично-крестцового отдела позвоночника, лечившихся в отделении спортивной и балетной травмы ЦИТО в период с 1987 по 2002 г. Описаны и представлены термограммы при остеохондрозе, спондилолостозе, спондилезе, патологии суставов пояснично-крестцовой области. Показано, что термография является неспецифическим методом, который не позволяет дифференцировать анатомический субстрат болевого синдрома и только уточняет данные клинико-рентгенологического обследования. В то же время она эффективна для определения активности процесса, оценки динамики заболевания и результативности лечения.

The experience in thermographic examination of 108 patients (athletes and ballet dancers) with lumbar–sacral spine diseases is presented. All patients have been treated at the CITO Department of Sports and Ballet Injury during the period from 1987 to 2002. Various thermograms typical of osteochondrosis, spondylolysis, spondylolisthesis and ligamentous pathology of lumbar–sacral spine are given and described. Thermography is shown to be a nonspecific examination method which only defines more precisely the clinical and radiologic data. The main value of thermography is the possibility to detect the activity of the pathologic process and to retrace the dynamics of the disease development during follow up and treatment.

Дистанционная инфракрасная термография служит дополнительным методом исследования при заболеваниях и повреждениях мягких тканей опорно-двигательной системы, суставов, сосудов, периферических нервов. Об этом свидетельствуют многочисленные публикации как в отечественной, так и в зарубежной литературе [1–3, 11]. Вместе с тем, термография позволяет определить степень повреждения мягких тканей и оценить их восстановительный период, что особенно важно для спортсменов.

Целью настоящего исследования было изучение диагностических возможностей компьютерной термографии при заболеваниях пояснично-крестцового отдела позвоночника у спортсменов и артистов балета.

МАТЕРИАЛ И МЕТОДЫ

Термографические исследования проведены на 108 спортсменам — спортсменов и артистов балета с заболеваниями пояснично-крестцового отдела позвоночника, лечившимися в отделении спортивной и балетной травмы ЦИТО в период с 1987 по 2002 г. Среди них было 60 мужчин и 48 женщин. Возраст больных составлял от 15 до 42 лет (в среднем 27,6 года). Сведения о характере патологии и виде профессиональной деятельности пациентов представлены в таблице. Контрольная группа из 25 здоровых лиц аналогичного возраста.

Термографические исследования проводились на 10–цветном термографе фирмы AGA–780 (Швеция) с компьютерной приставкой TC–800 для обработки термоизображений.

У здоровых людей термозображение характеризуется неоднородностью распределения температур по поверхности тела. Вместе с тем, термограмма позволяет определить смещение зоны повышенного и пониженного теплоотделения относительно средней линии тела. При патологии отмечается термосимметрия за счет появления очагов гипер- или гипотермии как в области заболеваний, так и в области отдаленной от нее. При этом имеют значение анатомическая локализация этих очагов, их размер, форма, структура, степень гипер- или гипотермии. Они определяются не только центральной очаг нарушения теплоотделения, но и изменение термотопографии на периферии. Наряду с качественным проводится количественный анализ термоизображений. В основе его лежит сравнение температуры в болезненном очаге с температурой окружающих тканей, симметричных относительно средней линии тела участков, а также с данными контроля (показатели здоровых людей или референтные температуры непораженных участков).

Термоизображение записывали в положении больного стоя, в прямой проекции. При необходимости использовали косые и боковые проекции.
Распределение больных по характеру патологии и виду профессиональной деятельности

<table>
<thead>
<tr>
<th>Область профессиональной деятельности</th>
<th>Лигаментопатия</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Остеохондроз</td>
</tr>
<tr>
<td>Тяжелая атлетика</td>
<td>11</td>
</tr>
<tr>
<td>Борьба</td>
<td>6</td>
</tr>
<tr>
<td>Спортивная гимнастика</td>
<td>9</td>
</tr>
<tr>
<td>Художественная гимнастика</td>
<td>3</td>
</tr>
<tr>
<td>Легкая атлетика</td>
<td>2</td>
</tr>
<tr>
<td>Фигурное катание</td>
<td>4</td>
</tr>
<tr>
<td>Водные виды спорта</td>
<td>3</td>
</tr>
<tr>
<td>Прочие виды спорта</td>
<td>5</td>
</tr>
<tr>
<td>Балет</td>
<td>4</td>
</tr>
<tr>
<td>Итого</td>
<td>47</td>
</tr>
</tbody>
</table>

Исследования проводились при температуре окружающей среды 20–22°С после 15-минутного отдыха больного.

РЕЗУЛЬТАТЫ

Анализ клинической картины и данных термографии позволил выявить следующие термографические изменения при различных видах патологии пояснично-крестцового отдела позвоночника.

Пояснично-крестцовый остеохондроз. При обострении отмечался очаг гипертермии в пояснично-крестцовой области с расширением ее границ паравертебрально в проекции задних ветвей спинномозговых нервов как по горизонтали, так и по вертикали. У пациентов с выраженным иритативным синдромом это сопровождалось распространением гипертемии на ягодичную область. При компрессионном корешковом синдроме наряду с гипертемией в поясничной области определялось снижение теплопродукции в иннервируемой зоне на стороне компрессии вплоть до наличия очагов термоампутации.

В дегенеративных случаях основные изменения, как правило, отмечались гипотермия, преимущественно в области голени и стопы, реже — гипертемия (при небольшой длительности заболевания). Участки нарушений термографии не совпадали с зонами соматической иннервации, и направленность изменений теплопродукции не всегда соответствовала состоянию двигательных и чувствительных корешковых функций (рис. 1).

Положительная клиническая динамика после лечения как при иритативном, так и при компрессионном синдроме сопровождалась уменьшением темпосимметрии на конечностях за счет нормализации температуры и уменьшением зоны гипертемии в поясничной области (рис. 2).

Спондилолиз. Зона гипертермии была ограниченной по протяженности, захватывая несколько пораженных сегментов, с наибольшим по интенсивности асимметричным паравертебральным фокусом близко к срединной линии (рис. 3).

Лигаментопатия остистых связок. В норме определяется линия повышенной теплопродукции по ходу остистых отростков позвонков и остистых связок. При повреждении связок в остром периоде отмечалось веретенообразное расширение зоны повышенной теплопродукции (рис. 4). Развитие дегенеративно-дистрофических изменений приводило к «разрыву» этой зоны гипертемии: в ней появлялись участки гипотемии, контуры становились нечеткими.

Лигаментопатия пояснично-подвздошной связи. Эта связка располагается между поперечными отростками L4 и L5 позвонков и крылом подвздошной кости. В остром периоде теплоизлучение в области связки повышалось. Кроме того, вследствие низкоквадратного сенсорного иритативного синдрома с распространением по типу аксон-рефлекса определялась гипертемия и в соседних участках. В поздние сроки — при дегенеративных изменениях было характерно снижение теплоизлучения в проекции связки. Для диагностики наиболее информативна термограмма области дистального прикрепления пояснично-подвздошной связи (рис. 5).

Лигаментопатия крестцово-седалищной и крестцово-остистых связок. Эти связки располагаются в глубине ягодичной области. Они начинаются от боковой поверхности крестца и прикрепляются к седалищному бугру (крестцово-седалищая) и к остистой подвздошной кости (крестцово-остистая). На термограмме при лигаментопатии этих связок выявлялась только разлитая гипертемия пояснично-
Рис. 1. Люмбагия слева на фоне компрессионной радикулопатии L5 корешка (рыжка диска L4–5 в 11 мм). Гипотермия голени с термоамплуатацией в области левой стопы за счет активации симпатического вегетативного рефлекса.

Рис. 2. Протрузия диска L5–S1 справа, люмбагия. 
a — до лечения, диффузная гипертермия в проекции задних ветвей спинномозговых нервов, термоамплуатация справа в зоне пораженного сегмента; 
b — через 6 мес после лазерной вапоризации диска L5–S1: исчезновение гипертермии на фоне ремиссии люмбагии.

Рис. 3. Спондилоартроз пояснично-крестцового отдела позвоночника. Парафрагментальная гипертермия.

Рис. 4. Лигаментопатия остистых связок нижнепоясничного отдела позвоночника. Гипертермия в проекции связок.

Рис. 5. Лигаментопатия пояснично-подвздошной связки справа, острый период. 
a — гипертермия в проекции дистального прикрепления связки; 
b — на изолированных участках отчетлива термоамплуатия стоп отсутствует (в отличие от дискоэозенной патологии).
Рис. 6. Лигаментопатия пояснично-подвздошной и крестцово-остистой связок. Гипертермия в их проекции. Реактивное напряжение мышц поясничного отдела позвоночника, больше справа, с гипертермиеи.

Рис. 7. Спондилолиз L5 позвонка. Различные степени нестабильности.
a — локальная гипертермия в проекции пораженного сегмента; b — перенапряжение пояснично-подвздошных связок и мышц поясничного отдела позвоночника, диффузная паравертебральная гипертермия; в — перенапряжение пояснично-подвздошных связок, имитирующий корешковый синдром; г — гипертермия верхней трети ягодичной области слева.

Рис. 8. Лигаментопатия остистых связок нижнепоясничного отдела позвоночника, растяжение мышц спины. Гипертермия справа в зоне растяжения.

ной и ягодичной областей, обусловленная, очевидно, перенапряжением мышц. Термоизображения при патологии обеих связок были практически идентичны (рис. 6).

Спондилолиз нижнепоясничных позвонков. Среди обследованных пациентов были только больные с хроническим спондилолизом, развившимся в результате повторных микротравм при резких переразгибаниях позвоночника. Несмотря на значительную давность патологического процесса, чаще выражались гипертермия поясничной области. На наш взгляд, это связано с реактивным состоянием мягких тканей в ответ на нестабильность позвоночника. При этом чем выраженнее нестабильность, тем больше площадь гипертермии (рис. 7).

Мышечная патология (растяжения, частичные повреждения мышц спины). В острых случаях расширенная зона гипертермии располагалась в месте повреждения (рис. 8). Иногда это сочеталось с гипертермиями вдоль позвоночника, близко к средней линии. При рецидивирующих миозитах зона гипертермии была небольшой по площади.

ОБСУЖДЕНИЕ

Механизмы, контролирующие кожную температуру в норме и при патологии, включают влияние васкуляризации поверхностных тканей, их иннервации, а также метаболизма и теплообмена. Нейрогенные механизмы связаны с влиянием на
кожное кровоснабжение симпатической нервной системы [8], а также сенсорных волокон, выделяющих нейропептиды — вазодилататоры. Однако нельзя считать, что изменения на термограмме, например, при радикулопатии, являются следствием прямой компрессии или раздражения симпатических волокон, так как претангенциальные симпатические нервы не выходят через межпозвонковые отверстия ниже уровня L1-2 [5]. Их вовлечение в патологический процесс обусловлено активацией или торможением соматосимпатического рефлекса. J.L. Ochoa [9] подчеркивает, что неймелинизированные чувствительные С-волокна могут способствовать расширению сосудов при болевых синдромах за счет секреции вазоактивных веществ и их действия на гладкую мускулатуру сосудов (вещество Р и др.). Этим можно объяснить повышение темпопродукции в поясничной области и конечностях при острой патологии, но это не объясняет снижение темпопродукции в дерматомах конечностей, особенно при хронической патологии. Последнее происходит преимущественно за счет сужения периферических сосудов в результате активации вазомоторного соматосимпатического спинального рефлекса [7].

У. Т. Со и соавт. [10] провели сравнительное изучение термоизображения спины и конечностей в норме и при радикулопатиях. Они отметили, что сторона корешкового повреждения не может быть точно определена с помощью термограмм, так как повышение темпопродукции чаще связано с островой патологией, а снижение — с хронической радикулопатией. Исходя из этого, авторы считают, что данные термографии непрерывными, имеют неопределенное прогностическое значение и ценность их при радикулопатиях сомнительна.

Ю. О. Новиков [4], проведя тепловизионные исследования у 250 пациентов с дорсалгиями, выявил следующие типы нарушений:

1) наличие симметричной или, реже, более выраженной на стороне «больной» конечности гипотермии дистальных отделов нижних конечностей (нижняя треть голени, стопы) различной степени (до 3-4°С);

2) ограниченные участки гипертермии с четкими контурами в проекции пораженных сегментов позвоночника, характерные для вертебральных нарушений. Подобный тип гипертермии встречается как в виде изолированных участков с нергубым или умеренным повышением темпопродукции, так и на фоне разлитой гипертермии, выделяясь в этом случае большей интенсивностью;

3) наличие асимметричных зон гипотермии (с различной температурой более 1°С) на нижних конечностях с четкими контурами, соответствующих зонам корешковой иннервации, в области передне-наружной или задне-наружной поверхности голени, иногда «ламинированного» типа;

4) разлитая умеренная или выраженная гипертермия в проекции паравертебральных мышц, ха-

рактерная для мышечно-дистонических проявлений; при скоплении зона гипертермии может быть асимметричной, с латерализацией в сторону вогнутости сколиотической дуги.

Как показали наши исследования, термография является неспецифическим методом диагностики. Различная вертебральная патология может давать однотипные термоизображения (например, термограммы поясничных зон при спондилоэрозе и остеохондрозе позвоночника, при патологии крестцово-остистых, крестцово-седалищной связок и остеохондрозе позвоночника). Кроме того, на результаты исследования влияют многие другие факторы, такие как локальный метаболизм, температура окружающей среды, потоотделение. В связи с этим термоизмерения может наблюдаться и у здоровых людей. По нашим данным, термография имеет ограниченные возможности в диагностике состояния костно-суставных структур позвоночника, определения уровня повреждения корешка, выявления грыжи межпозвонкового диска. Для этого необходимо использовать методы лучевой диагностики, клинико-неврологическое обследование. Данные термографии должны оцениваться только в комплексе с результатами этих исследований.

В то же время термография эффективна для оценки состояния микроциркуляции в регионе ее со стороны периартериальной иннервации тканей, модифицирующей термографическую картину при болевых синдромах. Поэтому она незаменима для исследования кровоснабжения тканей, состояния соматосимпатического рефлекса, наблюдения в динамике (переход острый фазы в хроническую), оценки эффективности лечения. Преимуществами термографии перед другими методами исследования являются ее неинвазивность и безболезненность.

Л И Т Е Р А Т У Р А


