Ordinary and Activated Osteoplastic Materials



Cite item

Full Text

Abstract

Osteoplastic materials are highly required medical devices for bone defects substitution and filling the areas of bone tissue atrophy. Based on analysis of modern groups of osteoplastic materials, features of their composition, mechanisms of biological action, and indications for clinical use, the applied classification which divides the medical items into ordinary and activated categories is proposed. The main differential criterion is the presence of certain biologically active components in the material composition: growth factors, cells or gene constructions encoding growth factors that are standardized by qualitative and quantitative parameters. Pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials enable counting on their effectiveness in replacement of large bone defects.

About the authors

R. V Deev

Human Stem Cells Institute, Moscow

A. Yu Drobyshev

A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow

I. Ya Bozo

A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow

Email: bozo.ilya@gmail.com

References

  1. http://www.cdc.gov/nchs/data/nhds/10Detaileddiagnosesprocedures/2010det10_alllistedprocedures.pdf
  2. Chiapasco M., Casentini P., Zaniboni M. Bone augmentation procedures in implant dentistry. Int. J. Oral Maxillofac. Implants. 2009; 24 (Suppl): 237-59.
  3. Annual report 2013. Turning a new page. Straumann. http://www.straumann.com/content/dam/internet/straumann_com/Resources/investor-relations/annual-report/2013/STMN-2013-Annual-Report.pdf
  4. Bhatt R.A., Rozental T.D. Bone graft substitutes. Hand Clin. 2012; 28 (4): 457-68.
  5. Деев Р.В., Бозо И.Я. Эволюция костнопластических материалов. В кн.: Сборник тезисов V Всероссийского симпозиума с международным участием. Уфа; 2012: 130-2.
  6. Лекишвили М.В., Родионова С.С., Ильина В.К., Косымов И.А., Юрасова Ю.Б., Семенова Л.А., Васильев М.Г. Основные свойства деминерализованных костных аллоимплантатов, изготавливаемых в тканевом банке ЦИТО. Вестник травматологии и ортопедии им. Н.Н. Приорова 2007; 3: 80-6.
  7. Wang Z., Guo Z., Bai H. et al. Clinical evaluation of β-TCP in the treatment of lacunar bone defects: a prospective, randomized controlled study. Mater. Sci. Eng. C Mater. Biol. Appl. 2013; 33 (4): 1894-9.
  8. Komlev V.S., Barinov S.M., Bozo I.I. et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behaviour. ACS Appl. Mater. Interfaces. 2014; 6 (19): 16610-20.
  9. Zakaria S.M., Sharif Zein S.H., Othman M.R. et al. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng. Part B Rev. 2013; 19 (5): 431-41.
  10. Félix Lanao R.P., Jonker A.M., Wolke J.G. et al. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng. Part B Rev. 2013; 19 (4): 380-90.
  11. Li X., Wang X., Miao Y., Yang G. et al. Guided bone regeneration at a dehiscence-type defect using chitosan/collagen membranes in dogs. Zhonghua Kou Qiang Yi Xue Za Zhi. 2014; 49 (4): 204-9.
  12. Wang S., Wang X., Draenert F.G. et al. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone. 2014; 67: 292-304.
  13. Гололобов В.Г., Дулаев А.К., Деев Р.В. и др. Морфофункциональная организация, реактивность и регенерация костной ткани. СПб: ВМедА; 2006.
  14. Barradas A.M., Yuan H., van Blitterswijk C.A. et al. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur. Cell Mater. 2011; 21: 407-29.
  15. Гололобов В.Г., Дедух Н.В., Деев Р.В. Скелетные ткани и органы. В кн.: Руководство по гистологии. 2-е изд. т. 1. СПб: СпецЛит; 2011: 238-322.
  16. Goldman H., Cohen D. The infrabony pocket: classification and treatment. J. Periodontology. 1958, 29: 272.
  17. Beckmann R., Tohidnezhad M., Lichte P. et al. New from old: relevant factors for fracture healing in aging bone. Orthopade. 2014; 43 (4): 298-305.
  18. Brown M.L., Yukata K., Farnsworth C. et al. Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus. PLoS One. 2014; 9 (6): e99656.
  19. Larsson S., Fazzalari N.L. Anti-osteoporosis therapy and fracture healing. Arch. Orthop. Trauma Surg. 2014; 134 (2): 291-7.
  20. Sloan A., Hussain I., Maqsood M. et al. The effects of smoking on fracture healing. Surgeon. 2010; 8 (2): 111-6.
  21. Stine K.C., Wahl E.C., Liu L., Skinner R.A. et al. Cisplatin inhibits bone healing during distraction osteogenesis. J. Orthop. Res. 2014; 32 (3): 464-70.
  22. Savaridas T., Wallace R.J., Salter D.M. et al. Do bisphosphonates inhibit direct fracture healing? A laboratory investigation using an animal model. J. Bone Joint Surg. 2013; 95-B (9): 1263-8.
  23. Xue D., Li F., Chen G. et al. Do bisphosphonates affect bone healing? A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2014; 9: 45.
  24. Kan I., Melamed E., Offen D. Integral therapeutic potential of bone marrow mesenchymal stem cells. Curr. Drug Targets. 2005; 6 (1): 31-41.
  25. Knight M.N., Hankenson K.D. Mesenchymal stem cells in bone regeneration. Adv. Wound Care (New Rochelle). 2013; 2 (6): 306-16.
  26. Amable P.R., Teixeira M.V., Carias R.B. et al. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Res. Ther. 2014; 5 (2): 53.
  27. Zhang M., Mal N., Kiedrowski M. et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007; 21 (12): 3197-207.
  28. Samee M., Kasugai S., Kondo H. et al. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J. Pharmacol. Sci. 2008; 108 (1): 18-31.
  29. Urist M.R. Bone: formation by autoinduction. Science. 1965; 12: 150 (698): 893-9.
  30. Kang Q., Sun M.H., Cheng H. et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004; 11 (17): 1312-20.
  31. Heldin C.H., Miyazono K., ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997; 390 (6659): 465-71.
  32. Hanai J., Chen L.F., Kanno T. et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J. Biol. Chem. 1999; 274 (44): 31577-82.
  33. Yoshida A., Yamamoto H., Fujita T. et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Gen. Devel. 2004; 18 (8): 952-63.
  34. Cheng S.L., Shao J.S., Charlton-Kachigian N. et al. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J. Biol. Chem. 2003; 278 (46): 45969-77.
  35. Merlo G.R., Zerega B., Paleari L. et al. Multiple functions of Dlx genes. Int. J. Dev. Biol. 2000; 44 (6): 619-26.
  36. Matsubara T., Kida K., Yamaguchi A. et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J. Biol. Chem. 2008; 283 (43): 29119-25.
  37. Liu T.M., Lee E.H. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue. Eng. Part B. Rev. 2013; 19 (3): 254-63.
  38. Phillips J.E., Gersbach C.A., Wojtowicz A.M. et al. Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. J. Cell Sci. 2006; 119 (Pt 3): 581-91.
  39. Yano M., Inoue Y., Tobimatsu T. Smad7 inhibits differentiation and mineralization of mouse osteoblastic cells. Endocr J. 2012; 59 (8): 653-62.
  40. Chen G., Deng C., Li Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012; 8 (2): 272-88.
  41. Shu B., Zhang M., Xie R. et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J. Cell. Sci. 2011; 124: 3428-40.
  42. Bandyopadhyay A., Tsuji K., Cox K., Harfe B.D. et al. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2006; 2: e216.
  43. Tsuji K., Cox K., Bandyop adhyay A., Harfe B.D., et al. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg. Am. 2008; 90 (Suppl): 14-8.
  44. Cohen M.M. Jr. Biology of RUNX2 and Cleidocranial Dysplasia. J. Craniofac. Surg. 2013; 24(1): 130-3.
  45. Otto F., Thornell A.P., Cromptonetal T. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997; 89 (5): 765-71.
  46. Ciurea A.V., Toader C. Genetics of craniosynostosis: review of the literature. J. Med. Life. 2009; 2 (1): 5-17.
  47. Folkman J., Merler E., Abernathy C. et al. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 1971; 133 (2): 275-88.
  48. Goel H.L., Mercurio A.M. VEGF targets the tumour cell. Nat. Rev. Cancer. 2013; 13 (12): 871-82.
  49. Koch S., Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012; 2(7): a006502.
  50. Matsumoto T., Bohman S., Dixelius J. et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 2005; 24(13): 2342-53.
  51. Bhattacharya R., Kwon J., Li X. et al. Distinct role of PLCbeta3 in VEGF-mediated directional migration and vascular sprouting. J. Cell Sci. 2009; 122 (Pt 7): 1025-34.
  52. Coultas L., Chawengsaksophak K., Rossant J. Endothelial cells and VEGF in vascular development. Nature 2005; 438 (7070): 937-45.
  53. Olsson A.K., Dimberg A., Kreuger J. et al. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 2006; 7(5): 359-71.
  54. Арутюнян И.В., Кананыхина Е.Ю., Макаров А.В. Роль рецепторов VEGF-A165 в ангиогенезе. Клеточная трансплантология и тканевая инженерия 2013; VIII (1): 12-8.
  55. Neve A., Cantatore F.P., Corrado A. et al. In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. Regul. Pept. 2013; 184: 81-4.
  56. Marini M., Sarchielli E., Toce M. et al. Expression and localization of VEGF receptors in human fetal skeletal tissues. Histol. Histopathol. 2012; 27 (12): 1579-87.
  57. Tombran-Tink J., Barnstable C.J. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone. Biochem. Biophys. Res. Commun. 2004; 316 (2): 573-9.
  58. Yang Y.Q., Tan Y.Y., Wong R. et al. The role of vascular endothelial growth factor in ossification. Int. J. Oral Sci. 2012; 4 (2): 64-8.
  59. Berendsen A.D., Olsen B.R. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J. Histochem. Cytochem. 2014; 62(2): 103-8.
  60. Liu Y., Berendsen A.D., Jia S. et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J. Clin. Invest. 2012; 122 (9): 3101-13.
  61. Tashiro K., Tada H., Heilker R. et al. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 1993; 261(5121): 600-3.
  62. Mellado M., Rodríguez-Frade J.M., Mañes S. et al. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol. 2001; 19: 397-421.
  63. Ward S.G. T lymphocytes on the move: chemokines, PI 3-kinase and beyond. Trends Immunol. 2006; 27 (2): 80-7.
  64. Niederberger E., Geisslinger G. Proteomics and NF-κB: an update. Expert Rev. Proteomics. 2013; 10 (2): 189-204.
  65. Jung Y., Wang J., Schneider A. et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 2006; 38 (4): 497-508.
  66. Marquez-Curtis L.A., Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed. Res. Int. 2013; 2013: 561098.
  67. Khurana S., Melacarne A., Yadak R. et al. SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors. Stem Cells 2014; 32 (11): 3012-22.
  68. Christopher M.J., Liu F., Hilton M.J. et al. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood. 2009; 114 (7): 1331-9.
  69. Zorin V.L., Komlev V.S., Zorina A.I. et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed. Mater. 2014; 9 (5): 055005.
  70. Деев Р.В., Исаев А.А., Кочиш А.Ю., Тихилов Р.М. Пути развития клеточных технологий в костной хирургии. Травматология и ортопедия России 2008; 1 (47): 65-75.
  71. Kim B.S., Kim J.S., Lee J. Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold. J. Biomed. Mater. Res. A. 2013; 101 (9): 2661-6.
  72. Lü Y.M., Cheng L.M., Pei G.X. et al. Experimental study of repairing femoral bone defects with nHA/RHLC/PLA scaffold composite with endothelial cells and osteoblasts in canines. Zhonghua Yi Xue Za Zhi. 2013; 93 (17): 1335-40.
  73. Shim J.B., Ankeny R.F., Kim H. et al. A study of a three-dimensional PLGA sponge containing natural polymers co-cultured with endothelial and mesenchymal stem cells as a tissue engineering scaffold. Biomed. Mater. 2014; 9 (4): 045015.
  74. Illich D.J., Demir N., Stojković M. et al. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for boneregeneration. Stem Cells. 2011; 29 (4): 555-63.
  75. Pelegrine A.A., Aloise A.C., Zimmermann A. et al. Repair of critical-size bone defects using bone marrow stromal cells: a histomorphometric study in rabbit calvaria. Part I: use of fresh bone marrow or bone marrow mononuclear fraction. Clin. Oral. Implants Res. 2014; 25 (5): 567-72.
  76. Kim B.S., Kim J.S., Lee J. Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold. J. Biomed. Mater. Res A. 2013; 101 (9): 2661-6.
  77. Neman J., Duenas V., Kowolik C.M. et al. Lineage mapping and characterization of the native progenitor population in cellular allograft. Spine J. 2013; 13 (2): 162-74.
  78. Kerr E.J., Jawahar A., Wooten T. et al. The use of osteo-conductive stem-cells allograft in lumbar interbody fusion procedures: an alternative to recombinant human bone morphogenetic protein. J. Surg. Orthop. Adv. 2011; 20(3): 193-7.
  79. Hollawell S.M. Allograft cellular bone matrix as an alternative to autograft in hindfoot and ankle fusion procedures. J. Foot Ankle Surg. 2012; 51 (2): 222-5.
  80. Осепян И.А., Чайлахян Р.К., Гарибян Е.С. Лечение несращений, ложных суставов, дефектов длинных трубчатых костей трансплантацией аутологичных костномозговых фибробластов, выращенных in vitro и помещенных на спонгиозный костный матрикс. Ортопедия, травматология и протезирование. 1982; 9: 59.
  81. Осепян И.А., Чайлахян Р.К., Гарибян Е.С. Аутотрансплантация костномозговых фибробластов в травматологии и ортопедии. Вестник хирургии им. И.И. Грекова 1988; 5: 56.
  82. Щепкина Е.А., Кругляков П.В., Соломин Л.Н., Зарицкий А.Ю., Назаров В.А., Вийде С.В., и др. Трансплантация аутогенных мультипотентных мезенхимальных стромальных клеток на деминерализованном костном матриксе при лечении ложных суставов длинных трубчатых костей. Клеточная трансплантология и тканевая инженерия. 2007; II (3): 67-74.
  83. Дробышев А.Ю., Рубина К.А., Сысоева В.Ю. и др. Клиническое исследование применения тканеинженерной конструкции на основе аутологичных стромальных клеток из жировой ткани у пациентов с дефицитом костной ткани в области альвеолярного отростка верхней челюсти и альвеолярной части нижней челюсти. Вестник экспериментальной и клинической хирургии. 2011; IV (4): 764-72
  84. http://www.clinicaltrial.gov/ct2/show/NCT02209311?term=FMBA+Burnasyan&rank=5.
  85. Алексеева И.С., Волков А.В., Кулаков А.А., Гольдшейн Д.В. Клинико-экспериментальное обоснование использования комбинированного клеточного трансплантата на основе мультипотентных мезенхимных стромальных клеток жировой ткани у пациентов с выраженным дефицитом костной ткани челюстей. Клеточная трансплантология и тканевая инженерия 2012; VII (1): 97-105.
  86. Миронов С.П., Омельяненко Н.П., Кожевников О.В., Ильина В.К., Иванов А.В., Карпов И.Н. Влияние культивированных аутогенных соединительнотканных (стромальных) клеток костного мозга (СККМ) на замедленно формирующиеся дистракционные регенераты у детей. Клеточная трансплантология и тканевая инженерия 2011; 6 (2): 104-12.
  87. McKay W.F., Peckham S.M., Badura J.M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int. Orthop. 2007; 31 (6): 729-34.
  88. Burkus J.K., Gornet M.F., Dickman C. et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J. Spinal. Disord. Tech. 2002; 15 (5): 337-49.
  89. Dimar J.R., Glassman S.D., Burkus J.K. et al. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J. Bone Joint Surg. Am. 2009; 91: 1377-86.
  90. Glassman S.D., Carreon L.Y., Djurasovic M. et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine (Phila Pa 1976). 2008; 33 (26): 2843-9.
  91. Carragee E.J., Hurwitz E.L., Weiner B.K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011; 11 (6): 471-91.
  92. Woo E.J. Adverse events reported after the use of recombinant human bone morphogenetic protein 2. J. Oral Maxillofac. Surg. 2012; 70 (4): 765-7.
  93. Epstein N.E. Complications due to the use of BMP/INFUSE in spine surgery: The evidence continues to mount. Surg. Neurol. Int. 2013; 4 (Suppl 5): S343-52.
  94. Чеканов А.В., Фадеева И.С., Акатов В.С., Соловьева М.Е., Вежнина Н.В., Лекишвили М.В. Количественный эффект повышения остеоиндуктивности материала за счет включения в него рекомбинантного морфогенетического белка кости rhBMP-2. Клеточная трансплантология и тканевая инженерия. 2012; VII (2): 75-81.
  95. Мураев А.А., Иванов С.Ю., Артифексова А.А., Рябова В.М., Володина Е.В., Полякова И.Н. Изучение биологических свойств нового остеопластического материала на основе недеминерализованного коллагена, содержащего фактор роста эндотелия сосудов, при замещении костных дефектов. Современные технологии в медицине. 2012; 1: 21-6.
  96. Zhang W., Zhu C., Wu Y. et al. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur.Cell Mater. 2014; 27: 1-11.
  97. Holloway J.L., Ma H., Rai R. et al. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release. 2014; 191: 63-70.
  98. Lauzon M.A., Bergeron E., Marcos B. et al. Bone repair: new developments in growth factor delivery systems and their mathematical modeling. J. Control. Release. 2012; 162 (3): 502-20.
  99. Chang P.C., Dovban A.S., Lim L.P. et al. Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials. 2013; 34 (38): 9990-7.
  100. Kleinschmidt K., Ploeger F., Nickel J. et al. Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2. Biomaterials. 2013; 34 (24): 5926-36.
  101. Gene therapy clinical trials worldwide. http://www.abedia.com/wiley/years.php.
  102. Деев Р.В., Бозо И.Я., Мжаванадзе Н.Д., Нерсесян Е.Г., Чухраля О.В., Швальб П.Г. и др. Эффективность применения гена VEGF165 в комплексном лечении пациентов с хронической ишемией нижних конечностей 2А-3 стадии. Ангиология и сосудистая хирургия. 2014; 20 (2): 38-48.
  103. Деев Р.В., Дробышев А.Ю., Бозо И.Я., Галецкий Д.В., Королев В.О., Еремин И.И. и др. Создание и оценка биологического действия ген-активированного остеопластического материала, несущего ген VEGF человека. Клеточная трансплантология и тканевая инженерия 2013; VIII (3): 78-85.
  104. Gene-activated matrix for bone tissue repair in maxillofacial surgery. https://www.clinicaltrial.gov/ct2/show/NCT02293031?term=gene-activated&rank=1.
  105. Wegman F., Bijenhof A., Schuijff L. et al. Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo. Eur. Cell Mater. 2011; 21: 230-42.
  106. Baboo S., Cook P.R. "Dark matter" worlds of unstable RNA and protein. Nucleus. 2014; 5 (4): 281-6.
  107. Evans C.H. Gene delivery to bone. Adv. Drug Deliv. Rev. 2012; 64 (12): 1331-40.
  108. Григорян А.С., Шевченко К.Г. Возможные молекулярные механизмы функционирования плазмидных конструкций, содержащих ген VEGF. Клеточная трансплантология и тканевая инженерия 2011; VI (3): 24-8.
  109. Rose T., Peng H., Usas A. et al. Ex-vivo gene therapy with BMP-4 for critically sized defects and enhancement of fracture healing in an osteoporotic animal model. Unfallchirurg. 2005; 108 (1): 25-34.
  110. Baltzer A.W., Lattermann C., Whalen J.D. et al. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther. 2000; 7 (9): 734-9.
  111. Betz V.M., Betz O.B., Glatt V. et al. Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum. Gene Ther. 2007; 18 (10): 907-15.
  112. Feichtinger G.A., Hofmann A.T., Slezak P. et al. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum. Gene Ther. Methods. 2014; 25 (1): 57-71.
  113. Keeney M., van den Beucken J.J., van der Kraan P.M. et al. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF (165). Biomaterials. 2010; 31 (10): 2893-902.
  114. Deev R., Drobyshev A., Bozo I. et al. Angiogenic non-viral gene transfer: from ischemia treatment to bone defects repair. J. Tissue Eng. Regen. Med. 2014; 8 (Suppl. 1): 64-5.
  115. Anitua E., Alkhraisat M.H., Orive G. Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J. Control. Release. 2012; 157 (1): 29-38.
  116. Shaw R.J., Brown J.S. Osteomyocutaneous deep circumflex iliac artery perforator flap in the reconstruction of midface defect with facial skin loss: a case report. Microsurgery 2009; 29 (4): 299-302.
  117. Chen G., Deng C., Li Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012; 8 (2): 272-88.
  118. McMahon M.S. Bone morphogenic protein 3 signaling in the regulation of osteogenesis. Orthopedics. 2012; 35 (11): 920.
  119. Bai Y., Leng Y., Yin G. et al. Effects of combinations of BMP-2 with FGF-2 and/or VEGF on HUVECs angiogenesis in vitro and CAM angiogenesis in vivo. Cell Tissue Res. 2014; 356 (1): 109-21.
  120. Zhu F., Friedman M.S., Luo W. et al. The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J. Cell. Physiol. 2012; 227 (6): 2677-85.
  121. Friedman M.S., Long M.W., Hankenson K.D. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J. Cell Biochem. 2006; 98 (3): 538-54.
  122. Glienke J., Schmitt A.O., Pilarsky C. et al. Differential gene expression by endothelial cells in distinct angiogenic states. Eur. J. Biochem. 2000; 267 (9): 2820-30.
  123. Kang Q., Sun M.H., Cheng H. et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004; 11 (17): 1312-20.
  124. Akiyama I., Yoshino O., Osuga Y. et al. Bone morphogenetic protein 7 increased vascular endothelial growth factor (VEGF)-a expression in human granulosa cells and VEGF receptor expression in endothelial cells. Reprod. Sci. 2014; 21 (4): 477-82.
  125. Lamplot J.D., Qin J., Nan G. et al. BMP9 signaling in stem cell differentiation and osteogenesis. Am. J. Stem Cells. 2013; 2 (1): 1-21.
  126. Suzuki Y., Ohga N., Morishita Y. et al. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J. Cell Sci. 2010; 123 (Pt 10): 1684-92.
  127. Mayr-Wohlfart U., Waltenberger J., Hausser H. et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 2002; 30 (3): 472-7.
  128. Koch S., Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold. Spring Harb. Perspect. Med. 2012; 2 (7): a006502.
  129. Marquez-Curtis L.A., Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed. Res Int. 2013; 2013: 561098.
  130. Li B., Bai W., Sun P. et al. The effect of CXCL12 on endothelial progenitor cells: potential target for angiogenesis in intracerebral hemorrhage. J. Interferon Cytokine Res. 2015; 35 (1): 23-31.
  131. Fagiani E., Christofori G. Angiopoietins in angiogenesis. Cancer Lett. 2013; 328 (1): 18-26.
  132. Shiozawa Y., Jung Y., Ziegler A.M. et al. Erythropoietin couples hematopoiesis with bone formation. PLoS One 2010; 5 (5): e10853.
  133. Wan L., Zhang F., He Q. et al. EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis. PLoS One 2014; 9 (7): e102010.
  134. Buemi M., Donato V., Bolignano D. Erythropoietin: pleiotropic actions. Recenti. Prog. Med. 2010; 101 (6): 253-67.
  135. Cokic B.B., Cokic V.P., Suresh S. et al. Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells. Microvasc. Res. 2014; 92: 34-40.
  136. Park J.B. Effects of the combination of fibroblast growth factor-2 and bone morphogenetic protein-2 on the proliferation and differentiation of osteoprecursor cells. Adv. Clin. Exp. Med. 2014; 23 (3): 463-7.
  137. Sai Y., Nishimura T., Muta M. et al. Basic fibroblast growth factor is essential to maintain endothelial progenitor cell phenotype in TR-BME2 cells. Biol. Pharm. Bull. 2014; 37 (4): 688-93.
  138. Aenlle K.K., Curtis K.M., Roos B.A. et al. Hepatocyte growth factor and p38 promote osteogenic differentiation of human mesenchymal stem cells. Mol. Endocrinol. 2014; 28 (5): 722-30.
  139. Burgazli K.M., Bui K.L., Mericliler M. et al. The effects of different types of statins on proliferation and migration of HGF-induced Human Umbilical Vein Endothelial Cells (HUVECs). Eur. Rev. Med. Pharmacol. Sci. 2013; 17 (21): 2874-83.
  140. Nakamura T., Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc. Jpn. Acad. Ser.B Phys. Biol. Sci. 2010; 86 (6): 588-610.
  141. Sheng M.H., Lau K.H., Baylink D.J. Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone. J. Bone Metab. 2014; 21 (1): 41-54.
  142. Subramanian I.V., Fernandes B.C., Robinson T. et al. AAV-2-mediated expression of IGF-1 in skeletal myoblasts stimulates angiogenesis and cell survival. J. Cardiovasc. Transl. Res. 2009; 2 (1): 81-92.
  143. Colciago A., Celotti F., Casati L. et al. In Vitro Effects of PDGF Isoforms (AA, BB, AB and CC) on Migration and Proliferation of SaOS-2 Osteoblasts and on Migration of Human Osteoblasts. Int. J. Biomed Sci. 2009; 5 (4): 380-9.
  144. Levi B., James A.W., Wan D.C. et al. Regulation of human adipose-derived stromal cell osteogenic differentiation by insulin-like growth factor-1 and platelet-derived growth factor-alpha. Plast. Reconstr. Surg. 2010; 126 (1): 41-52.
  145. Wong V.W. Crawford J.D. Vasculogenic cytokines in wound healing. Biomed. Res. Int. 2013; 2013: 190486.
  146. Palioto D.B., Rodrigues T.L., Marchesan J.T. et al. Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells. Head Face Med. 2011; 7: 13.
  147. Peshavariya H.M., Chan E.C., Liu G.S. et al. Transforming growth factor-β1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. J. Cell Mol. Med. 2014; 18 (6): 1172-83.
  148. Gao X., Xu Z. Mechanisms of action of angiogenin. Acta Biochim. Biophys. Sin. (Shanghai). 2008; 40 (7): 619-24.
  149. Cao L., Liu X., Liu S. et al. Experimental repair of segmental bone defects in rabbits by angiopoietin-1 gene transfected MSCs seeded on porous β-TCP scaffolds. J. Biomed. Mater. Res. B Appl Biomater. 2012; 100 (5): 1229-36.
  150. Virk M.S., Conduah A., Park S.H. et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone. 2008; 42 (5): 921-31.
  151. Lutz R., Park J., Felszeghy E. et al. Bone regeneration after topical BMP-2-gene delivery in circumferential peri-implant bone defects. Clin. Oral Implants Res. 2008; 19 (6): 590-9.
  152. Li B.C., Zhang J.J., Xu C. et al. Treatment of rabbit femoral defect by firearm with BMP-4 gene combined with TGF-beta1. J Trauma. 2009; 66 (2): 450-6.
  153. Sheyn D., Kallai I., Tawackoli W. et al. Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol. Pharm. 2011; 8 (5): 1592-601.
  154. Kang Q., Sun M.H., Cheng H. et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004; 11 (17): 1312-20.
  155. Li J.Z., Li H., Hankins G.R. et al. Different osteogenic potentials of recombinant human BMP-6 adeno-associated virus and adenovirus in two rat strains. Tissue Eng. 2006; 12 (2): 209-19.
  156. Bright C., Park Y.S., Sieber A.N. et al. In vivo evaluation of plasmid DNA encoding OP-1 protein for spine fusion. Spine (Phila Pa 1976). 2006; 31 (19): 2163-72.
  157. Zhang Y., Wu C., Luo T. et al. Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration. Bone. 2012; 51 (4): 704-13.
  158. Song K., Rao N., Chen M. et al. Construction of adeno-associated virus system for human bone morphogenetic protein 7 gene. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2008; 28 (1): 17-21.
  159. Breitbart A.S., Grande D.A., Mason J. et al. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann. Plast. Surg. 1999; 42 (5): 488-95.
  160. Kimelman-Bleich N., Pelled G., Zilberman Y. et al. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol. Ther. 2011; 19 (1): 53-9.
  161. Abdelaal M.M., Tholpady S.S., Kessler J.D. et al. BMP-9-transduced prefabricated muscular flaps for the treatment of bony defects. J. Craniofac. Surg. 2004; 15 (5): 736-41.
  162. Kuroda S., Goto N., Suzuki M. et al. Regeneration of bone- and tendon/ligament-like tissues induced by gene transfer of bone morphogenetic protein-12 in a rat bone defect. J. Tissue Eng. 2010; 2010: 891049.
  163. Rundle C.H., Strong D.D., Chen S.T. et al. Retroviral-based gene therapy with cyclooxygenase-2 promotes the union of bony callus tissues and accelerates fracture healing in the rat. J. Gene Med. 2008; 10 (3): 229-41.
  164. Li C., Ding J., Jiang L. et al. Potential of Mesenchymal Stem Cells by Adenovirus-Mediated Erythropoietin Gene Therapy Approaches for Bone Defect. Cell Biochem. Biophys. 2014; 70 (2): 1199-204.
  165. Wallmichrath J.C., Stark G.B., Kneser U. et al. Epidermal growth factor (EGF) transfection of human bone marrow stromal cells in bone tissue engineering. J. Cell Mol. Med. 2009; 13 (8B): 2593-601.
  166. Qu D., Li J., Li Y. et al. Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects. J. Biomed. Mater. Res. A. 2011; 96 (3): 543-51.
  167. Wen Q., Zhou C., Luo W., et al. Pro-osteogenic effects of fibrin glue in treatment of avascular necrosis of the femoral head in vivo by hepatocyte growth factor-transgenic mesenchymal stem cells. J. Transl. Med. 2014; 12: 114.
  168. Zou D., Zhang Z., He J., et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials. 2012; 33 (7): 2097-108.
  169. Shen F.H., Visger J.M., Balian G. et al. Systemically administered mesenchymal stromal cells transduced with insulin-like growth factor-I localize to a fracture site and potentiate healing. J. Orthop. Trauma. 2002; 16 (9): 651-9.
  170. Srouji S., Ben-David D., Fromigué O. et al. Lentiviral-mediated integrin α5 expression in human adult mesenchymal stromal cells promotes bone repair in mouse cranial and long-bone defects. Hum. Gene Ther. 2012; 23 (2): 167-72.
  171. Strohbach C.A., Rundle C.H., Wergedal J.E. et al. LMP-1 retroviral gene therapy influences osteoblast differentiation and fracture repair: a preliminary study. Calcif. Tissue Int. 2008; 83 (3): 202-11.
  172. Lattanzi W., Parrilla C., Fetoni A. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther. 2008; 15 (19): 1330-43.
  173. Lu S.S., Zhang X., Soo C. et al. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 2007; 7 (1): 50-60.
  174. Lai Q.G., Sun S.L., Zhou X.H. et al. Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis. J. Zhejiang Univ. Sci. B. 2014; 15 (5): 482-90.
  175. Jin Q., Anusaksathien O., Webb S.A. et al. Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Mol. Ther. 2004; 9 (4): 519-26.
  176. Elangovan S., D'Mello S.R., Hong L. et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 2014; 35 (2): 737-47.
  177. Chang P.C., Cirelli J.A., Jin Q. et al. Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use. Hum. Gene Ther. 2009; 20 (5): 486-96.
  178. Backstrom K.C., Bertone A.L., Wisner E.R. et al. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene. Am J. Vet. Res. 2004; 65 (9): 1223-32.
  179. Pan H., Zheng Q., Yang S. et al. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration. J. Biomed. Mater. Res A. 2014; 102 (8): 2864-74.
  180. Duan C., Liu J., Yuan Z. et al. Adenovirus-mediated transfer of VEGF into marrow stromal cells combined with PLGA/TCP scaffold increases vascularization and promotes bone repair in vivo. Arch. Med. Sci. 2014; 10 (1): 174-81.
  181. Koh J.T., Zhao Z., Wang Z. et al. Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration. J Dent. Res. 2008; 87 (9): 845-9.
  182. Menendez M.I., Clark D.J., Carlton M. et al. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis Cartilage. 2011; 19(8): 1066-75.
  183. Reichert J.C., Schmalzl J., Prager P. et al. Synergistic effect of Indian hedgehog and bone morphogenetic protein-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells. Stem Cell Res. Ther. 2013; 4 (5): 105.
  184. Deng Y., Zhou H., Yan C. et al. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair. Tissue Eng. Part A. 2014; 20 (13-14): 2019-29.
  185. Liu J., Xu L., Li Y. et al. Temporally controlled multiple-gene delivery in scaffolds: a promising strategy to enhance bone regeneration. Med. Hypotheses. 2011; 76 (2): 173-5.
  186. Zhang Y., Cheng N., Miron R. et al. Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 2012; 33 (28): 6698-708.
  187. Ito H., Koefoed M., Tiyapatanaputi P. et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat. Med. 2005; 11 (3): 291-7.
  188. Wehrhan F., Amann K., Molenberg A. et al. Critical size defect regeneration using PEG-mediated BMP-2 gene delivery and the use of cell occlusive barrier membranes - the osteopromotive principle revisited. Clin. Oral Implants Res. 2013; 24 (8): 910-20.
  189. Die X., Luo Q., Chen C. et al. Construction of a recombinant adenovirus co-expressing bone morphogenic proteins 9 and 6 and its effect on osteogenesis in C3H10 cells. Nan Fang Yi Ke Da Xue Xue Bao. 2013; 33 (9): 1273-9.
  190. Seamon J., Wang X., Cui F. et al. Adenoviral Delivery of the VEGF and BMP-6 Genes to Rat Mesenchymal Stem Cells Potentiates Osteogenesis. Bone Marrow Res. 2013; 2013: 737580.
  191. Yang L., Zhang Y., Dong R. et al. Effects of adenoviral-mediated coexpression of bone morphogenetic protein-7 and insulin-like growth factor-1 on human periodontal ligament cells. J Periodontal. Res. 2010; 45 (4): 532-40.
  192. Liu J.Z., Hu Y.Y., Ji Z.L. Co-expression of human bone morphogenetic protein-2 and osteoprotegerin in myoblast C2C12. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2003; 17 (1): 1-4.
  193. Kim M.J., Park J.S., Kim S. et al. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration. Stem Cells Dev. 2011; 20 (8): 1349-58.
  194. Li J., Zhao Q., Wang E. et al. Transplantation of Cbfa1-overexpressing adipose stem cells together with vascularized periosteal flaps repair segmental bone defects. J. Surg. Res. 2012; 176 (1): e13-20.
  195. Bhattarai G., Lee Y.H., Lee M.H. et al. Gene delivery of c-myb increases bone formation surrounding oral implants. J Dent. Res. 2013; 92 (9): 840-5.
  196. Han D., Li J. Repair of bone defect by using vascular bundle implantation combined with Runx II gene-transfected adipose-derived stem cells and a biodegradable matrix. Cell Tissue Res. 2013; 352(3): 561-71.
  197. Takahashi T. Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro. Calcif. Tissue Int. 2011; 88 (4): 336-47.
  198. Cucchiarini M., Orth P., Madry H. Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J. Mol. Med. (Berl). 2013; 91 (5): 625-36.
  199. Itaka K., Ohba S., Miyata K. et al. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol. Ther. 2007; 15 (9): 1655-62.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies