A method for preoperative planning of reconstructive intervention on the foot in case of severe deformity due to Charcot osteoarthropathy complicated by osteomyelitis
- 作者: Osnach S.A.1, Protsko V.G.2, Kuznetsov V.V.3, Obolenskiy V.N.4,5, Salamzon V.P.6, Komelyagina E.Y.7, Sabantchieva N.I.7, Borzunov D.Y.8,9, Tamoev S.K.3, Rybinskaya A.L.3
-
隶属关系:
- Foot Surgery and Orthopaedic Foot Surgery Centre, S.S. Yudin City Clinical Hospital of the Moscow City Health Department, Moscow, Russia
- S. S. Yudin City Clinical Hospital of the Moscow City Health Department, Moscow, Russia
- ГКБ им. С.С. Юдина, г. Москва
- Филиал 1 ГБУЗ ГКБ им. В.П. Демихова ДЗ г. Москвы
- ФГБОУ ВО Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, РФ
- РКБ ФГБУЗ ЮОМЦ ФМБА России, Ростов-на-Дону
- ГБУЗ "Эндокринологический диспансер Департамента здравоохранения города Москвы
- Уральский государственный медицинский университет, г. Екатеринбург
- Центральная городская клиническая больница № 23, Екатеринбург
- 栏目: Clinical case reports
- ##submission.dateSubmitted##: 04.03.2025
- ##submission.dateAccepted##: 13.07.2025
- URL: https://journals.eco-vector.com/0869-8678/article/view/676841
- DOI: https://doi.org/10.17816/vto676841
- ID: 676841
如何引用文章
详细
INTRODUCTION: The use of 3D technology has become widespread in various fields of medicine. 3D printing is used not only in the manufacture of individual implants, but also to create physical models necessary for preoperative preparation. Reconstructive surgery for complex foot deformities in patients with Charcot osteoarthropathy requires careful planning of surgical intervention.
CLINICAL CASE DESCRIPTION: Patient T., 62 years old, with type 2 diabetes mellitus and distal diabetic polyneuropathy, Charcot osteoarthropathy of the middle section of both feet, and a Wagner III grade plantar ulcerative defect of the left foot. A CT scan of the left foot was performed, based on which a 3D model of the foot was created. The plastic model of the foot was used to visually assess the nature of the deformity and the technical feasibility of arthrodesis. Resection arthrodesis was performed with an oscillating saw, and the foot model was fixed in a functionally advantageous position with pins. Intraoperatively, resection arthrodesis of the Lisfranc joint with bone autografting was performed. The duration of the operation was 1.5 hours. In the postoperative period, fixation with a posterior plaster splint was performed, followed by replacement with an total contact cast. At a follow-up examination 15 months later, no recurrence of deformation or ulcerative defects of the foot was detected. The patient walks in custom orthopedic shoes without additional support, using custom orthopedic diabetic insoles.
CONCLUSION: Reconstructive surgery for Charcot osteoarthropathy is a complex sphere of orthopedics. A method of preoperative planning using 3D modeling in the reconstruction of severe Charcot foot deformities provides a personalized approach and reduces the duration of surgical intervention.
全文:
作者简介
Stanislav Osnach
Foot Surgery and Orthopaedic Foot Surgery Centre, S.S. Yudin City Clinical Hospital of the Moscow City Health Department, Moscow, Russia
编辑信件的主要联系方式.
Email: stas-osnach@yandex.ru
ORCID iD: 0000-0003-4943-3440
SPIN 代码: 3977-0277
травматолог-ортопед
俄罗斯联邦Victor Protsko
S. S. Yudin City Clinical Hospital of the Moscow City Health Department, Moscow, Russia
Email: 89035586679@mail.ru
ORCID iD: 0000-0002-5077-2186
SPIN 代码: 4628-7919
д.м.н., руководитель Центра хирургии стопы ГКБ им. С.С. Юдина
俄罗斯联邦Vasiliy Kuznetsov
ГКБ им. С.С. Юдина, г. Москва
Email: vkuznecovniito@gmail.com
ORCID iD: 0000-0001-6287-8132
SPIN 代码: 6499-2760
к.м.н., врач травматолог-ортопед
俄罗斯联邦Vladimir Obolenskiy
Филиал 1 ГБУЗ ГКБ им. В.П. Демихова ДЗ г. Москвы; ФГБОУ ВО Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, РФ
Email: gkb13@mail.ru
ORCID iD: 0000-0003-1276-5484
SPIN 代码: 5843-2934
к.м.н., врач хирург и травматолог-ортопед, заведующий Центром гнойной хирургии
俄罗斯联邦Vasiliy Salamzon
РКБ ФГБУЗ ЮОМЦ ФМБА России, Ростов-на-Дону
Email: Salamzon_vasily@mail.ru
травматолог-ортопед
俄罗斯联邦Elena Komelyagina
ГБУЗ "Эндокринологический диспансер Департамента здравоохранения города Москвы
Email: komelelena@yandex.ru
ORCID iD: 0000-0003-0798-0139
SPIN 代码: 2847-1270
к.м.н., заведующая отделением "Диабетическая стопа"
俄罗斯联邦Nuria Sabantchieva
ГБУЗ "Эндокринологический диспансер Департамента здравоохранения города Москвы
Email: sni_doc@mail.ru
эндокринолог, врач отделения "Диабетическая стопа"
俄罗斯联邦Dmitry Borzunov
Уральский государственный медицинский университет, г. Екатеринбург; Центральная городская клиническая больница № 23, Екатеринбург
Email: borzunov@bk.ru
ORCID iD: 0000-0003-3720-5467
SPIN 代码: 6858-8005
д.м.н., профессор, травматолог-ортопед
俄罗斯联邦Sargon Tamoev
ГКБ им. С.С. Юдина, г. Москва
Email: sargonik@mail.ru
ORCID iD: 0000-0001-8748-0059
SPIN 代码: 2986-1390
к.м.н., травматолог-ортопед, заведующий отделением
俄罗斯联邦Anastasia Rybinskaya
ГКБ им. С.С. Юдина, г. Москва
Email: arybinskay@mail.ru
ORCID iD: 0000-0002-5547-4524
SPIN 代码: 8177-2880
травматолог-ортопед
俄罗斯联邦参考
- You Y, Niu Y, Sun F, et al. Three-dimensional printing and 3D slicer powerful tools in understanding and treating neurosurgical diseases. Front Surg. 2022;9:1030081. doi: 10.3389/fsurg.2022.1030081
- Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. doi: 10.1186/s12938-016-0236-4
- Xu J, Zhang G, He Z, et al. Anatomical reduction and precise internal fixation of intra-articular fractures of the distal radius with virtual X-ray and 3D printing. Australas Phys Eng Sci Med. 2019;43(1):35–47. doi: 10.1007/s13246-019-00795-w
- Dekker TJ, Steele JR, Federer AE, et al. Use of Patient-Specific 3D-Printed Titanium Implants for Complex Foot and Ankle Limb Salvage, Deformity Correction, and Arthrodesis Procedures. Foot Ankle Int. 2018;39(8):916–921. doi: 10.1177/1071100718770133
- Bejarano-Pineda L, Sharma A, Adams SB, Parekh SG. Three-Dimensional Printed Cage in Patients With Tibiotalocalcaneal Arthrodesis Using a Retrograde Intramedullary Nail: Early Outcomes. Foot Ankle Spec. 2021;14(5):401–409. doi: 10.1177/1938640020920947
- Patel H, Kinmon K. Revision of Failed Total Ankle Replacement With a Custom 3-Dimensional Printed Talar Component With a Titanium Truss Cage: A Case Presentation. J Foot Ankle Surg. 2019;58(5):1006–1009. doi: 10.1053/j.jfas.2018.12.036
- Kavarthapu V, Haldar A. Reconstruction of unstable ankle charcot deformity using a 3-D printed titanium porous block and hindfoot nail — A case report. Foot (Edinb). 2024;60:102116. doi: 10.1016/j.foot.2024.102116
- Pinzur MS, Schiff AP, Hamid K, LeDuc R. Preliminary Experience With Commercially Available Trabecular Metal Tibial Cones Combined With a Retrograde Locked Intramedullary Nail for Bony Defects in Tibiotalocalcaneal Arthrodesis. Foot Ankle Spec. 2024;18(4):429–431. doi: 10.1177/19386400241236664
- Hsu AR, Ellington JK. Patient-Specific 3-Dimensional Printed Titanium Truss Cage With Tibiotalocalcaneal Arthrodesis for Salvage of Persistent Distal Tibia Nonunion. Foot Ankle Spec. 2015;8(6):483–489. doi: 10.1177/1938640015593079
- Abar B, Kwon N, Allen NB, et al. Outcomes of Surgical Reconstruction Using Custom 3D-Printed Porous Titanium Implants for Critical-Sized Bone Defects of the Foot and Ankle. Foot Ankle Int. 2022;43(6):750–761. doi: 10.1177/10711007221077113
- Kim M, Mann T, Kelly C, et al. Outcomes of Charcot Arthropathy Limb Salvage with Patient-Specific 3D-Printed Cage and Dynamic Hindfoot Fusion Nail Combination Fixation. Research Square. 2024. doi: 10.21203/rs.3.rs-4096092/v1
- Wu M, Guan J, Xiao Y, et al. Application of three-dimensional printing technology for closed reduction and percutaneous cannulated screws fixation of displaced intraarticular calcaneus fractures. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31(11):1316–1321. (In Chinese). doi: 10.7507/1002-1892.201705040
- Nilsen FA, Molund M, Hvaal KH. High Incidence of Recurrent Ulceration and Major Amputations Associated With Charcot Foot. J Foot Ankle Surg. 2018;57(2):301–304. doi: 10.1053/j.jfas.2017.10.008
- Dedov II, Shestakova MV, Mayorov AU, et al. Standards of specialized diabetes care. Diabetes Mellitus. 2023;(26 suppl. 2):1–157. doi: 10.14341/DM13042 EDN: DCKLCI
- Shazadeh Safavi P, Jupiter DC, Panchbhavi V. A Systematic Review of Current Surgical Interventions for Charcot Neuroarthropathy of the Midfoot. J Foot Ankle Surg. 2017;56(6):1249–1252. doi: 10.1053/j.jfas.2017.06.011
- Schneekloth BJ, Lowery NJ, Wukich DK. Charcot Neuroarthropathy in Patients With Diabetes: An Updated Systematic Review of Surgical Management. J Foot Ankle Surg. 2016;55(3):586–90. doi: 10.1053/j.jfas.2015.12.001
- Yammine K, Otayek J, Assi C. Evidence-based conservative limb preserving surgery for the diabetic foot complications: A systematic review of systematic reviews. Foot Ankle Surg. 2022;28(6):670–679. doi: 10.1016/j.fas.2021.08.006
- Catanzariti AR, Mendicino R, Haverstock B. Ostectomy for diabetic neuroarthropathy involving the midfoot. J Foot Ankle Surg. 2000;39(5):291–300. doi: 10.1016/s1067-2516(00)80045-9
- Brodsky JW, Rouse AM. Exostectomy for symptomatic bony prominences in diabetic Charcot feet. Clin Orthop Relat Res. 1993;(296):21–6.
- Laurinaviciene R, Kirketerp-Moeller K, Holstein PE. Exostectomy for chronic midfoot plantar ulcer in Charcot deformity. J Wound Care. 2008;17(2):53–5, 57–8. doi: 10.12968/jowc.2008.17.2.28178
- Regauer M, Grasegger V, Fürmetz J, et al. High rate of complications after corrective midfoot/subtalar arthrodesis and Achilles tendon lengthening in Charcot arthropathy type Sanders 2 and 3. Int Orthop. 2023;47(1):141–150. doi: 10.1007/s00264-022-05567-y
- Manchanda K, Wallace SB, Ahn J, et al. Charcot Midfoot Reconstruction: Does Subtalar Arthrodesis or Medial Column Fixation Improve Outcomes? J Foot Ankle Surg. 2020;59(6):1219–1223. doi: 10.1053/j.jfas.2020.07.001
- Dmitrienko AA, Anichkin VV, Kurek MF, et al. Differentiated surgical tactics at purulent complications of diabetic Charcot osteoarthropathy. Novosti Khirurgii. 2013;21(6):47–56. doi: 10.18484/2305-0047.2013.6.47 EDN: RTABLL
- Bregovskiy VB, Osnach SA, Obolenskiy VN, et al. Classification of the Charcot neuroosteoarthropathy: evolution of views and unsolved problems. Diabetes Mellitus. 2024;27(4):384–394. doi: 10.14341/DM13118. EDN: FLBKQU
- Zheng YX, Yu DF, Zhao JG, et al. 3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning? J Surg Educ. 2016;73(3):518–23. doi: 10.1016/j.jsurg.2016.01.003
- Jiang M, Chen G, Coles-Black J, et al. Three-dimensional printing in orthopaedic preoperative planning improves intraoperative metrics: a systematic review. ANZ J Surg. 2020;90(3):243–250. doi: 10.1111/ans.15549
- Morgan C, Khatri C, Hanna SA, et al. Use of three-dimensional printing in preoperative planning in orthopaedic trauma surgery: A systematic review and meta-analysis. World J Orthop. 2020;11(1):57–67. doi: 10.5312/wjo.v11.i1.57
- Wood L, Ahmed Z. Does using 3D printed models for pre-operative planning improve surgical outcomes of foot and ankle fracture fixation? A systematic review and meta-analysis. Eur J Trauma Emerg Surg. 2024;50(1):21–35. doi: 10.1007/s00068-022-02176-7
- O'Connor O, Patel R, Thahir A, et al. The use of Three-Dimensional Printing in Orthopaedics: a Systematic Review and Meta-analysis. Arch Bone Jt Surg. 2024;12(7):441–456. doi: 10.22038/ABJS.2024.74117.3465
- Wong RMY, Wong PY, Liu C, et al. 3D printing in orthopaedic surgery: a scoping review of randomized controlled trials. Bone Joint Res. 2021;10(12):807–819. doi: 10.1302/2046-3758.1012.BJR-2021-0288.R2
- Mounsef PJ, Mulé P, Bernstein M, Hamdy R. The Use of 3D Printing as an Educational Tool in Orthopaedics. JB JS Open Access. 2025;10(2):e25.00062. doi: 10.2106/JBJS.OA.25.00062
- Martelli N, Serrano C, van den Brink H, et al. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery. 2016;159(6):1485–1500. doi: 10.1016/j.surg.2015.12.017
- Ford JM, Rybicki FJ, Morris JM, Decker SJ. Stratifying complexity among the widespread use of 3D printing in United States health care facilities. 3D Print Med. 2024;10(1):37. doi: 10.1186/s41205-024-00243-w
- Ravi P, Burch MB, Farahani S, et al.; University of Cincinnati 3D Printing Clinical Service Participants. Utility and Costs During the Initial Year of 3D Printing in an Academic Hospital. J Am Coll Radiol. 2023;20(2):193–204. doi: 10.1016/j.jacr.2022.07.001
- Ballard DH, Mills P, Duszak R Jr, et al. Medical 3D Printing Cost-Savings in Orthopedic and Maxillofacial Surgery: Cost Analysis of Operating Room Time Saved with 3D Printed Anatomic Models and Surgical Guides. Acad Radiol. 2020;27(8):1103–1113. doi: 10.1016/j.acra.2019.08.011
- Giovinco NA, Dunn SP, Dowling L, et al. A novel combination of printed 3-dimensional anatomic templates and computer-assisted surgical simulation for virtual preoperative planning in Charcot foot reconstruction. J Foot Ankle Surg. 2012;51(3):387–93. doi: 10.1053/j.jfas.2012.01.014
- Pehde CE, Bennett J, Lee Peck B, Gull L. Development of a 3-D Printing Laboratory for Foot and Ankle Applications. Clin Podiatr Med Surg. 2020;37(2):195–213. doi: 10.1016/j.cpm.2019.12.011
补充文件

