Modern approaches to genotyping of causative agents of particularly dangerous infections



Cite item

Full Text

Abstract

Currently genotyping of microorganisms is widely used in the investigation of outbreaks of infectious diseases, the implementation of epidemiological surveillance of infections and phylogenetic analysis of bacterial pathogens. Development of methods for genotyping is particularly topical for pathogens of such highly dangerous infections as plague, cholera, anthrax, brucellosis, tularemia, glanders and melioidosis, due to their high pathogenicity and contagiousness. In this overview there is presented the characteristics of different genotyping methods together with an indication of their advantages and drawbacks. There has been analyzed the frequency of the use of genotyping methods on an annual basis and in terms of the type of the causative agents of especially dangerous infections.

Full Text

Введение Целью генотипирования является внутривидовая дифференциация микроорганизмов на основе различий их геномов. К задачам типирования относятся: расследование вспышек инфекционных заболеваний природного или техногенного характера, мониторинг природных очагов опасных инфекционных болезней, геномная паспортизация и определение филогенетических связей штаммов микроорганизмов. В настоящее время более 160 видов микроорганизмов считаются патогенными [1]. Наиболее пристального внимания заслуживают возбудители особо опасных инфекций (ООИ), потенциальные агенты биотерроризма, такие как Yersinia pestis, Vibrio cholerae, Bacillus anthracis, Brucella spp., Francisella tularensis, Burkholderia pseudomallei, Burkholderia mallei [2]. Заболевания, вызываемые данными патогенами, как правило, способны к эпидемическому распространению с охватом больших масс населения и характеризуются крайне тяжелым течением с высокой летальностью либо инвалидиза-цией переболевших. В случае возникновения вспышек особо опасных инфекций большое значение имеют их своевременная диагностика и типирование патогенных биологических агентов для установления источника заражения, реализации необходимых мер защиты, устранения опасности дальнейшего распространения инфекции, лечения зараженных людей. Характеристиками оптимального метода типирования являются высокая дискриминирующая сила, позволяющая в идеале различать все исследуемые изо-ляты, а также высокая скорость получения результата, воспроизводимость, простота в исполнении, интерпретации и низкая себестоимость. К важным параметрам относятся возможность сопоставления результатов, полученных разными лабораториями, наличие общедоступных баз данных и международной номенклатуры [3]. На сегодняшний день разработано множество молекулярно-генетических методов, применяемых для изучения эпидемиологической характеристики бактериальных изолятов. Методы генотипирования можно объединить в следующие группы: 1) методы, включающие рестрикцию и электрофорез, 2) методы, основанные на амплификации вариабельных ло-кусов, 3) методы, основанные на гибридизации, 4) методы, основанные на секвенировании. 1. Методы, включающие рестрикцию и электрофорез Плазмидный анализ (ПА) используется в бактериологии уже много лет. В данном методе анализируют картину ДНК-паттернов, полученную при электрофорезе интакных плазмид или фрагментов, образованных после расщепления плазмидной ДНК эндонуклеазами рестрикции. Плазмиды как мобильные генетические элементы не являются стабильной характеристикой бактерий, могут спонтанно теряться/приобретаться, передаваться путем “горизонтального переноса” неродственным микроорганизмам. Плазмидный профиль является важной характеристикой штаммов Y. pestis, B. anthracis, V cholerae [4, 5]. Пульс-электрофорез (ПЭФ) метод фракционирования крупных молекул ДНК (от 5 тыс. п.н. до 10 млн. п.н.), полученных после рестрикции хромосом редкощепящей эндонуклеазой с помощью электрофореза в условиях периодически меняющегося по направлению (“пульсирующего”) электрического поля. ПЭФ был и во многих случаях остается золотым стандартом типирования микроорганизмов, так как обладает высокой воспроизводимостью, дискриминирующей способностью, результаты ти-пирования хорошо согласуются с эпидемиологическими данными, картины ДНК-паттернов легко интерпретируются. По данным A. Sabat. и соавт. [3] наибольшая доля статей по генотипированию посвящена использованию ПЭФ (более 2700 в базе данных PubMed). Широкому распространению метода на практике способствовала стандартизация, трактующая родство исследуемых штаммов по количеству отличающихся полос на электрофореграмме, предложенная F. Tenover и соавт. [6]. Стабильность результатов ПЭФ при соблюдении условий протокола позволила создать базы данных для большинства видов бактерий. Пульс-электрофорез отлично зарекомендовал себя при расследовании вспышек особо опасных инфекционных заболеваний [7], установлении филогенетических связей различных штаммов [8]. Часто данный метод используется в качестве стандарта генотипирования при разработке новых методов [9, 10]. К недостаткам пульс-электрофореза можно отнести трудоемкость, продолжительное время анализа (3-4 дня), а также возможность резкого изменения электрофоретического профиля даже из-за одной мутации. Полиморфизм длин рестрикционных фрагментов (ПДРФ) основан на обработке тотальной ДНК, выделенной из культуры микроорганизмов, эндонуклеазами рестрикции, расщепляющими нуклеиновые кислоты в специфических “сайтах узнавания”. Образующиеся фрагменты ДНК отличаются по количеству и размерам у разных штаммов и анализируются с помощью гель-электрофореза. Данная методика проста в выполнении, однако в некоторых случаях получаемые картины ДНК-паттернов трудно интерпретировать вследствие большого количества рестрикционных фрагментов. Поэтому ПДРФ сочетают с гибридизацией с ДНК/РНК-зондами. Самыми распространенными мишенями для конструирования зондов являются рибосомальные гены, также описано использование инсерционных последовательностей (IS-элементов) [11, 12]. Высокоэффективной оказалась схема типи-рования на основе ПДРФ с использованием зондов, комплементарных IS-элементам возбудителя чумы, предложенная G. Torrea и соавт. [12]. Однако рибо-типирование в последние годы применяется редко в связи с высокой трудоемкостью проведения анализа. 35 ЭПИДЕМИОЛОГИЯ И ИНФЕКЦИОННЫЕ БОЛЕЗНИ, № 1, 2014 Упрощение процедуры анализа возможно за счет использования автоматической станции для риботипи-рования, хотя это не гарантирует повышения силы дискриминации [13]. Полиморфизм длин амлифицированных фрагментов (ПДАФ) базируется на расщеплении геномной ДНК комбинацией двух рестриктаз, одна из которых является частощепящей, а другая редкощепящей. В результате образуется большое количество фрагментов с “липкими концами”. Затем проводят их лигирование с короткими двухцепочечными фрагментами ДНК адапторами, которые частично комплементарны сайту рестрикции. Образованные продукты ам-плифицируют с помощью праймеров, которые на 5’-конце содержат последовательность адаптера, а на 3’-конце 1-3 дополнительных нуклеотида. Добавление этих нуклеотидов необходимо для уменьшения числа фрагментов, образующихся в ходе полимеразной цепной реакции (ПЦР), что делает интерпретацию ДНК-паттернов более легкой. Применение капиллярного электрофореза с флуоресцентно-меченными праймерами позволяет упростить анализ результатов [14]. Преимуществами ПДАФ являются высокая дискриминирующая способность, воспроизводимость результатов и сопоставимость данных, полученных в разных лабораториях. Данный метод успешно применяется для расследования вспышек особо опасных заболеваний, однако эффективность ПДАФ зависит от выбора адаптеров, при недостаточной оптимизации он показывает меньшую разрешающую способность по сравнению с ПЭФ [14, 15]. К недостаткам метода можно отнести трудоемкость (анализ занимает около трех дней) и относительно высокую себестоимость вследствие необходимости использования коммерческих наборов реагентов (ферменты, адапторы, праймеры). ПЦР с последующей рестрикцией продуктов амплификации (ПЦР-ПДРФ). В отличие от прямого ПДРФ на первом этапе в данном методе проводят амплификацию со специфическими праймерами, ограничивающими исследуемый участок ДНК. Затем с помощью эндонуклеаз рестрикции фрагмент гена расщепляется, а после проведения электрофореза изучаются полученные профили. Это позволяет сократить количество анализируемых фрагментов и облегчить интерпретацию результата, однако увеличивает время проведения анализа. В последние годы данный метод использовался редко. Дискриминирующая сила и воспроизводимость ПЦР-ПДРФ определяются выбором праймеров и рестриктаз. Так, использование данного метода F. Reen [16] для возбудителя холеры позволило провести идентификацию, но было неэффективно для внутривидовой дифференциации микроорганизма. Однако схема, предложенная N. Chowdhury [9], позволила разделить 94 штамма V cholerae биовара Эль Тор, 29 штаммов V. cholerae классического биовара и 54 штамма V. cholerae О139 на 9, 3 и 6 групп соответственно, что сравнимо с результатами ПЭФ. 2. Методы, основанные на амплификации вариабельных локусов Мультиплексная ПЦР молекулярно-биологический метод, широко используемый в биологической и медицинской практике. При использовании в ПЦР в качестве мишеней генов патогенности, может быть получена клинически значимая характеристика штаммов. Также данная процедура проста в исполнении и легко интерпретируема. В качестве ДНК-мишеней часто используются гены «домашнего хозяйства», например алгоритм типирования возбудителя чумы, предложенный Г.А. Ерошенко и соавт. [17], включает определение наличия генов жизнеобеспечения (terC, ilvN, inv, glpD, napA, rhaS и araC). Другими часто используемыми мишенями в ПЦР-типировании являются гены антибиотикорези-стентности [18], а также гены, кодирующие факторы вирулентности. Определение генов токсичности и патогенности является важным этапом характеристики штаммов V. cholerae, анализируют такие гены, как toxR, hlyA, ctxA, zot, ace, tcpA, stn, tox T [19]. Технология MGB-зондов (taqman-minor groove binding модифицированные зонды с повышенной температурой отжига) позволяет использовать ПЦР для определения однонуклеотидного полиморфизма (SNP single nucleotide polymorphism). С помощью данного метода были определены наиболее эффективные SNP-локусы для типирования микроорганизма B. anthracis, геном которого характеризуется выраженной консервативностью [20]. DFR-анализ (different region DFR). Метод амплификации дифференцирующих фрагментов генома заключается в серии ПЦР с праймерами, фланкирующими фрагменты ДНК-мишеней, присутствующих только у определенных штаммов. Преимуществами данного метода является легкость интерпретации, использование стандартного оборудования, быстрота получения результата. Недостатком является необходимость проведения большого количества параллельных реакций амплификации, поскольку разрешающая сила метода зависит от количества выбранных локусов. Схема генотипирования Y pestis на основе 23 DFR-локусов, предложенная Y. Li и соавт. [21], показала, что на территории природных очагов Китая циркулируют штаммы 32 типов, причем для каждого очага характерен свой основной DFR-тип. DFR-анализ еще не получил широкого распространения, не разработана единая терминология. Так, алгоритм типирования на основе 14 локусов, предложенный K. Duangsonk и соавт. [22] для возбудителя мелиоидоза, разделивший 98 изолятов В. pseudomallei на 59 генотипов, назывался VAT-анализ (variable amplicon typing), а схема, включающая 19 пар праймеров, подобранных на регионы дифференциально присутствующие у различных возбудителей бруцеллеза, отнесена к ПЦР [23]. ПЦР с произвольными праймерами, RAPD (rand om amplified polymorphic DNA). Метод RAPD осно 36 ван на использовании произвольных олигонуклео-тидных праймеров длиной 9-10 нуклеотидов, которые отжигаются при низкой температуре на большом количестве сайтов в различных областях генома, что инициирует амплификацию анонимных последовательностей ДНК разной длины. RAPD-типирование относительно нетрудоемкий и быстрый метод, не требующий подбора специфических праймеров, с низкой себестоимостью и высокой разрешающей способностью. Для возбудителя сапа разработана схема типиро-вания на основе 6 олигонуклеотидов, позволившая разделить 14 исследуемых штаммов на отдельные RAPD-типы [24]. ПЦР с произвольными праймерами успешно применена для типирования возбудителя холеры, выявлено значительное генетическое разнообразие слабопатогенных штаммов V. cholerae различных серогрупп [25]. Основным недостатком ПЦР с произвольными праймерами является низкая межлабораторная воспроизводимость, так как полученный результат зависит от целостности выделенной ДНК, режима и условий проведения ПЦР, что проявляется в изменении RAPD-паттернов. ПЦР с праймерами на IS-элементы и повторяющиеся элементы, rep-PCR. В данном случае амплификация проводится с праймерами к консенсусной последовательности повторяющихся элементов, рассеянных по геному. Совокупность амплифици-рованных последовательностей различной длины, заключенных между повторами, анализируется с помощью электрофореза. Среди повторяющихся нуклеотидных последовательностей можно выделить 3 группы: экстрагенные повторяющиеся палиндромы длиной 35-40 п.н. REP (repetitive extragenic palindromes), повторяющиеся межгенные последовательности длиной 124-127 п.н. ERIC (enterobacterial repetitive intergenic consensus) и BOX-элементы длиной 154 п.н. энтеробактерий и стрептококков. При сравнении методов REP, ERIC и RAPD для типиро-вания штаммов F. tularensis REP и ERIC продемонстрировали меньшую разрешающую силу, однако большую воспроизводимость [26]. Анализ использования данных подходов для типирования V. cholerae показал возможность применения ПЦР с праймерами на повторяющиеся элементы для дифференциации штаммов V. cholerae не О1-й/не О139-й группы, а наибольшей дискриминирующей силой обладал метод ERIC-ПЦР [27]. Было показано, что при дифференциации Y pestis с помощью ERIC-ПЦР образуются группы, сходные с MLVA-профилем, что говорит о возможности использования данного метода в эпидемиологическом исследовании чумы [28]. IS-элементы относятся к простым мобильным генетическим элементам и используются для типи-рования многих возбудителей ООИ. Типирование 77 штаммов возбудителя чумы и 2 штаммов псевдотуберкулеза с использованием праймеров к IS100 позволило разделить исследуемые микроорганизмы на 16 IS-типов [29]. IS-типирование F. tularensis позволило дифференцировать штаммы внутри групп AI и AII, однако штаммы группы B принадлежали к одному генотипу [30]. Также к типированию на основе ПЦР с праймерами на повторяющиеся элементы можно отнести CRISPR-анализ. CRISPR-элементы (CRISPR clustered regularly interspaced short palindromic repeats) представляют собой короткие палиндромные повторы, регулярно расположенные группами, длиной 24-48 п.н. CRISPR-типирование возбудителя чумы, предложенное Y. Cui и соавт. [31], показало зависимость между отдельными типами спейсеров и географическим происхождением исследуемых штаммов. Недостатком метода является необходимость секвенирования для выявления незначительных различий в последовательностях CRISPR-спейсеров [32]. Несмотря на то, что данная группа методов нуждается в стандартизации, в целом ПЦР с праймерами на IS-элементы и повторяющиеся элементы характеризуется хорошей воспроизводимостью, разрешающей силой, сопоставимой с ПЭФ, легкостью проведения анализа и быстротой. Мультилокусный анализ числа вариабельных тандемных повторов, MLVA (multiple-locus variable number tand em repeat analysis). Принцип метода MLVA заключается в выявлении тандемно расположенных повторяющихся последовательностей, число повторов которых варьирует у различных штаммов. Тандемные повторы (VNTR variable number tand em repeat) в зависимости от размера можно разделить на классы: VNTR (более 7 нуклеотидов), SSR/STR (simple sequence repeat/short tand em repeat 2-6 нуклеотидов), SNR (single nucleotide repeat однонуклеотидные повторы). К MLVA-типированию относят использование первых двух типов повторов, определение количества однонуклеотидных повторов чаще выделяют в отдельный метод SNR-анализ. Существует несколько технических исполнений анализа тандемных повторов: с использованием электрофореза в агарозном или полиакриламидном геле, а также с применением капиллярного гель-электрофореза в автоматических анализаторах. Первый подход проще и доступнее [33], однако второй более точен, особенно при анализе коротких повторов (STR) [34]. При использовании различных флуоресцентных меток за один запуск на автоматическом анализаторе можно независимо определять длину сразу нескольких ампликонов [35]. Секвени-рование ампликонов дает более точные результаты, исключает погрешность, вызванную мутациями внутри VNTR-локуса, однако себестоимость анализа многократно увеличивается [3, 34]. На сегодняшний день метод MLVA наиболее часто применяется для типирования возбудителей ООИ, показывая высокую дифференцирующую способность, а также, что более важно, корреляцию образуемых групп с географической и иной 37 ЭПИДЕМИОЛОГИЯ И ИНФЕКЦИОННЫЕ БОЛЕЗНИ, № 1, 2014 приуроченностью [36-38]. Дискриминирующая сила данного метода превосходит пульс-электрофорез и многие другие методы, часто позволяя разделить практически все исследуемые штаммы на отдельные MLVA-типы [39, 40]. SNR-анализ показал наибольшую эффективность при типировании B. anthracis за счет высокой мутабельности однонуклеотидных повторов [41]. Метод анализа тандемных повторов нуждается в стандартизации, и на данном этапе еще ведутся работы по выбору наиболее эффективных VNTR-локусов [35], также необходимо расширение спектра микроорганизмов в базах данных сети интернет. Анализ кривых плавления, HRM (high-resolution melting analysis), основан на мониторинге в реальном времени процесса плавления амплифицирован-ных фрагментов ДНК. При нагревании двухцепочечная ДНК денатурирует и происходит высвобождение интеркалирующих красителей, что проявляется снижением уровня флюоресценции. HRM-профиль зависит от длины и ГЦ-состава ампликонов, и при определенных условиях даже однонуклеотидная замена отражается на форме кривой плавления. Быстрота и высокая чувствительность данного метода объясняют его популярность для выявления SNP [42]. Было показано, что HRM также обеспечивает быструю, надежную и недорогую идентификацию и дифференциацию штаммов рода Brucella, схема из семи пар праймеров позволила разделить исследуемые штаммы с 99% точностью по сравнению с классическими методами [43]. HRM-анализ на основе генов ß-лактамаз был предложен для молекулярного типирования патогенных видов Burkholderia [44]. A. Ciammaruconi и соавт. [45] показали, что HRM может дополнить MLVA-типирование Y. pestis путем разделения ампликонов с различным числом тандемных повторов быстрее и при более низкой стоимости. Данный метод широко не используется, поскольку требует тщательной оптимизации праймеров и условий, а без стандартизации обмен результатами между лабораториями ограничен. 3. Методы, основанные на гибридизации В данный момент наиболее востребованным методом на основе гибридизации является технология микроэрреев. ДНК-микроэррей (ДНК-микрочип, биочип) представляет собой подложку, на которую в виде дискретных точек иммобилизовано большое количество ДНК-зондов. Процесс применения биочипов включает несколько этапов: обработку образца, ДНК ДНК-гибридизацию, детекцию и анализ результатов. На основе размера точек ДНК-эрреи делятся на микроэрреи (меньше 200 мкм) и макро-эрреи (более 300 мкм). В качестве зондов в биочипах могут выступать кДНК (такие чипы могут быть использованы для сравнительной геномной гибридизации) или олигонуклеотидные зонды (чаще используются для SNP-типирования) [46]. Технология микрочипов дает возможность одно временного анализа огромного количества различных ДНК-последовательностей, позволяя проводить детекцию и дифференциацию нескольких микроорганизмов. Например, Y. Yang и соавт. [4] разработали 2 варианта чипов для обнаружения B. anthracis, Y pestis, Brucella spp., F. tularensis, B. pseudomallei: с универсальными праймерами к гену 16S рРНК и мультиплексный вариант с видоспецифическими праймерами. Биочипы успешно используются для филогенетического анализа и SNP-типирования, в работе G. Pand ya и соавт. [47] анализ 40 штаммов F tularensis различных подвидов, проведенный с помощью микроэрреев для секвени-рования (resequencing array), позволил выбрать SNP с наибольшей разрешающей силой. К недостаткам ДНК-микрочипов можно отнести трудности по контролю качества гибридизации каждой ДНК-мишени, необходимость применения сложных статистических алгоритмов и методов нормализации анализа данных [4]. Высокая стоимость оборудования и расходных материалов препятствует использованию данной технологии для рутинного генотипирования ООИ, несмотря на их преимущества. 4. Методы, основанные на секвенировании Секвенирование метод, основанный на определении нуклеотидной последовательности исследуемого фрагмента генома. Данные секвенирования однозначны, легко поддаются интерпретации, метод обладает высокой точностью, воспроизводимостью, а также универсальностью. Однако, несмотря на ежегодное снижение себестоимости анализа, цена остается все еще достаточно высокой. Для стандартизации результатов типирования M. Maiden и соавт. [48] предложили метод мультило-кусного сиквенс-типирования (MLST multiLocus sequence typing), в котором анализируется 6-14 генов “домашнего хозяйства”. К настоящему моменту в базах данных (www.mlst.net, www.pubmlst.org) представлены результаты MLST-типирования V cholerae, B. pseudomallei, Yersinia spp. и др. Геноти-пирование на основе секвенирования генов “домашнего хозяйства” наиболее эффективно для эпидемиологического анализа штаммов возбудителя холеры. В серии публикаций по типированию возбудителя чумы описано использование различных наборов генов, как генов «домашнего хозяйства», так и генов вирулентности (cafl, lcrV, psaA,pla) [32, 49]. Несмотря на обнаружение определенного полиморфизма, в целом метод обладал недостаточной разрешающей силой, уступая ПЭФ [49]. Для некоторых микроорганизмов метод MLST оказался малоэффективным. У возбудителя сапа было зарегистрировано всего лишь два сиквенс-типа (www.mlst.net), а B. anthra-cis часто образуют единый клональный комплекс со штаммами из группы cereus [50]. Иногда для анализа достаточно секвенирования одного полиморфного гена, такого как ген rpoB возбудителя бруцеллеза [51]. Однако разрешающая 38 способность метода увеличивается при возрастании размера и количества анализируемых фрагментов. Для сиквенс-типирования холерных вибрионов с успехом используются межгенный спейсер 16S-23S рРНК, мобильные генетические элементы и гены патогенности [52, 53]. Другой часто анализируемой ДНК-мишенью является однонуклеотидный полиморфизм [51]. Так, набор канонических SNP был использован для филогенетического анализа штаммов сибирской язвы из Свердловска [54]. В последние годы помимо увеличения частоты использования стандартных протоколов секвениро-вания, разрабатываются новые методики, например пиросеквенирование [55], также все больше публикаций посвящено использованию массового параллельного секвенирования (next-generation sequencing) для расшифровки последовательности всего микробного генома. При этом полногеномное секвенирование все чаще не только способствует пониманию механизмов патогенности возбудителей или обеспечивает базу для развития других методов типирования, но и самостоятельно выступает в роли метода генотипирования в эпидемиологических и даже судебно-медицинских расследованиях [56, 57]. Выбор оптимального метода генотипирования Для анализа частоты применения различных методов генотипирования возбудителей ООИ и определения наиболее актуальных молекулярнобиологических подходов мы рассматривали статьи, опубликованные с 1 января 2004 г. по 30 июня 2013 г., представленные в электронных базах данных (http://www.ncbi.nlm.nih.gov/pubmed, highwire. stanford.edu/, http://elibrary.ru). Одним из наиболее важных критериев выбора метода генотипирования является дискриминирующая сила способность различать бактериальные штаммы одного вида. Как правило, методы анализа быстро эволюционирующих маркеров, такие как MLVA, HRM, обладают большей эффективностью дискриминации, чем те, которые опираются на более консервативные маркеры, например MLST. Методы типирования на основе анализа всего генома (ПЭФ, ПДАФ, ПДРФ, геномные микроэрреи, полногеномное секвенирование) характеризуются большей разрешающей силой, чем методы типирования, анализирующие ограниченное количество локусов (риботипирование, ПЦР-ПДРФ, MLST). Тем не менее дискриминирующая способность зависит от многих факторов, таких как используемые ферменты и праймеры, условия амплификации. Большинство методов генотипиро-вания характеризуются различной дискриминирующей силой в зависимости от анализируемого вида микроорганизма. Для микроорганизмов с выраженной клонально-стью, таких как возбудители сибирской язвы, бруцеллеза, методы генотипирования на основе анализа консервативных маркеров (гены “домашнего хозяйства”, рРНК) неэффективны. Поэтому в большин % В1 Н2 ЦЗ @4 Ш5 Рис. 1. Распределение частоты использования методов гено-типирования для различных возбудителей ООИ. Общее количество публикаций по Y. pestis 36, V. cholerae 243, B. anthracis 47, Brucella spp. 85, F. tularensis 39, Burkholderia spp. 17. 1 методы, включающие рестрикцию и электрофорез; 2 методы, основанные на амплификации вариабельных локусов; 3 мультилокусный анализ вариабельных тандемных повторов; 4 методы, основанные на гибридизации; 5 методы, основанные на секвенировании. стве публикаций по типированию данных возбудителей описано использование таких маркеров, как VNTR, SNR, SNP (рис. 1). Полиморфность геномов V. cholerae, B. pseudomallei и Y pestis облегчает типирование данных микроорганизмов, для них разработано и применяется большинство известных методов. Накопленная за многие годы информация по типированию с помощью пульс-электрофореза объясняет значительную долю публикаций по использованию данного метода для анализа возбудителя холеры. Анализ распределения публикаций по годам позволил проследить динамику использования различных методов генотипирования (рис. 2). Для наглядности результаты по мультилокусному анализу числа вариабельных тандемных повторов представлены отдельно, поскольку по данному методу начиная с 2006 г. публиковалось наибольшее количество статей. Сравнение количества публикаций за 2010-2012 гг. с аналогичным периодом за 2007-2009 гг. показало рост публикационной активности по методам на основе амплификации вариабельных локу-сов. В наибольшей степени интерес возрос к группе методов, основанных на секвенировании. Универсальность данного подхода, отраженная в примерно равных долях публикаций, посвященных его использованию у всех исследуемых микроорганизмов (см. рис. 1), развитие новых методик секвенирования, экспоненциальное снижение себестоимости позволяют предположить, что в будущем данная технология выйдет на первое место среди методов типирования. 39 ЭПИДЕМИОЛОГИЯ И ИНФЕКЦИОННЫЕ БОЛЕЗНИ, № 1, 2014 2004 2005 2006 2007 2008 2009 2010 2011 2012 Годы В1 Н2 ЦЗ g4 Ш5 Рис. 2. Распределение публикаций, посвященных использованию различных методов генотипирования, по годам. N -количество опубликованных статей, ширина заштрихованного сектора определяет число публикаций. 1 методы, включающие рестрикцию и электрофорез; 2 методы, основанные на амплификации вариабельных локусов; 3 мультилокусный анализ вариабельных тандемных повторов; 4 методы, основанные на гибридизации; 5 методы, основанные на секвенировании. Заключение В последние годы методы генотипирования претерпели существенные изменения: возрос уровень автоматизации, повысилась дискриминирующая сила и пропускная способность, разработаны адекватные средства биоинформатики. Постоянный рост баз данных, содержащих последовательности ДНК и профили типирования, позволяет проще и быстрее проводить сопоставление результатов из разных лабораторий, осуществлять ретроспективный анализ, долгосрочный эпидемиологический надзор за ООИ. К сожалению, в настоящее время нет идеального метода типирования, каждый подход имеет ряд преимуществ и недостатков. Подходящий метод следует выбирать в зависимости от цели, если важна скорость анализа, как в случае определения источника вспышки инфекции, предпочтительны методы на основе амплификации вариабельных локусов, например MLVA, DFR. С целью проведения филогенетического анализа для сопоставления результатов с предыдущими исследованиями используют ПЭФ, MLST. Наибольшей информативностью обладает метод полногеномного секвенирования, однако он все еще имеет высокую себестоимость, а анализ результатов занимает очень длительное время. Таким образом, на данном этапе развития методов генотипирования оптимальным под ходом является сочетание методов анализа локусов с различной степенью полиморфизма, что обеспечит высокую достоверность результатов и точность дискриминации бактериальных штаммов. Словарь терминов и сокращений CRISPR (clustered regularly interspaced short palindromic repeats) короткие палиндромные повторы, регулярно расположенные группами DFR-анализ (different region) метод амплификации дифференцирующих фрагментов генома HRM (high-resolution melting analysis) анализ кривых плавления высокого разрешения MLST (multiLocus sequence typing) мультило-кусное сиквенс-типирование MLVA (multiple-locus variable number tand em repeat analysis) мультилокусный анализ числа вариабельных тандемных повторов NGS (next-generation sequencing) массовое параллельное (полногеномное) секвенирование RAPD (rand om amplified polymorphic DNA) -ПЦР с произвольными праймерами Rep-ПЦР ПЦР с праймерами на повторяющиеся элементы генома SNP (single nucleotide polymorphism) однонуклеотидный полиморфизм SNR (single nucleotide repeat) однонуклеотидные повторы VNTR (variable number tand em repeat) вариабельные тандемные повторы ПА плазмидный анализ ПДАФ полиморфизм длин амплифицирован-ных фрагментов ПДРФ полиморфизм длин рестрикционных фрагментов ПЭФ пульс-электрофорез Таблица 2 Сравнение методов генотипирования возбудителей особо опасных инфекций Дискрими-Метод нирующая сила Воспро изводимость Простота проведения анализа Легкость интерпре тации Ско рость анализа Экономическая доступность ПА + + + + + + + + + + + + + + ПЭФ + + + + + + + / + + + + + + + ПДРФ + + + + + + + + + + + + + + ПЦР-ПДРФ + + + + + + + + + / + + + + + + + ПДАФ + + + + + + + + + + + + + DFR + + + + + + + + + + + + + + + + + RAPD + + + + + + + + + + + + + + Rep-PCR + + + + + + + + + / + + + + + + + + + MLVA + + + + + + + + + + + + + + + HRM + + + + + + + + + + + + + + + + Биочипы + + + + + + + / + + + + + + + MLST + + + + + + + + + + + NGS + + + + + + + + + + + Примечание. "+" низкая, "++" умеренная, "+++ " высокая. 40 Спейсер нетранскрибируемая последовательность ДНК, расположенная между повторяющимися элементами генома
×

About the authors

O. S. Bondareva

Research Institute for Plague Control of the Federal Service for Surveillance in the sphere of Consumers Rights Protection and Human Welfare

Email: bondarevaOs@mail.ru

S. S. Savchenko

Research Institute for Plague Control of the Federal Service for Surveillance in the sphere of Consumers Rights Protection and Human Welfare

Email: dokmop@pochta.ru

G. A. Tkachenko

Research Institute for Plague Control of the Federal Service for Surveillance in the sphere of Consumers Rights Protection and Human Welfare

Email: tkachenko_g@mail.ru

A. I. Abueva

Research Institute for Plague Control of the Federal Service for Surveillance in the sphere of Consumers Rights Protection and Human Welfare

Yu. O. Muratova

Research Institute for Plague Control of the Federal Service for Surveillance in the sphere of Consumers Rights Protection and Human Welfare

V. A Antonov

Research Institute for Plague Control of the Federal Service for Surveillance in the sphere of Consumers Rights Protection and Human Welfare

Email: vari2@sprint-v.com.ru

References

  1. Yang Y., Wang J., Wen H., Liu H. Comparison oftwo suspension arrays for simultaneous detection of five biothreat bacterial in powder samples. J. Biomed. Biotechnol. 2012; 2012: 831052.
  2. Мартынюк Р.А., Сандахчиев Л.С., Нетесов С.В., Онищенко Г.Г. Биотерроризм: национальная и глобальная угроза. Вестник Российской АН. 2003; 3: 195.
  3. Sabat A.J., Budimir A., Nashev D., Sá-Leão R., van Dijl Jm, Laurent F. et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 2013; 18(4): 20380.
  4. Бренева Н.В., Марамович А.С., Климов В.Т. Популяционная изменчивость Yersinia pestis в почве из природного очага чумы. Журнал микробиологии, эпидемиологии и иммунобиологии. 2006; 2: 7-11.
  5. Mwansa J.C., Mwaba J., Lukwesa C., Bhuiyan N.A., Ansaruzzaman M., Ramamurthy T. et al. Multiply antibiotic-resistant Vibrio cholerae O1 biotype El Tor strains emerge during cholera outbreaks in Zambia. Epidemiol. Infect. 2007; 135(5): 847-53.
  6. Tenover F.C., Arbeit R.D., Goering R.V., Mickelsen P.A., Murray B.E., Persing D.H. et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 1995; 33(9): 2233-9.
  7. Smith A.M., Keddy K.H., De Wee L. Characterization of cholera outbreak isolates from Namibia, December 2006 to February 2007. Epidemiol. Infect. 2008; 136(9): 1207-9.
  8. Safa A., Bhuiyan N.A., Alam M., Sack D.A., Nair G.B. Genomic relatedness of the new Matlab variants of Vibrio cholerae O1 to the classical and El Tor biotypes as determined by pulsed-field gel electrophoresis. J. Clin. Microbiol. 2005; 43(3): 1401-4.
  9. Chowdhury N., Asakura M., Neogi S.B., Hinenoya A., Haidar S., Ramamurthy T. et al. Development of simple and rapid PCR-fingerprinting methods for Vibrio cholerae on the basis of genetic diversity of the superintegron. J. Appl. Microbiol. 2010; 109(1): 304-12.
  10. Li Z.J., Cui B.Y., Chen H., Chen J.D., Zhao H.Y., Piao D.R. et al. Molecular typing of Brucella suis collected from 1960s to 2010s in China by MLVA and PFGE. Biomed. Environ. Sci. 2013; 26(6): 504-8.
  11. Ерошенко Г.А., Павлова А.И., Куклева Л.М., Шавина Н.Ю., Кутырев В.В. Генотипирование штаммов Yersinia pestis на основе вариабельности генов биосинтеза рРНК. Журнал микробиологии, эпидемиологии и иммунобиологии. 2007; 3: 6-10.
  12. Torrea G., Chenal-Francisque V., Leclercq A., Carniel E. Efficient tracing of global isolates of Yersinia pestis by restriction fragment length polymorphism analysis using three insertion sequences as probes. J. Clin. Microbiol. 2006; 44(6): 2084-92.
  13. Fey P.D., Dempsey M.M., Olson M.E., Chrustowski M.S., Engle J.L., Jay J.J. et al. Molecular analysis of Francisella tularensis subspecies tularensis and holarctica. Am. J. Clin. Pathol. 2007; 128(6): 926-35.
  14. Kantardjiev T., Ivanov I., Velinov T., Padeshki P., Popov B., Nenova R., Mincheff M. Tularemia outbreak, Bulgaria, 19972005. Emerg. Infect. Dis. 2006; 12(4): 678-80.
  15. Zhou H., Lou J., Diao B., Cui Z., Pang B., Zhang L. et al. Comparison of amplified fragment length polymorphism and pulsed-field gel electrophoresis for subtyping of Vibrio cholerae serogroups O1 and O139. Foodborne Pathog, Dis. 2011; 8(2): 291-8.
  16. Reen F.J., Boyd E.F. Molecular typing of epidemic and nonepidemic Vibrio cholerae isolates and differentiation of V. cholerae and V. mimicus isolates by PCR-single-strand conformation polymorphism analysis. J. Appl. Microbiol. 2005; 98(3): 544-55.
  17. Ерошенко Г.А., Одиноков Г.Н., Куклева Л.М., Павлова А.И., Краснов Я.М., Шавина Н.Ю. и др. Стандартный алгоритм молекулярного типирования штаммов Yersinia pestis. Журнал микробиологии, эпидемиологии и иммунобиологии. 2012; 3: 25-35.
  18. Романова А.В., Захарова И.Б., Замараев В.С., Викторов Д.В. Конструирование праймеров для детекции и типирования генов β-лактамаз патогенных видов рода Burkholderia. Проблемы особо опасных инфекций. 2012; 2(112): 59-61.
  19. Ломов Ю.М., Телесманич Н.Р., Кругликов В.Д., Авдеева Е.П., Ежова М.И., Шалу О.А. и др. Фенотипическая и молекулярно-биологическая характеристика штаммов холерных вибрионов Эль-Тор, выделенных из водных объектов окружающей среды Ростова-на-Дону в 2003-2008 гг. Эпидемиология и инфекционные болезни. 2011; 1: 24-8.
  20. Van Ert M.N., Easterday W.R., Simonson T.S., U’Ren J.M., Pearson T., Kenefic L.J. et al. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J. Clin. Microbiol. 2007; 45(1): 47-53.
  21. Li Y., Dai E., Cui Y., Li M., Zhang Y., Wu M. et al. Different region analysis for genotyping Yersinia pestis isolates from China. PLoS One. 2008; 3(5): e2166.
  22. Duangsonk K., Gal D., Mayo M. et al. Use of a variable amplicon typing scheme reveals considerable variation in the accessory genomes of isolates of Burkholderia pseudomallei. J. Clin. Microbiol. 2006; 44(4): 1323-34.
  23. Huber B., Scholz H.C., Lucero N., Busse H.J. Development of a PCR assay for typing and subtyping of Brucella species. Int. J. Med. Microbiol. 2009; 299(8): 563-73.
  24. Antonov V.A., Tkachenko G.A., Altukhova V.V., Savchenko S.S., Zinchenko O.V., Viktorov D.V. et al. Molecular identification and typing of Burkholderia pseudomallei and Burkholderia mallei: when is enough enough? Trans. Roy. Soc. Trop. Med. Hyg. 2008; 102 (Suppl. 1): S134-9.
  25. Ерошенко Г.А. Молекулярное типирование штаммов Vibrio cholerae не О1/ не О139, выделенных на территории Российской федерации и других стран СНГ от больных людей. Проблемы особо опасных инфекций. 2005; 2(90): 64.
  26. de la Puente-Redondo V.A., del Blanco N.G., Gutiérrez-Martin C.B., Garcia-Pena F.J., Rodriguez Ferri E.F. Comparison of different PCR approaches for typing of Francisella tularensis strains. J. Clin. Microbiol. 2000; 38(3): 1016-22.
  27. Shuan Ju Teh C., Thong K.L., Osawa R., Heng Chua K. Comparative PCR-based fingerprinting of Vibrio cholerae isolated in Malaysia. J. Gen. Appl. Microbiol. 2011; 57(1): 19-26.
  28. Kingston J.J., Tuteja U., Kapil M., Murali H.S., Batra H.V. Genotyping of Indian Yersinia pestis strains by MLVA and repetitive DNA sequence based PCRs. Antonie v. Leeuwenhoek. 2009; 96(3): 303-12.
  29. Motin V.L., Georgescu A.M., Elliott J.M., Hu P., Worsham P.L., Ott L.L. et al. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD). J. Bacteriol. 2002; 184(4): 1019-27.
  30. Larson M.A., Fey P.D., Bartling A.M., Iwen P.C., Dempsey M.P., Francesconi S.C. et al. Francisella tularensis molecular typing using differential insertion sequence amplification. J. Clin. Microbiol. 2011; 49(8): 2786-97.
  31. Cui Y., Li Y., Gorgé O., Platonov M.E., Yan Y., Guo Z. et al. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One. 2008; 3(7): e2652.
  32. Платонов М.Е., Евсеева В.В., Дентовская С.В., Анисимов А.П. Молекулярное типирование Yersinia pestis. Молекулярная генетика, микробиология и вирусология. 2013; 2: 3-12.
  33. Рязанова А.Г., Еременко Е.И., Цыганкова О.И., Цыганкова Е.А., Куличенко А.Н. Использование методов молекулярного типирования Bacillus anthracis в референс-центре по мониторингу за возбудителем сибирской язвы. Проблемы особо опасных инфекций. 2011; 4(110): 68-70.
  34. Danin-Poleg Y., Cohen L.A., Gancz H., Broza Y.Y., Goldshmidt H., Malul E. et al. Vibrio cholerae strain typing and phylogeny study based on simple sequence repeats. J. Clin. Microbiol. 2007; 45(3): 736-46.
  35. Vogler A.J., Birdsell D., Wagner D.M., Keim P. An optimized, multiplexed multi-locus variable-number tand em repeat analysis system for genotyping Francisella tularensis. Lett. Appl. Microbiol. 2009; 48(1): 140-4.
  36. Кулаков Ю.К., Цирельсон Л.Е., Желудков М.М. Молекулярногенетическая характеристика изолятов бруцелл, выделенных от собак и оленей в различных регионах России. Молекулярная генетика, микробиология и вирусология. 2012; 4: 28-33.
  37. Водопьянов А.С., Мишанькин Б.Н., Павлович Н.В., Пичурина Н.Л. Генотипическая гетерогенность и географическое разнообразие коллекционных штаммов Francisella tularensis по данным VNTR-анализа их ДНК. Молекулярная генетика, микробиология и вирусология. 2007; 2: 33-40.
  38. Онищенко Г.Г., Куличенко А.Н., Рязанова А.Г., Демина Ю.В., Крига А.С., Еременко Е.И. и др. Анализ вспышки сибирской язвы в Омской области в 2010 г. Журнал микробиологии, эпидемиологии и иммунобиологии. 2012; 5: 33-6.
  39. Lam C., Octavia S., Reeves P.R., Lan R. Multi-locus variable number tand em repeat analysis of 7th pand emic Vibrio cholerae. BMC Microbiol. 2012; 12: 82.
  40. Price E.P., Hornstra H.M., Limmathurotsakul D., Max T.L., Sarovich D.S., Vogler A.J. et al. Within-host evolution of Burkholderia pseudomallei in four cases of acute melioidosis. PLoS Pathog. 2010; 6(1): e1000725.
  41. Kenefic L.J., Beaudry J., Trim C., Daly R., Parmar R., Zanecki S. et al. High resolution genotyping of Bacillus anthracis outbreak strains using four highly mutable single nucleotide repeat markers. Lett. Appl. Microbiol. 2008; 46(5): 600-3.
  42. Derzelle S., Laroche S., Le Flèche P., Hauck Y., Thierry S., Vergnaud G. et al. Characterization of genetic diversity of Bacillus anthracis in France by using high-resolution melting assays and multilocus variable-number tand em-repeat analysis. J. Clin. Microbiol. 2011; 49(12): 4286-92.
  43. Winchell J.M., Wolff B.J., Tiller R., Bowen M.D., Hoffmaster A.R. Rapid identification and discrimination of Brucella isolates by use of real-time PCR and high-resolution melt analysis. J. Clin. Microbiol. 2010; 48(3): 697-702.
  44. Захарова И.Б., Романова А.В., Тетерятникова Н.Н., Замараев В.С., Викторов Д.В. Молекулярное типирование и анализ полиморфизма генов β-лактамаз патогенных видов Burkholderia. Вестник Волгоградского государственного медицинского университета. 2012; 2: 98-101.
  45. Ciammaruconi A., Grassi S., Faggioni G., De Santis R., Pittiglio V., D’Amelio R. et al. A rapid allele variant discrimination method for Yersinia pestis strains based on high-resolution melting curve analysis. Diagn. Microbiol. Infect. Dis. 2009; 65(1): 7-13.
  46. Li W., Raoult D., Fournier P. Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 2009; 33: 892-916.
  47. Pandya G.A., Holmes M.H., Petersen J.M., Pradhan S., Karamycheva S.A., Wolcott M.J. et al. Whole genome single nucleotide polymorphism based phylogeny of Francisella tularensis and its application to the development of a strain typing assay. BMC Microbiol. 2009; 9: 213.
  48. Осин А.В., Краснов Я.М., Гусева Н.П., Смирнова Н.И. Разработка алгоритма MLST-типирования пандемических и предпандемических штаммов Vibrio cholerae биовара эльтор. Проблемы особо опасных инфекций. 2011; 1(107): 58-61.
  49. Kotetishvili M., Kreger A., Wauters G., Morris J.G.Jr, Sulakvelidze A., Stine O.C. Multilocus sequence typing for studying genetic relationships among Yersinia species. J. Clin. Microbiol. 2005; 43(6): 2674-84.
  50. Kim K., Cheon E., Wheeler K.E., Youn Y., Leighton T.J., Park C. et al. Determination of the most closely related bacillus isolates to Bacillus anthracis by multilocus sequence typing. Yale J. Biol. Med. 2005; 78(1): 1-14.
  51. Sayan M., Yumuk Z., Bilenoglu O., Erdenlig S., Willke A. Genotyping of Brucella melitensis by rpoB gene analysis and reevaluation of conventional serotyping method. Jpn J. Infect. Dis. 2009; 62(2): 160-3.
  52. Cariri F.A., Costa A.P., Melo C.C., Theophilo G.N., Hofer E., de Melo Neto O.P. et al. Characterization of potentially virulent non-O1/non-O139 Vibrio cholerae strains isolated from human patients. Clin. Microbiol. Infect. 2010; 16 (1): 62-7.
  53. Talkington D., Bopp C., Tarr C., Parsons M.B., Dahourou G., Freeman M. et al. Characterization of toxigenic Vibrio cholerae from Haiti, 2010-2011. Emerg. Infect. Dis. 2011; 17(11): 2122-9.
  54. Okinaka R.T., Henrie M., Hill K.K., Lowery K.S., Van Ert M., Pearson T. et al. Single nucleotide polymorphism typing of Bacillus anthracis from Sverdlovsk tissue. Emerg. Infect. Dis. 2008; 14(4): 653-6.
  55. Jacob D., Wahab T., Edvinsson B., Peterzon A., Boskani T., Farhadi L. et al. Identification and subtyping of Francisella by pyrosequencing and signature matching of 16S rDNA fragments. Lett. Appl. Microbiol. 2011; 53(6): 592-5.
  56. Hendriksen R.S., Price L.B., Schupp J.M., Gillece J.D., Kaas R.S., Engelthaler D.M. et al. Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio. 2011; 2(4): e00157-11.
  57. Price E.P., Seymour M.L., Sarovich D.S., Latham J., Wolken S.R. et al. Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. Emerg. Infect. Dis. 2012; 18(8): 1307-13.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 014448 от 08.02.1996
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80652 от 15.03.2021
.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies